Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Size: px
Start display at page:

Download "Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node"

Transcription

1 Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva North Carolina State University Universities of Trento and Padova INT Workshop, August 1, 2018

2 electronic structure qmc - ground and excited states, T=0 - energy differences ~ evs, accuracy target 0.05 ev (Hartree-Fock as reference, E_corr = E_exact - E_HF) interest in: 1) so far spins were just static labels (up, down) but we need spin-orbit, etc, varying spins 2) maybe, unify static and variable spins formulations 3) beyond the fixed-node/phase

3 projector QMC and variational fixed-node standard model FNDMC (90-95% of E_corr) Hamiltonian: interacting electrons in ionic potentials (or ECP) QMC/DMC: ψ 0 (r 1, r 2,..., r N )=lim τ exp( τ H )ψ T (rial) H ψ 0 =E 0 ψ 0 ψ T ψ 0, FN = node Γ(ψ)={R ; ψ( R)=0} dim(γ(ψ))=3n 1 codimension 1 fixed-node (FN) approx.! Γ(ψ 0, FN )=Γ(ψ T ) ψ T ψ 0, FN 0 trial function Slater-Jastrow: ψ T = k c k det k [ϕ α ]det k [ϕ β ]exp[u corr ]

4 if eigenstate is inherently complex (eg, stationary current): fixed-phase approximation write ψ=ρe i Φ ; ρ 0 ρ 0 =lim τ exp[ τ(h +( Φ 0 ) 2 /2)]ρ T (rial) (H +( Φ 0 ) 2 /2)ρ 0 =E 0 ρ 0 ρ T ρ 0, FP = dim(γ(ρ))=3n 2 codimension 2 fixed-phase (FP) approx.! Φ 0 =Φ T V eff,t =( Φ T ) 2 / 2 ψ T = k c k det k [ϕ α ]det k [ϕ β ]exp[u corr ]=ρ T e i Φ T

5 fixed-phase special case of fixed-node (sketch) let ψ T (R) be real, fermionic, with nodes at R node,t Γ(ψ T ) construct ψ=ψ T +ia ψ symm,>0 ϕ=arctan [(R ψ)/ ψ 2 ] then the limit of potential from the phase node lim a 0 ( ϕ) 2 C (1/a)δ[ R R node,t ] ie, can write also the fixed-node as effective singular potential H H +V (R node,t )

6 from spatial orbitals to spinorbitals spinless electrons-ions Hamiltonian spatial-only problem, spin channels factorized: ψ T = k c k det k [ϕ α (r i )]det k [ϕ β (r j )]exp[u corr ] now, include spin-orbit ϕ n (r i, s i )=α ϕ (r i )χ (s i )+βϕ (r i )χ (s i ) determinant of spinors spin functions and coordinates : ψ Trial =ψ Trial (R, S)=det [ϕ n (r i, s i )]exp(u corr ) χ (1/2)=χ ( 1/2)=1 χ ( 1/2)=χ (1/2)=0 - wf complex, good quantum number J

7 projection is more involved and less straightforward some ideas: - work in 80s on nuclei (Kalos, Carlson, Schmidt, others) - sample the spinors (Pederiva, Gandolfi, Ambrosetti 2000s) with spinor updates ( stochastic rotations of spinors ) - smooth out spin configurations + fixed-phase approximation (Melton, Ambrosetti, Pederiva, LM et al, 2016) -...

8 we smooth out spin configurations/paths - continuous (overcomplete) representation, ie, coordinates, possible choice: χ (s)=exp(+is), χ (s)=exp( is); s (0,2 π) different from rotating spinors, here: spinors are fixed why this choice in particular? ( later)

9 how can you do that? atomic spin-orbit acting on a valence electron i can be recast as L i S i l, j, m j l, j, m j > v lj (r i ) <l, j, m j correct action of SO and expectations need matrix elements l, j, m j χ = a χ +b χ c χ +d χ I s=1/2, 1/2 0 2 π ds

10 sample the spin configurations as free d.o.f. fixed-phase spinorbit DMC (FPSODMC) effective free-particle Hamiltonian (kinetic term) for spins H H +H spin, H spin (s i )= 1 2μ s [ 2 s i 2 +1 ] H spin annihilates arbitrary spinor H spin (s i )[α ϕ (r i )χ (s i )+β ϕ (r i )χ (s i )]=0 therefore, to the leading order no contribution to the energy (subleading contribution overshadowed by the fixed-phase bias since SO is small) FPSODMC method: tests on atomic and molecular systems

11 total energies: Pb atom valence only, vary effective mass, proportional to 1/(spin time step) 0.1 ev (small spin effective mass large)

12 total energies: Pb atom with valence 6s 2 6p 2 FPSODMC(.) vs CI with ccpvxz basis( ) j 1, j 2 = 3 2 j 1, j 2 = 1 2 Arxiv:...

