The search for the nodes of the fermionic ground state

Size: px
Start display at page:

Download "The search for the nodes of the fermionic ground state"

Transcription

1 The search for the nodes of the fermionic ground state ψ ( R) = Some believe that unicorns are just shy and difficult to find. However, most people believe blue ones do not exist. We all believe that the nodes of a many body fermionic wavefunctions exist. However, many think they are as hard to find as blue unicorns.

2 (1975) Notation: mama = DMC algorithm life = time fantasy = imaginary man, boy = walker landslide = trial wave function monstrosity, nothing = node DMC for poets

3 DMC for poets So I see you a think little silhouetto you can stone of a man, me and spit in my eye So Scaramouch, you think you scaramouch can love me will and you leave do the me Fandango to die Oh Thunderbolt Baby - Can't and do Lightning this to me - Babyvery frightening me- Just Gallileo, gottagallileo, get out- just gotta get right outta here - Gallileo, gallileo, Gallileo Figaro - Magnifico - Random walk over all iε nt Lyrics space continues Random walk over all ihe t Mama, Is just this killed the real a walker, time e ψ e({ R}) = c ψ n n({ R j}) e Put a gun against his head, n The Random Is this just Walk imaginary is described now Pulled my trigger, now he's dead, For imaginary time : t = iτ lyrics space lim He τ ε 0 Caught in a wave function Re ψ e({ Ri}) = c ψ 0 0({ Ri}) e τ 2 2 d Mama, life had just begun, i ψ e({ Ri}) = h + V{ Ri} ε 0 No escape from reality dτ i 2m Too late, my time has come, - I'm just a poor boy nobody loves me Debate on whether a walker He's just a poor boy froma poor family must be killed or rejectede Spare him his life from Tthis monstrosity when crossing a node - + Sends shivers + down my spine Easy + Open Body's come, + your aching easy eyes all go the - will time, you let me go Persistent or stack - walker Bismillah! Look Goodbye No, up to everybody - we will the skies - -not and I've let see got you to go - let him go - solved by Bismillah! I'm Gotta just leave We a walker, you will not I need behind let you no and go - sympathy face Let him the truth go Nothing really matters C. Umrigar et al. JPC (1993) Bismillah! - + Because Mama, - ooo We I'm -will not let you go - Let him go easy come, + easy go, M. Casula + et al. PRL (2005) Will Little I don't Anyone not let high, want you little to go can die, - Let see me go Will low + Anyway I sometimes not + let you the wind - wish go - Let blows, I'd never me go Nothing really matters, doesn't been born really nothing at matter all - No, no, no, no, no, no, noto me really - to mematters - to me Mama mia, mama mia, mama mia let me go - Freddie Mercury The node Population control problems are discussed now τ ( ) ψ ({ R }) - Equilibrium population ε 0 ε 0 i 3 i N{ r}

4 A self-healing DMC algorithm (a systematic correction of nodal surfaces in small systems) Fernando A. Reboredo (ORNL) Paul R. C. Kent (ORNL) R. Q. Hood (LLNL) Research performed at the Materials Science and Technology Division and the Center of Nanophase Material Sciences at Oak Ridge National Laboratory sponsored the Division of Materials Sciences and the Division of Scientific User Facilities U.S.

5 DMC run E best 420 E Local Total Energy Exact (Full CI ) energy Number of DMC Steps

6 DMC run E best E Local 420 Total Energy Exact (Full CI ) energy Number of DMC Steps

7 DMC run E best E Local E= <ψ T H ψ T > l 420 Total Energy Exact (Full CI ) energy Number of DMC Steps

8 DMC run E best E Local E= <ψ T H ψ T > l 420 Total Energy Exact (Full CI ) energy Number of DMC Steps

9 A Theoretical Blue Unicorn : finding the blue nodes DMC run Total Energy E best E Local E= <ψ T H ψ T > l NO DFT NO HF NO VMC NO Jastrow Exact (Full CI ) energy Number of DMC Steps

10 What could we do if we new the Fixed Node wave function? Removing the kink in Y T moves the node in the right direction

11 One equation with three known quantities and two unknowns could be soluble Standard Importance Sampling Diffusion Monte Carlo Algorithm D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980) Number of configurations Trial Wave-Function Distribution of walkers Fixed-Node Ground State Wave-Function We know, and We want to know and

12 Expansion of the Fixed-Node Ground-State Wave-Function Every anti-symmetric function can be written as a product of a symmetric function (Jastrow) and a complete sum of antisymmetric functions Multi-Determinant Expansion

13 Expansion of the Fixed-Node Ground-State Wave-Function Every anti-symmetric function can be written as a product of a symmetric function (Jastrow) and a complete sum of antisymmetric functions.