13 Cr and Mo atoms electronic ground states 7 S 3 (d 5 s 1 ) W atom is isovalent, what is its ground state? averaged SO (CI, QMC) 7 S 3 (5d 5 6s 1 ) explicit SO two-component, open-shell only CI 7 S 3 (5d 5 6s 1 ) explicit SO two-component, full CI or FPSODMC/rCI 5 D 0 (5d 4 6s 2 ) both SO and correlation needed to flip the state!

14 W atom SO splitted sd-manifold of excitations: correct ground state in FPSODMC Config. State COSCI DMC/COSCI CISD DMC/rCISD Exp 5d 4 6s 2 5 D (1) (1) d 5 6s 1 7 S (1) (1) d 4 6s 2 5 D (1) (1) d 4 6s 2 5 D (1) (1) d 4 6s 2 5 D (1) (1) 0.77

15 W atom: also correct order of excitations! Config. State COSCI DMC/COSCI CISD DMC/rCISD Exp 5d 4 6s 2 5 D (1) (1) d 5 6s 1 7 S (1) (1) d 4 6s 2 5 D (1) (1) d 4 6s 2 5 D (1) (1) d 4 6s 2 5 D (1) (1) 0.77 FPSODMC agrees with experiment, higher accuracy needs better ECP

16 Sn 2 dimer should be simple, it is only the fourth row but SO correction is ~ 0.5 ev! (small cores, 44 val. e-) Exp. A. Ambrosetti et al, to appear in PRB

17 why this in particular? - similar to spatial coords but much smaller space - no divergencies, no jumps, importance sampling ok - simplifies dealing with pseudopotentials (effective cores) and generate similar bias, close to fixed-node regime but more χ (s)=exp(+is), χ (s)=exp( is); s (0,2 π) - enables to smoothly complexify also real eigenstates - and still more...

18 interestingly, from such spinor wf, one can recover the spin-labeled fixed-node trial form... in spinors χ α (r, s)=ϕ α (r)e is, χ β (r, s)=ϕ β (r)e is adjust to two values: {up }={s i } s, {down}={s j } s ', s s'

19 full sampling of all possible spin states and configurations: cartoon R 3N (2π) N N! [(N /2)!] 2 2N singlets N-electron continuous spin-position space

20 restricting spins into particular up and down subspace R 3N one (N/2)*(N/2) choice fixed-node

21 fixed-node trial wf form but with a complex twist spins factorize out of the determinant and we get up.down product: ψ T =det [χ j (r k, s k )] ψ T = fac(s, s ' )det [ϕ i (r k )]det [ϕ j (r k ' )] - the most interesting regime: {up }={s i } s {down }={s j } s ', - basically, the fixed-node limit but complexified, ie, it has properties of the fixed-phase, as can be achieved by: - the choice of spin variables (one assigns a set of particles as spin-up or -down, ie, particular subset of permutations) - explore how close/far to fixed-node by τ spin / τ space

22 fixed-node vs fixed-phase biases in atoms: FN real w.f. vs FP at the FN limit essentially the same C. Melton, LM, PRE, 96, or arxiv

23 similar for molecules now including nonlocal ECPs FN vs FP at the FN limit: binding curves of N 2

24 released-node

25 released-node: importance sampling with symmetric guiding function while projecting out the fermionic component antisymm. ψ T FNDMC ψ T ψ FN E FN = ψ FN ψ T [(H ψ T )/ ψ T ] ψ FN ψ T symm. ψ G RNDMC ψ G ψ RN = symm+antisymm E RN = ψ RN ψ G (ψ T /ψ G )[(H ψ T )/ ψ T ] ψ RN ψ G (ψ T / ψ G )

26 choice of guiding function ψ G =ρ T ψ T =ρ T (R, S )exp[i ϕ T ( R, S)] why? - amplitude is symmetric by definition - its node is codimension 2, ie, generically ergodic sampling ψ T - it is close to that implies close to optimal importance sampling local energy fluctuations almost the same

27 few electron system (all-el O atom): released-node and the well-known exponential noise FN exact

28 better tuned algorithm: released-node eliminates the bias fully FN exact

29 summary - unifying formalism FPSODMC, FN and FP, static/variable spins, sampling + nodes sampling + effective potential - wave functions with phase/spins are more general, more smooth, ergodic sampling (zeros codim 2) - new options for attacking fixed-node/phase bias - more variational freedom (?) PRA 2016, JCP 2016, PRE more coming

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations C. Melton, M.C. Bennett, L. Mitas with A. Ambrosetti, F. Pederiva North Carolina State University

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Topology of fermion nodes and pfaffian wavefunctions

Topology of fermion nodes and pfaffian wavefunctions Topology of fermion nodes and pfaffian wavefunctions Lubos Mitas North Carolina State University San Sebastian, July 2007 Lubos_Mitas@ncsu.edu Hmmm, fermion nodes... Fermion nodes is a challenging, rather

More information

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Jindrich Kolorenc (von Humboldt Fellow), U. Hamburg Michal Bajdich, ORNL Lubos Mitas, North Carolina

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG

Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Noncollinear spins in QMC: spiral Spin Density Waves in the HEG Zoltán Radnai and Richard J. Needs Workshop at The Towler Institute July 2006 Overview What are noncollinear spin systems and why are they

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

3: Many electrons. Orbital symmetries. l =2 1. m l

3: Many electrons. Orbital symmetries. l =2 1. m l 3: Many electrons Orbital symmetries Atomic orbitals are labelled according to the principal quantum number, n, and the orbital angular momentum quantum number, l. Electrons in a diatomic molecule experience

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics

Lecture 5. Hartree-Fock Theory. WS2010/11: Introduction to Nuclear and Particle Physics Lecture 5 Hartree-Fock Theory WS2010/11: Introduction to Nuclear and Particle Physics Particle-number representation: General formalism The simplest starting point for a many-body state is a system of

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

2 Electronic structure theory

2 Electronic structure theory Electronic structure theory. Generalities.. Born-Oppenheimer approximation revisited In Sec..3 (lecture 3) the Born-Oppenheimer approximation was introduced (see also, for instance, [Tannor.]). We are

More information

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

AFDMC Method for Nuclear Physics and Nuclear Astrophysics AFDMC Method for Nuclear Physics and Nuclear Astrophysics Thanks to INFN and to F. Pederiva (Trento) Outline Motivations: NN scattering data few body theory. Few-body many body experiments/observations?

More information

Observations on variational and projector Monte Carlo Methods

Observations on variational and projector Monte Carlo Methods Observations on variational and projector Monte Carlo Methods C. J. Umrigar Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA (Dated: September 29, 2015) Variational

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules M. Marchi 1,2, S. Azadi 2, M. Casula 3, S. Sorella 1,2 1 DEMOCRITOS, National Simulation Center, 34014,

More information

Quantum Monte Carlo calculations of two neutrons in finite volume

Quantum Monte Carlo calculations of two neutrons in finite volume Quantum Monte Carlo calculations of two neutrons in finite volume Philipp Klos with J. E. Lynn, I. Tews, S. Gandolfi, A. Gezerlis, H.-W. Hammer, M. Hoferichter, and A. Schwenk Nuclear Physics from Lattice

More information

ALGORITHMS FOR FINITE TEMPERATURE QMC

ALGORITHMS FOR FINITE TEMPERATURE QMC ALGORITHMS FOR FINITE TEMPERATURE QMC Bryan Clark Station Q QMC INT Conference: June 12, 2013 Current de-facto standard for fermions at finite temperature Restricted Path Integral Monte Carlo! * see PIMC++

More information

Pairing wave functions for quantum Monte Carlo methods

Pairing wave functions for quantum Monte Carlo methods Pairing wave functions for quantum Monte Carlo methods KE Schmidt Department of Physics Arizona State University Tempe, AZ 85287 USA Auxiliary field formalism Represent importance sampled wave function

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Low- and High-Energy Excitations in the Unitary Fermi Gas