14 Expansion of the Fixed-Node Walker Distribution Function Any expression of the trial wave-function Single determinant Multi determinant Back flow Pfaffian etc

15 Expansion of the Fixed-Node Walker Distribution Function

16 The Wave-Functions Projectors Reboredo & Proetto PRB 67, (2003).

17 The Wave-Functions Coefficients DMC Umrigar, Nightingale &Runge J.CP 99, (1993).

18 The Wave-Functions Coefficients Umrigar, Nightingale &Runge J.CP 99, (1993).

19 The Wave-Functions Coefficients Umrigar, Nightingale &Runge J.CP 99, (1993).

20 Errors in the Wave-Functions Coefficients

21 The Fixed Node Wave-Function Fixed-Node Ground State Wave-Function Projectors DMC sampling.can be obtained directly by sampling over the walker distribution.

22 Errors in the Wave-Functions Coefficients Fixed-Node Ground State The nodes move because of errors.

23 A Self-Healing DMC Algorithm Fixed-Node Ground State The nodes can move because of errors How do we take advantage of errors?

24 A Simple Self-Healing DMC Algorithm Ns = 200, starting trial wave function: anything standard DMC accumulation (sample of N s configurations) New trial wave-function º N s = a N s, a > 1

25 A Simple Self-Healing DMC Algorithm 1) Are non-interacting eigen-functions: ï increasing kinetic energy 2) = 0 if < x 4 else = 3) We set =

26 A Simple Self-Healing DMC Algorithm: Model The model test system: two interacting spinless fermions in a box Case (1) Model interaction V = 8γ π 2 cos[απ(x-x )] cos[απ(y-y )] α and γ control the shape and strength of V V is repulsive for α < 1/2 and g > 0 Full CI: H expanded in the first 300 noninteracting eigenfunctions with the symmetry of the ground state. All integrals done analytically. Converged results V The nodes are not trivial Case (2) Coulomb interaction V = 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] We will compare the algorithm against almost-analytical results

27 A Simple Self-Healing DMC Algorithm: Initial Y T Ns = 200, starting trial wave function: anything l 1 = - a 3 standard DMC accumulation l 3 = a 1 l n = 0 (for any other l n ) (sample of Ns configurations) New trial wave-function º a n (full CI coefficients) The starting trial wave function: is orthogonal to the exact CI ground state N s = a N s, a > 1 The standard DMC algorithm must fail with this trial wave-function choice = 1

28 A Simple Self-Healing DMC Algorithm: Results The DMC energy converges to the full CI even starting from the worst trial wavefunction

29 A Simple Self-Healing DMC Algorithm: Results Expansion of the Ground-State Wave-Function Determinant expansion Coeffient Full CI DMC (size = error bar) Determinant basis index An expansion of the Ground-State Wave-Function can be obtained from DMC with full CI quality

30 A Simple Self-Healing DMC Algorithm: Results Expansion of the Ground-State Wave-Function (time evolution) 1 (l) First trial Wave-function Steps in the Algorithm (n) Determinant basis index Systematic convergence of the wave-function towards the CI solution

31 A Self-Healing DMC Simple Algorithm: Results Projection of the SH-DMC WF on the CI Ground-State WF 1 (P) P = First trial Wave-function Number of DMC steps [(2 Log(2) Log (N DMC /200)]

32 A Self-Healing DMC Simple Algorithm: Results Projection of the SH-DMC WF on the CI Ground-State WF Systematic Improvement (bad nodes) -3x+c (R P ) Statistical Improvement (good nodes) -x+c Log(Nw T ) We observe first a fast improvement followed by a slow improvement regime

33 A Self-Healing DMC Simple Algorithm: Results Why does it work? = - (R P ) Log(Nw T ) Truncation of high energy components moves the nodes in right direction

34 1) A Self-Healing DMC Simple Algorithm: Results Why does it work? Are non-interacting eigen-functions: î increasing kinetic energy 2) = 0 if else = < x 4 3) We set = Truncation of poorly resolved high energy components moves the nodes in right direction

35 A Self-Healing DMC Simple Algorithm: Results Why does it work? + R - = 0 Statistical Improvement (good nodes) -x+c Noise in the coefficients plays the role of a temperature in a simulated annealing approach. Good fluctuations are reinforced bad ones are abandoned.

36 A Self-Healing DMC Simple Algorithm: Results Why does it work? R standard DMC accumulation (sample of Ns configurations) New trial wave-function = = 0 N s = a N s, a > 1 Noise in the coefficients plays the role of a temperature in a simulated annealing approach. Good fluctuations are reinforced bad ones are abandoned.

37 A Self-Healing DMC Simple Algorithm: Results Case Case (2) (2) Coulomb interaction interactionv = 20 πv 2 = 1/sqrt[(x-x ) 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] +(y-y ) 2 ] Expansion of the Ground-State Wave-Function Electronic energy Number of DMC steps [(2 Log(2) Log (N DMC /200)] We obtain a systematic reduction of the energy (beyond error bar)

38 A Self-Healing DMC Simple Algorithm: Results Case (2) Coulomb interaction V = 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] Expansion of the Ground-State Wave-Function (l) (n)

39 A Self-Healing DMC Simple Algorithm: Results Case (2) Coulomb interaction V = 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] Interacting Ground-State: Electronic Density = 1 Final Initial trial wave function density With the ground state wave function we can evaluate any observable

40 A Self-Healing DMC Simple Algorithm: Results Case Case (2) (2) Coulomb interaction interactionv = 20 πv 2 = 1/sqrt[(x-x ) 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] +(y-y ) 2 ] Expansion of the Ground-State Wave-Function Electronic energy Number of DMC steps [(2 Log(2) Log (N DMC /200)] We obtain a systematic reduction of the energy (beyond error bar)

41 A Self-Healing DMC Simple Algorithm: Results Case (2) Coulomb interaction V = 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] Non-Interacting Kohn-Sham Electronic Density 1 (a) (b) 8 Reboredo & Kent PRB (2008) DMC KS

42 A Self-Healing DMC Simple Algorithm: Results Case (2) Coulomb interaction V = 20 π 2 1/sqrt[(x-x ) 2 +(y-y ) 2 ] Kohn-Sham Potential Reboredo & Kent PRB (2008)

43 Summary The fixed node ground state wave function can be obtained directly from the walker distribution An iterative algorithm based on the update of the trial wave function leads to a systematic reduction of nodal errors The algorithm takes advantage of truncation and statistical errors to improve the trial wave function The Kohn-Sham potential can be obtained directly from a SH-DMC run Tests in larger systems are in progress

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe

All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe All-electron quantum Monte Carlo calculations for the noble gas atoms He to Xe A. Ma, N. D. Drummond, M. D. Towler, and R. J. Needs Theory of Condensed Matter Group, Cavendish Laboratory, University of

More information

QMC dissociation energy of the water dimer: Time step errors and backflow calculations

QMC dissociation energy of the water dimer: Time step errors and backflow calculations QMC dissociation energy of the water dimer: Time step errors and backflow calculations Idoia G. de Gurtubay and Richard J. Needs TCM group. Cavendish Laboratory University of Cambridge Idoia G. de Gurtubay.

More information

Quantum Monte Carlo methods

Quantum Monte Carlo methods Quantum Monte Carlo methods Lubos Mitas North Carolina State University Urbana, August 2006 Lubos_Mitas@ncsu.edu H= 1 2 i i 2 i, I Z I r ii i j 1 r ij E ion ion H r 1, r 2,... =E r 1, r 2,... - ground

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

Methods of Fermion Monte Carlo

Methods of Fermion Monte Carlo Methods of Fermion Monte Carlo Malvin H. Kalos kalos@llnl.gov Institute for Nuclear Theory University of Washington Seattle, USA July, 2013 LLNL-PRES-XXXXXX This work was performed under the auspices of

More information

Wave Function Optimization and VMC

Wave Function Optimization and VMC Wave Function Optimization and VMC Jeremy McMinis The University of Illinois July 26, 2012 Outline Motivation History of Wave Function Optimization Optimization in QMCPACK Multideterminant Example Motivation:

More information

Exploring deep Earth minerals with accurate theory

Exploring deep Earth minerals with accurate theory Exploring deep Earth minerals with accurate theory K.P. Driver, R.E. Cohen, Z. Wu, B. Militzer, P. Lopez Rios, M. Towler, R. Needs, and J.W. Wilkins Funding: NSF, DOE; Computation: NCAR, TeraGrid, NCSA,

More information

Quantum Mechanical Simulations

Quantum Mechanical Simulations Quantum Mechanical Simulations Prof. Yan Wang Woodruff School of Mechanical Engineering Georgia Institute of Technology Atlanta, GA 30332, U.S.A. yan.wang@me.gatech.edu Topics Quantum Monte Carlo Hartree-Fock

More information

Supplementary Material: Path Integral Monte Carlo Simulation of the Warm-Dense Homogeneous Electron Gas

Supplementary Material: Path Integral Monte Carlo Simulation of the Warm-Dense Homogeneous Electron Gas Supplementary Material: Path Integral Monte Carlo Simulation of the Warm-Dense Homogeneous Electron Gas (Dated: February 26, 2013) In the main text, we describe our calculations of the 3D finite-temperature