Low- and High-Energy Excitations in the Unitary Fermi Gas Low- and High-Energy Excitations in the Unitary Fermi Gas Introduction / Motivation Homogeneous Gas Momentum Distribution Quasi-Particle Spectrum Low Energy Excitations and Static Structure Function Inhomogeneous

More information

Ground-state properties, excitations, and response of the 2D Fermi gas

Ground-state properties, excitations, and response of the 2D Fermi gas Ground-state properties, excitations, and response of the 2D Fermi gas Introduction: 2D FG and a condensed matter perspective Auxiliary-field quantum Monte Carlo calculations - exact* here Results on spin-balanced

More information

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS

PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS PROGRESS IN UNDERSTANDING THE PROPERTIED OF MANY-BODY SYSTEMS BY QUANTUM MONTE CARLO SIMULATIONS Francesco Pederiva! Physics Department - University of Trento INFN - TIFPA, Trento Institute for Fundamental

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign

Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Correlation in correlated materials (mostly transition metal oxides) Lucas K. Wagner University of Illinois at Urbana-Champaign Understanding of correlated materials is mostly phenomenological FN- DMC

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Continuum variational and diffusion quantum Monte Carlo calculations

Continuum variational and diffusion quantum Monte Carlo calculations Continuum variational and diffusion quantum Monte Carlo calculations R J Needs, M D Towler, N D Drummond and P López Ríos Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK Abstract.

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo

Chapter 2 Quantum chemistry using auxiliary field Monte Carlo Chapter 2 Quantum chemistry using auxiliary field Monte Carlo 1. The Hubbard-Stratonovich Transformation 2. Neuhauser s shifted contour 3. Calculation of forces and PESs 4. Multireference AFMC 5. Examples

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1 2358-19 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 1 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

An Overview of Quantum Monte Carlo Methods. David M. Ceperley

An Overview of Quantum Monte Carlo Methods. David M. Ceperley An Overview of Quantum Monte Carlo Methods David M. Ceperley Department of Physics and National Center for Supercomputing Applications University of Illinois Urbana-Champaign Urbana, Illinois 61801 In

More information

Quantum Monte Carlo. QMC methods in the continuum

Quantum Monte Carlo. QMC methods in the continuum Quantum Monte Carlo Premise: need to use simulation techniques to solve manybody quantum problems just as you need them classically. Both the wavefunction and expectation values are determined by the simulations.

More information

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas

Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas Introduction to Quantum Monte Carlo Methods Applied to the Electron Gas D. M. Ceperley Physics Department and NCSA, University of Illinois Urbana-Champaign, Urbana, IL, USA 1. Introduction In these lectures,

More information

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen ! Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen WHO DID THE WORK? Miguel Morales, Livermore Carlo Pierleoni: L Aquila, Italy Jeff McMahon

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods

Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods Physics Procedia 3 (2010) 1397 1410 www.elsevier.com/locate/procedia Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods M. Bajdich a, J. Kolorenč a, L. Mitas a and P. J. Reynolds

More information

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many-Body Problem. Lecture 2 The Nuclear Many-Body Problem Lecture 2 How do we describe nuclei? Shell structure in nuclei and the phenomenological shell model approach to nuclear structure. Ab-initio approach to nuclear structure.

More information

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure

The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure The EOS of neutron matter, and the effect of Λ hyperons to neutron star structure Stefano Gandolfi Los Alamos National Laboratory (LANL) Nuclear Structure and Reactions: Weak, Strange and Exotic International

More information

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy

Building a wavefunction within the Complete-Active. Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Building a wavefunction within the Complete-Active Active-Space Coupled-Cluster Cluster with Singles and Doubles formalism: straightforward description of quasidegeneracy Dmitry I. Lyakh (Karazin Kharkiv

More information

2.4. Quantum Mechanical description of hydrogen atom

2.4. Quantum Mechanical description of hydrogen atom 2.4. Quantum Mechanical description of hydrogen atom Atomic units Quantity Atomic unit SI Conversion Ang. mom. h [J s] h = 1, 05459 10 34 Js Mass m e [kg] m e = 9, 1094 10 31 kg Charge e [C] e = 1, 6022

More information

arxiv: v1 [cond-mat.quant-gas] 9 May 2011

arxiv: v1 [cond-mat.quant-gas] 9 May 2011 Atomic Fermi gas at the unitary limit by quantum Monte Carlo methods: Effects of the interaction range Xin Li, Jindřich Kolorenč,,2 and Lubos Mitas Department of Physics, North Carolina State University,