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables

Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Recent advances in quantum Monte Carlo for quantum chemistry: optimization of wave functions and calculation of observables Julien Toulouse 1, Cyrus J. Umrigar 2, Roland Assaraf 1 1 Laboratoire de Chimie

More information

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization

Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Optimization of quantum Monte Carlo (QMC) wave functions by energy minimization Julien Toulouse, Cyrus Umrigar, Roland Assaraf Cornell Theory Center, Cornell University, Ithaca, New York, USA. Laboratoire

More information

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects

Quantum Monte Carlo Benchmarks Density Functionals: Si Defects Quantum Monte Carlo Benchmarks Density Functionals: Si Defects K P Driver, W D Parker, R G Hennig, J W Wilkins (OSU) C J Umrigar (Cornell), R Martin, E Batista, B Uberuaga (LANL), J Heyd, G Scuseria (Rice)

More information

An Overview of Quantum Monte Carlo Methods. David M. Ceperley

An Overview of Quantum Monte Carlo Methods. David M. Ceperley An Overview of Quantum Monte Carlo Methods David M. Ceperley Department of Physics and National Center for Supercomputing Applications University of Illinois Urbana-Champaign Urbana, Illinois 61801 In

More information

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems

Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Auxiliary-field quantum Monte Carlo calculations of excited states and strongly correlated systems Formally simple -- a framework for going beyond DFT? Random walks in non-orthogonal Slater determinant

More information

Optimization of quantum Monte Carlo wave functions by energy minimization

Optimization of quantum Monte Carlo wave functions by energy minimization Optimization of quantum Monte Carlo wave functions by energy minimization Julien Toulouse, Roland Assaraf, Cyrus J. Umrigar Laboratoire de Chimie Théorique, Université Pierre et Marie Curie and CNRS, Paris,

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

In this approach, the ground state of the system is found by modeling a diffusion process.

In this approach, the ground state of the system is found by modeling a diffusion process. The Diffusion Monte Carlo (DMC) Method In this approach, the ground state of the system is found by modeling a diffusion process. Diffusion and random walks Consider a random walk on a lattice with spacing

More information

New applications of Diffusion Quantum Monte Carlo

New applications of Diffusion Quantum Monte Carlo New applications of Diffusion Quantum Monte Carlo Paul R. C. Kent (ORNL) Graphite: P. Ganesh, J. Kim, C. Park, M. Yoon, F. A. Reboredo (ORNL) Platinum: W. Parker, A. Benali, N. Romero (ANL), J. Greeley

More information

Time-dependent linear-response variational Monte Carlo.

Time-dependent linear-response variational Monte Carlo. Time-dependent linear-response variational Monte Carlo. Bastien Mussard bastien.mussard@colorado.edu https://mussard.github.io/ Julien Toulouse julien.toulouse@upmc.fr Sorbonne University, Paris (web)

More information

ALGORITHMS FOR FINITE TEMPERATURE QMC

ALGORITHMS FOR FINITE TEMPERATURE QMC ALGORITHMS FOR FINITE TEMPERATURE QMC Bryan Clark Station Q QMC INT Conference: June 12, 2013 Current de-facto standard for fermions at finite temperature Restricted Path Integral Monte Carlo! * see PIMC++

More information

φ α (R) φ α ψ 0 e nτ(e α E T ). (2)

φ α (R) φ α ψ 0 e nτ(e α E T ). (2) Atomic Scale Simulations Projector Quantum Monte Carlo Projector Monte Carlo We now turn to a potentially more powerful method where a function of the Hamiltonian projects out the the ground state, hence

More information

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005

Multi-reference Density Functional Theory. COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Multi-reference Density Functional Theory COLUMBUS Workshop Argonne National Laboratory 15 August 2005 Capt Eric V. Beck Air Force Institute of Technology Department of Engineering Physics 2950 Hobson

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Fixed-Node quantum Monte Carlo for Chemistry

Fixed-Node quantum Monte Carlo for Chemistry Fixed-Node quantum Monte Carlo for Chemistry Michel Caffarel Lab. Physique et Chimie Quantiques, CNRS-IRSAMC, Université de Toulouse e-mail : caffarel@irsamc.ups-tlse.fr. p.1/29 The N-body problem of Chemistry

More information

Ab-initio molecular dynamics for High pressure Hydrogen

Ab-initio molecular dynamics for High pressure Hydrogen Ab-initio molecular dynamics for High pressure Hydrogen Claudio Attaccalite Institut d'electronique, Microélectronique et Nanotechnologie (IEMN), Lille Outline A brief introduction to Quantum Monte Carlo

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Size-extensive wave functions for QMC A linear-scaling GVB approach

Size-extensive wave functions for QMC A linear-scaling GVB approach Size-extensive wave functions for QMC A linear-scaling GVB approach Claudia Filippi, University of Twente, The Netherlands Francesco Fracchia, University of Pisa, Italy Claudio Amovilli, University of

More information

NCTS One-Day Workshop. Yasutami Takada. cf. YT, Ryo Maezono, & Kanako Yoshizawa, Phys. Rev. B 92, (2015)

NCTS One-Day Workshop. Yasutami Takada. cf. YT, Ryo Maezono, & Kanako Yoshizawa, Phys. Rev. B 92, (2015) NCTS One-Day Workshop Emergence of a spin-singlet resonance state with Kondo temperature well beyond 1000K in the proton-embedded electron gas: New route to room-temperature superconductivity Yasutami

More information

Hexatic and microemulsion phases in a 2D quantum Coulomb gas

Hexatic and microemulsion phases in a 2D quantum Coulomb gas Hexatic and microemulsion phases in a 2D quantum Coulomb gas Bryan K Clark (University of Illinois at Urbana Champaign) Michele Casula (Ecole Polytechnique, Paris) David M Ceperley (University of Illinois

More information

Observations on variational and projector Monte Carlo Methods

Observations on variational and projector Monte Carlo Methods Observations on variational and projector Monte Carlo Methods C. J. Umrigar Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853, USA (Dated: September 29, 2015) Variational

More information

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS

I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS I. QUANTUM MONTE CARLO METHODS: INTRODUCTION AND BASICS Markus Holzmann LPMMC, UJF, Grenoble, and LPTMC, UPMC, Paris markus@lptl.jussieu.fr http://www.lptl.jussieu.fr/users/markus (Dated: January 24, 2012)

More information

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010

Bayero Journal of Pure and Applied Sciences, 3(1): Received: September, 2009 Accepted: May, 2010 Bajopas Volume 3 Number June Bayero Journal of Pure and Applied Sciences, 3(: - 7 Received: September, 9 Accepted: May, VARIAIONAL QUANUM MON CARLO CALCULAION OF H GROUND SA NRG OF HDROGN MOLCUL Suleiman,

More information

Variational Monte Carlo Optimization and Excited States

Variational Monte Carlo Optimization and Excited States Variational Monte Carlo Optimization and Excited States Eric Neuscamman August 9, 2018 motivation charge transfer core spectroscopy double excitations the menu aperitif: number counting Jastrows main course:

More information

Orbital-dependent backflow transformations in quantum Monte Carlo

Orbital-dependent backflow transformations in quantum Monte Carlo transformations in quantum Monte Carlo P. Seth, P. López Ríos, and R. J. Needs TCM group, Cavendish Laboratory, University of Cambridge 5 December 2012 VMC and DMC Optimization Wave functions Variational

More information

Electronic Structure Calculations and Density Functional Theory

Electronic Structure Calculations and Density Functional Theory Electronic Structure Calculations and Density Functional Theory Rodolphe Vuilleumier Pôle de chimie théorique Département de chimie de l ENS CNRS Ecole normale supérieure UPMC Formation ModPhyChem Lyon,

More information

All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas

All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas All-Electron Path Integral Monte Carlo (PIMC) Simulations of Warm Dense Matter: Application to Water and Carbon Plasmas Kevin Driver and Burkhard Militzer Department of Earth and Planetary Science University

More information

QUACCS 2014: Quantum Monte Carlo for Electrons

QUACCS 2014: Quantum Monte Carlo for Electrons QUACCS 2014: Quantum Monte Carlo for Electrons Pierre-François Loos Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia pf.loos@anu.edu.au Abstract The purpose of

More information

Continuum variational and diffusion quantum Monte Carlo calculations

Continuum variational and diffusion quantum Monte Carlo calculations Continuum variational and diffusion quantum Monte Carlo calculations R J Needs, M D Towler, N D Drummond and P López Ríos Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge CB3 0HE, UK Abstract.

More information

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley

Path Integral Monte Carlo Simulations on the Blue Waters System. Burkhard Militzer University of California, Berkeley Path Integral Monte Carlo Simulations on the Blue Waters System Burkhard Militzer University of California, Berkeley http://militzer.berkeley.edu Outline 1. Path integral Monte Carlo simulation method

More information

Quantum Monte Carlo. QMC methods in the continuum

Quantum Monte Carlo. QMC methods in the continuum Quantum Monte Carlo Premise: need to use simulation techniques to solve manybody quantum problems just as you need them classically. Both the wavefunction and expectation values are determined by the simulations.