More information

Lecture 4, January 12, 2015 Bonding in H2

Lecture 4, January 12, 2015 Bonding in H2 Lecture 4, January 12, 2015 Bonding in H2 Elements of Quantum Chemistry with Applications to Chemical Bonding and Properties of Molecules and Solids Course number: Ch125a; Room 147 Noyes Hours: 11-11:50am

More information

New Frontiers in Nuclear Structure Theory

New Frontiers in Nuclear Structure Theory New Frontiers in Nuclear Structure Theory From Realistic Interactions to the Nuclear Chart Robert Roth Institut für Kernphysik Technical University Darmstadt Overview Motivation Nucleon-Nucleon Interactions

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms

Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms Ab initio asymptotic-expansion coefficients for pair energies in Møller-Plesset perturbation theory for atoms K. JANKOWSKI a, R. SŁUPSKI a, and J. R. FLORES b a Nicholas Copernicus University 87-100 Toruń,

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

I. CSFs Are Used to Express the Full N-Electron Wavefunction

I. CSFs Are Used to Express the Full N-Electron Wavefunction Chapter 11 One Must be Able to Evaluate the Matrix Elements Among Properly Symmetry Adapted N- Electron Configuration Functions for Any Operator, the Electronic Hamiltonian in Particular. The Slater-Condon

More information

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in

Lecture #13 1. Incorporating a vector potential into the Hamiltonian 2. Spin postulates 3. Description of spin states 4. Identical particles in Lecture #3. Incorporating a vector potential into the Hamiltonian. Spin postulates 3. Description of spin states 4. Identical particles in classical and QM 5. Exchange degeneracy - the fundamental problem

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014

Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Answers Quantum Chemistry NWI-MOL406 G. C. Groenenboom and G. A. de Wijs, HG00.307, 8:30-11:30, 21 jan 2014 Question 1: Basis sets Consider the split valence SV3-21G one electron basis set for formaldehyde

More information

Lecture 9. Hartree Fock Method and Koopman s Theorem

Lecture 9. Hartree Fock Method and Koopman s Theorem Lecture 9 Hartree Fock Method and Koopman s Theorem Ψ(N) is approximated as a single slater determinant Φ of N orthogonal One electron spin-orbitals. One electron orbital φ i = φ i (r) χ i (σ) χ i (σ)

More information

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid?

Is a system of fermions in the crossover BCS-BEC. BEC regime a new type of superfluid? Is a system of fermions in the crossover BCS-BEC BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime Aurel Bulgac,, Joaquin E. Drut, Piotr Magierski

More information

Basis sets for electron correlation

Basis sets for electron correlation Basis sets for electron correlation Trygve Helgaker Centre for Theoretical and Computational Chemistry Department of Chemistry, University of Oslo, Norway The 12th Sostrup Summer School Quantum Chemistry

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

6. Auxiliary field continuous time quantum Monte Carlo

6. Auxiliary field continuous time quantum Monte Carlo 6. Auxiliary field continuous time quantum Monte Carlo The purpose of the auxiliary field continuous time quantum Monte Carlo method 1 is to calculate the full Greens function of the Anderson impurity

More information

Introduction to Path Integral Monte Carlo. Part I.

Introduction to Path Integral Monte Carlo. Part I. Introduction to Path Integral Monte Carlo. Part I. Alexey Filinov, Jens Böning, Michael Bonitz Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

The Hartree-Fock approximation

The Hartree-Fock approximation Contents The Born-Oppenheimer approximation Literature Quantum mechanics 2 - Lecture 7 November 21, 2012 Contents The Born-Oppenheimer approximation Literature 1 The Born-Oppenheimer approximation 2 3

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Cyrus Umrigar Physics Department, Cornell University, Ithaca.

More information

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them

Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Auxiliary-field Monte Carlo methods in Fock space: sign problems and methods to circumvent them Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo methods in Fock

More information

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

Structure of the LiPs and e + Be systems. 1 Introduction. J. Mitroy

Structure of the LiPs and e + Be systems. 1 Introduction. J. Mitroy J. At. Mol. Sci. doi: 10.4208/jams.071510.072110a Vol. 1, No. 4, pp. 275-279 November 2010 Structure of the LiPs and e + Be systems J. Mitroy ARC Centre for Anti-matter Matter Studies and School of Engineering,

More information

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

On the Uniqueness of Molecular Orbitals and limitations of the MO-model. On the Uniqueness of Molecular Orbitals and limitations of the MO-model. The purpose of these notes is to make clear that molecular orbitals are a particular way to represent many-electron wave functions.