More information

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node

Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node Electronic structure quantum Monte Carlo methods and variable spins: beyond fixedphase/node approximations Cody Melton, M. Chandler Bennett, L. Mitas, with A. Ambrosetti, F. Pederiva North Carolina State

More information

Ryo Maezono. Japan Advanced Institute of Science and Technology, Ishikawa, Japan. treated by CHAMP. School of Information Science,

Ryo Maezono. Japan Advanced Institute of Science and Technology, Ishikawa, Japan. treated by CHAMP. School of Information Science, TTI09@Valico Sotto, Italy, 28.Jul.09 treated by CHAMP Ryo Maezono rmaezono@mac.com School of Information Science, Japan Advanced Institute of Science and Technology, Ishikawa, Japan. - Masayoshi Shimomoto

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

From real materials to model Hamiltonians with density matrix downfolding

From real materials to model Hamiltonians with density matrix downfolding From real materials to model Hamiltonians with density matrix downfolding (Converting a many-electron problem to a fewer-electron one) Hitesh J. Changlani Florida State University Based on HJC, H. Zheng,

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

MITOCW watch?v=ztnnigvy5iq

MITOCW watch?v=ztnnigvy5iq MITOCW watch?v=ztnnigvy5iq GILBERT STRANG: OK. So this is a "prepare the way" video about symmetric matrices and complex matrices. We'll see symmetric matrices in second order systems of differential equations.

More information

The Best Time Of The Day

The Best Time Of The Day The Best Time Of The Day Cool summer nights. Windows open. Lamps burning. Fruit in the bowl. And your head on my shoulder. These the happiest moments in the day. Next to the early morning hours, of course.

More information

Time-Dependent Density-Functional Theory

Time-Dependent Density-Functional Theory Summer School on First Principles Calculations for Condensed Matter and Nanoscience August 21 September 3, 2005 Santa Barbara, California Time-Dependent Density-Functional Theory X. Gonze, Université Catholique

More information

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

Quantum Monte Carlo simulations of solids

Quantum Monte Carlo simulations of solids Quantum Monte Carlo simulations of solids W. M. C. Foulkes CMTH Group, Department of Physics, Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, England L. Mitas

More information

Pseudopotentials: design, testing, typical errors

Pseudopotentials: design, testing, typical errors Pseudopotentials: design, testing, typical errors Kevin F. Garrity Part 1 National Institute of Standards and Technology (NIST) Uncertainty Quantification in Materials Modeling 2015 Parameter free calculations.

More information

Topology of fermion nodes and pfaffian wavefunctions

Topology of fermion nodes and pfaffian wavefunctions Topology of fermion nodes and pfaffian wavefunctions Lubos Mitas North Carolina State University San Sebastian, July 2007 Lubos_Mitas@ncsu.edu Hmmm, fermion nodes... Fermion nodes is a challenging, rather

More information

Van der Waals Interactions Between Thin Metallic Wires and Layers

Van der Waals Interactions Between Thin Metallic Wires and Layers Van der Waals Interactions Between Thin Metallic Wires and Layers N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom Quantum Monte

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Independent electrons in an effective potential

Independent electrons in an effective potential ABC of DFT Adiabatic approximation Independent electrons in an effective potential Hartree Fock Density Functional Theory MBPT - GW Density Functional Theory in a nutshell Every observable quantity of

More information

Density-functional theory at noninteger electron numbers

Density-functional theory at noninteger electron numbers Density-functional theory at noninteger electron numbers Tim Gould 1, Julien Toulouse 2 1 Griffith University, Brisbane, Australia 2 Université Pierre & Marie Curie and CRS, Paris, France July 215 Introduction

More information

Dept of Mechanical Engineering MIT Nanoengineering group

Dept of Mechanical Engineering MIT Nanoengineering group 1 Dept of Mechanical Engineering MIT Nanoengineering group » To calculate all the properties of a molecule or crystalline system knowing its atomic information: Atomic species Their coordinates The Symmetry

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen

Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen ! Computational methods: Coupled Electron Ion Monte Carlo Path Integral Monte Carlo Examples: Electron gas Hydrogen WHO DID THE WORK? Miguel Morales, Livermore Carlo Pierleoni: L Aquila, Italy Jeff McMahon

More information

The Schrödinger equation for many-electron systems

The Schrödinger equation for many-electron systems The Schrödinger equation for many-electron systems Ĥ!( x,, x ) = E!( x,, x ) 1 N 1 1 Z 1 Ĥ = " $ # " $ + $ 2 r 2 A j j A, j RAj i, j < i a linear differential equation in 4N variables (atomic units) (3