More information

The nature of superfluidity in the cold atomic unitary Fermi gas

The nature of superfluidity in the cold atomic unitary Fermi gas The nature of superfluidity in the cold atomic unitary Fermi gas Introduction Yoram Alhassid (Yale University) Finite-temperature auxiliary-field Monte Carlo (AFMC) method The trapped unitary Fermi gas

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics

PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics PolyCEID: towards a better description of non-adiabatic molecular processes by Correlated Electron-Ion Dynamics Lorenzo Stella, R. Miranda, A.P. Horsfield, A.J. Fisher London Centre for Nanotechnology

More information

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry.

5.61 Physical Chemistry Exam III 11/29/12. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry Physical Chemistry. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Chemistry Chemistry - 5.61 Physical Chemistry Exam III (1) PRINT your name on the cover page. (2) It is suggested that you READ THE ENTIRE EXAM before

More information

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules

Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules Claudia Filippi Laboratory of Atomic and Solid State Physics and Theory Center, Cornell University,

More information

"What are the electrons really doing in molecules?" *

What are the electrons really doing in molecules? * Basics of Electron Frank R. Wagner Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany. "What are the electrons really doing in molecules?" * * Robert S. Mulliken, lecture title, in

More information

Solution of Second Midterm Examination Thursday November 09, 2017

Solution of Second Midterm Examination Thursday November 09, 2017 Department of Physics Quantum Mechanics II, Physics 570 Temple University Instructor: Z.-E. Meziani Solution of Second Midterm Examination Thursday November 09, 017 Problem 1. (10pts Consider a system

More information

Coupled-cluster theory for nuclei

Coupled-cluster theory for nuclei Coupled-cluster theory for nuclei Thomas Papenbrock and G. Hagen D. J. Dean M. Hjorth-Jensen B. Velamur Asokan INT workshop Weakly-bound systems in atomic and nuclear physics Seattle, March 8-12, 2010

More information

Continuum States in Drip-line Oxygen isotopes

Continuum States in Drip-line Oxygen isotopes Continuum States in Drip-line Oxygen isotopes EFES-NSCL WORKSHOP, Feb. 4-6, 2010 @ MSU Department of Physics The University of Tokyo Koshiroh Tsukiyama *Collaborators : Takaharu Otsuka (Tokyo), Rintaro

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

only two orbitals, and therefore only two combinations to worry about, but things get

only two orbitals, and therefore only two combinations to worry about, but things get 131 Lecture 1 It is fairly easy to write down an antisymmetric wavefunction for helium since there are only two orbitals, and therefore only two combinations to worry about, but things get complicated

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

9 Introduction to Full Configuration Interaction Quantum Monte Carlo with Applications to the Hubbard model

9 Introduction to Full Configuration Interaction Quantum Monte Carlo with Applications to the Hubbard model 9 Introduction to Full Configuration Interaction Quantum Monte Carlo with Applications to the Hubbard model Ali Alavi Max-Planck-Institut für Festkörperforschung, Stuttgart University Chemical Laboratory,

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France

A microscopic approach to nuclear dynamics. Cédric Simenel CEA/Saclay, France A microscopic approach to nuclear dynamics Cédric Simenel CEA/Saclay, France Introduction Quantum dynamics of complex systems (nuclei, molecules, BEC, atomic clusters...) Collectivity: from vibrations

More information

φ α (R) φ α ψ 0 e nτ(e α E T ). (2)

φ α (R) φ α ψ 0 e nτ(e α E T ). (2) Atomic Scale Simulations Projector Quantum Monte Carlo Projector Monte Carlo We now turn to a potentially more powerful method where a function of the Hamiltonian projects out the the ground state, hence

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Theory of Condensed Matter Group, Cavendish Laboratory, University of

More information

We also deduced that transformations between Slater determinants are always of the form

We also deduced that transformations between Slater determinants are always of the form .3 Hartree-Fock The Hartree-Fock method assumes that the true N-body ground state wave function can be approximated by a single Slater determinant and minimizes the energy among all possible choices of

More information