More information

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations

Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations Electronic structure quantum Monte Carlo methods with variable spins and fixed-phase/node approximations C. Melton, M.C. Bennett, L. Mitas with A. Ambrosetti, F. Pederiva North Carolina State University

More information

MITOCW watch?v=hdyabia-dny

MITOCW watch?v=hdyabia-dny MITOCW watch?v=hdyabia-dny The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To

More information

We started into the cave, it was dark, but the flashlights helped a little. As soon as we went in, it got

We started into the cave, it was dark, but the flashlights helped a little. As soon as we went in, it got The Weeping Angels By: Chad Nelson Summer of 1872, I died. 27 years young. A strange death, I must say. I was on the Swat team. I had seen many things while on the Swat team, but nothing had even come

More information

Development and application of statistical and quantum mechanical methods for modelling molecular ensembles

Development and application of statistical and quantum mechanical methods for modelling molecular ensembles Development and application of statistical and quantum mechanical methods for modelling molecular ensembles By Ellen T. Swann A thesis submitted for the degree of Doctor of Philosophy of the Australian

More information

Quantum Monte Carlo simulation of spin-polarized tritium

Quantum Monte Carlo simulation of spin-polarized tritium Higher-order actions and their applications in many-body, few-body, classical problems Quantum Monte Carlo simulation of spin-polarized tritium I. Bešlić, L. Vranješ Markić, University of Split, Croatia

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Establishing Quantum Monte Carlo and Hybrid Density Functional Theory as Benchmarking Tools for Complex Solids

Establishing Quantum Monte Carlo and Hybrid Density Functional Theory as Benchmarking Tools for Complex Solids Establishing Quantum Monte Carlo and Hybrid Density Functional Theory as Benchmarking Tools for Complex Solids Kevin P. Driver, Ph.D. Defense, February 1, 011 Outline 1) Introduction: Quantum mechanics

More information

arxiv: v1 [cond-mat.quant-gas] 9 May 2011

arxiv: v1 [cond-mat.quant-gas] 9 May 2011 Atomic Fermi gas at the unitary limit by quantum Monte Carlo methods: Effects of the interaction range Xin Li, Jindřich Kolorenč,,2 and Lubos Mitas Department of Physics, North Carolina State University,

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Short-time-evolved wave functions for solving quantum many-body problems

Short-time-evolved wave functions for solving quantum many-body problems Short-time-evolved wave functions for solving quantum many-body problems Orion Ciftja Department of Physics, Prairie View A&M University, Prairie View, Texas 77446, USA Siu A. Chin Department of Physics,

More information

Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals?

Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals? Many-body electronic structure theory: Is Quantum Monte-Carlo affordable for molecular crystals? Gerit Brandenburg 23 rd of November 2017 CHEMISTRY DEPARTMENT, UNIVERSITY OF TURIN,

More information

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus

The Nature of the Interlayer Interaction in Bulk. and Few-Layer Phosphorus Supporting Information for: The Nature of the Interlayer Interaction in Bulk and Few-Layer Phosphorus L. Shulenburger, A.D. Baczewski, Z. Zhu, J. Guan, and D. Tománek, Sandia National Laboratories, Albuquerque,

More information

Accelerating QMC on quantum computers. Matthias Troyer

Accelerating QMC on quantum computers. Matthias Troyer Accelerating QMC on quantum computers Matthias Troyer International Journal of Theoretical Physics, VoL 21, Nos. 6/7, 1982 Simulating Physics with Computers Richard P. Feynman Department of Physics, California

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionals by Michel Côté Université de Montréal Département de physique Eamples Carbazole molecule Inside of diamant Réf: Jean-François Brière http://www.phys.umontreal.ca/~michel_

More information

Adiabatic connections in DFT

Adiabatic connections in DFT Adiabatic connections in DFT Andreas Savin Torino, LCC2004, September 9, 2004 Multi reference DFT Kohn Sham: single reference Variable reference space capability to approach the exact result Overview The

More information

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA

Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA UNDERSTANDING ELECTRONIC WAVE FUNCTIONS D. M. Ceperley Department of Physics and NCSA University of Illinois, Urbana-Champaign, IL, 61801, USA INTRODUCTION In this article I discuss some aspects of what

More information

Introduction to Path Integral Monte Carlo. Part I.

Introduction to Path Integral Monte Carlo. Part I. Introduction to Path Integral Monte Carlo. Part I. Alexey Filinov, Jens Böning, Michael Bonitz Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, D-24098 Kiel, Germany

More information

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine An Introduction to Quantum Chemistry and Potential Energy Surfaces Benjamin G. Levine This Week s Lecture Potential energy surfaces What are they? What are they good for? How do we use them to solve chemical

More information

energy. Finally, we combine these developments with the recently proposed inhomogeneous backflow transformations.

energy. Finally, we combine these developments with the recently proposed inhomogeneous backflow transformations. ABSTRACT BAJDICH, MICHAL. Generalized Pairing Wave Functions and Nodal Properties for Electronic Structure Quantum Monte Carlo. (Under the direction of Prof. Lubos Mitas.) The quantum Monte Carlo (QMC)

More information

Be a Dentist - ORIGINAL

Be a Dentist - ORIGINAL Be a Dentist - ORIGIN omitted: first 6 bars of underscoring. I've used a staccato eighth note at the start of a bar when there is dialogue, e.g. the first 2 pages, just to force the application to let

More information

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state

Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state Convergence of many-body wavefunction expansions using a plane wave basis: From the homogeneous electron gas to the solid state TCM Electronic Structure Discussion Group James Shepherd (CUC3, Alavi Group)

More information

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces

Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Semistochastic Quantum Monte Carlo A Hybrid of Exact Diagonalization and QMC Methods and Optimization of FN-PMC energies and FN-PMC forces Cyrus Umrigar Physics Department, Cornell University, Ithaca.

More information

On the Uniqueness of Molecular Orbitals and limitations of the MO-model.

On the Uniqueness of Molecular Orbitals and limitations of the MO-model. On the Uniqueness of Molecular Orbitals and limitations of the MO-model. The purpose of these notes is to make clear that molecular orbitals are a particular way to represent many-electron wave functions.

More information

Adiabatic connection from accurate wave-function calculations

Adiabatic connection from accurate wave-function calculations JOURNAL OF CHEMICAL PHYSICS VOLUME 112, NUMBER 12 22 MARCH 2000 Adiabatic connection from accurate wave-function calculations Derek Frydel and William M. Terilla Department of Chemistry, Rutgers University,

More information

the abdus salam international centre for theoretical physics

the abdus salam international centre for theoretical physics united nations educational, scientific and cultural organization the abdus salam international centre for theoretical physics international atomic energy agency SMR 1595-7 Joint DEMOCRIOS - ICP School

More information

Rapunzel - Script and Song Lyrics

Rapunzel - Script and Song Lyrics Rapunzel - Script and Song Lyrics Once upon a time there was a man and his wife. At the back of their house was a little window where they could see a beautiful garden, full of wonderful flowers and vegetables.

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Tom Manning: Let s take that over. Their place was the last start from there. Their place on the Four Jay Road was

Tom Manning: Let s take that over. Their place was the last start from there. Their place on the Four Jay Road was Okay, my name is Gaylord Pierson. I was born and raised in Gillette. I happened to spend the winter of 49 here. I stayed on the edge of town with my aunt and uncle. They had a place here, 10 acres. Ours

More information

Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods

Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods Physics Procedia 3 (2010) 1397 1410 www.elsevier.com/locate/procedia Pairing in Cold Atoms and other Applications for Quantum Monte Carlo methods M. Bajdich a, J. Kolorenč a, L. Mitas a and P. J. Reynolds

More information

MITOCW ocw f99-lec17_300k

MITOCW ocw f99-lec17_300k MITOCW ocw-18.06-f99-lec17_300k OK, here's the last lecture in the chapter on orthogonality. So we met orthogonal vectors, two vectors, we met orthogonal subspaces, like the row space and null space. Now

More information

BEC-BCS Crossover in Cold Atoms

BEC-BCS Crossover in Cold Atoms BEC-BCS Crossover in Cold Atoms (2 years later...) Andrew Morris Pablo López Ríos Richard Needs Theory of Condensed Matter Cavendish Laboratory University of Cambridge TTI 31 st July 2009 Outline Theory

More information

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules

Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules Resonating Valence Bond wave function with molecular orbitals: application to diatomic molecules M. Marchi 1,2, S. Azadi 2, M. Casula 3, S. Sorella 1,2 1 DEMOCRITOS, National Simulation Center, 34014,

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid

Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid Quantum Monte Carlo study of the ground state of the two-dimensional Fermi fluid N. D. Drummond and R. J. Needs TCM Group, Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge

More information

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states

Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Electronic structure quantum Monte Carlo: pfaffians and many-body nodes of ground and excited states Jindrich Kolorenc (von Humboldt Fellow), U. Hamburg Michal Bajdich, ORNL Lubos Mitas, North Carolina

More information

Quantum Monte Carlo for excited state calculations

Quantum Monte Carlo for excited state calculations Quantum Monte Carlo for excited state calculations Claudia Filippi MESA+ Institute for Nanotechnology, Universiteit Twente, The Netherlands Winter School in Theoretical Chemistry, Helsinki, Finland, Dec

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information