Computational Intelligence Winter Term 2018/19

Size: px
Start display at page:

Download "Computational Intelligence Winter Term 2018/19"

Transcription

1 Computatioal Itelligece Witer Term 28/9 Prof. Dr. Güter Rudolph Lehrstuhl für Algorithm Egieerig (LS ) Fakultät für Iformatik TU Dortmud

2 Pla for Today Lecture Evolutioary Algorithms (EA) Optimizatio Basics EA Basics G. Rudolph: Computatioal Itelligece Witer Term 28/9 2

3 Optimizatio Basics Lecture modellig!!? simulatio!?! optimizatio?!! iput system output G. Rudolph: Computatioal Itelligece Witer Term 28/9 3

4 Optimizatio Basics Lecture give: objective fuctio f: X feasible regio X (= oempty set) objective: fid solutio with miimal or maximal value! optimizatio problem: fid x* X such that f(x*) = mi{ f(x) : x X } x* global solutio f(x*) global optimum ote: max{ f(x) : x X } = mi{ f(x) : x X } G. Rudolph: Computatioal Itelligece Witer Term 28/9 4

5 Optimizatio Basics Lecture local solutio x* X : x N(x*): f(x*) f(x) if x* local solutio the f(x*) local optimum / miimum eighborhood of x* = bouded subset of X example: X =, N ε (x*) = { x X: x x* 2 ε } remark: evidetly, every global solutio / optimum is also local solutio / optimum; the reverse is wrog i geeral! example: f: [a,b], global solutio at x* a x* b G. Rudolph: Computatioal Itelligece Witer Term 28/9 5

6 Optimizatio Basics Lecture What makes optimizatio difficult? some causes: local optima (is it a global optimum or ot?) costraits (ill-shaped feasible regio) o-smoothess (weak causality) strog causality eeded! discotiuities ( odifferetiability, o gradiets) lack of kowledge about problem ( black / gray box optimizatio) f(x) = a x a x max! with x i {,}, a i add costait g(x) = b x b x b x i * = iff a i > NP-hard add capacity costrait to TSP CVRP still harder G. Rudolph: Computatioal Itelligece Witer Term 28/9 6

7 Optimizatio Basics Lecture Whe usig which optimizatio method? mathematical algorithms problem explicitly specified problem-specific solver available problem well uderstood ressources for desigig algorithm affordable solutio with prove quality required radomized search heuristics problem give by black / gray box o problem-specific solver available problem poorly uderstood isufficiet ressources for desigig algorithm solutio with satisfactory quality sufficiet do t apply EAs EAs worth a try G. Rudolph: Computatioal Itelligece Witer Term 28/9 7

8 Evolutioary Algorithm Basics Lecture idea: usig biological evolutio as metaphor ad as pool of ispiratio iterpretatio of biological evolutio as iterative method of improvemet feasible solutio x X = S x... x S multiset of feasible solutios objective fuctio f: X = chromosome of idividual = populatio: multiset of idividuals = fitess fuctio ofte: X =, X = = {,}, X = = { π : π is permutatio of {,2,...,} } also : combiatios like X = x p x q or o-cartesia sets structure of feasible regio / search space defies represetatio of idividual G. Rudolph: Computatioal Itelligece Witer Term 28/9 8

9 Evolutioary Algorithm Basics Lecture algorithmic skeleto iitialize populatio evaluatio paret selectio variatio (yields offsprig) evaluatio (of offsprig) survival selectio (yields ew populatio) N stop? Y output: best idividual foud G. Rudolph: Computatioal Itelligece Witer Term 28/9 9

10 Evolutioary Algorithm Basics Lecture Specific example: (+)-EA i for miimizig some f: populatio size =, umber of offsprig =, selects best from + idividuals paret offsprig. iitialize X () uiformly at radom, set t = 2. evaluate f(x (t) ) 3. select paret: Y = X (t) 4. variatio: flip each bit of Y idepedetly with probability p m = / 5. evaluate f(y) o choice, here 6. selectio: if f(y) f(x (t) ) the X (t+) = Y else X (t+) = X (t) 7. if ot stoppig the t = t+, cotiue at (3) G. Rudolph: Computatioal Itelligece Witer Term 28/9

11 Evolutioary Algorithm Basics Lecture Specific example: (+)-EA i for miimizig some f: populatio size =, umber of offsprig =, selects best from + idividuals paret offsprig compact set = closed & bouded. iitialize X () C uiformly at radom, set t = 2. evaluate f(x (t) ) 3. select paret: Y = X (t) 4. variatio = add radom vector: Y = Y + Z, e.g. Z N(, I ) 5. evaluate f(y) o choice, here 6. selectio: if f(y) f(x (t) ) the X (t+) = Y else X (t+) = X (t) 7. if ot stoppig the t = t+, cotiue at (3) G. Rudolph: Computatioal Itelligece Witer Term 28/9

12 Evolutioary Algorithm Basics Lecture Selectio (a) select parets that geerate offsprig selectio for reproductio (b) select idividuals that proceed to ext geeratio selectio for survival ecessary requiremets: - selectio steps must ot favor worse idividuals - oe selectio step may be eutral (e.g. select uiformly at radom) - at least oe selectio step must favor better idividuals typically : selectio oly based o fitess values f(x) of idividuals seldom : additioally based o idividuals chromosomes x ( maitai diversity) G. Rudolph: Computatioal Itelligece Witer Term 28/9 2

13 Evolutioary Algorithm Basics Lecture Selectio methods populatio P = (x, x 2,..., x µ ) with µ idividuals two approaches:. repeatedly select idividuals from populatio with replacemet 2. rak idividuals somehow ad choose those with best raks (o replacemet) uiform / eutral selectio choose idex i with probability /µ fitess-proportioal selectio choose idex i with probability s i = problems: f(x) > for all x X required g(x) = exp( f(x) ) > but already sesitive to additive shifts g(x) = f(x) + c almost determiistic if large differeces, almost uiform if small differeces G. Rudolph: Computatioal Itelligece Witer Term 28/9 3

14 Evolutioary Algorithm Basics Lecture Selectio methods populatio P = (x, x 2,..., x µ ) with µ idividuals rak-proportioal selectio order idividuals accordig to their fitess values assig raks fitess-proportioal selectio based o raks avoids all problems of fitess-proportioal selectio but: best idividual has oly small selectio advatage (ca be lost!) k-ary touramet selectio draw k idividuals uiformly at radom (typically with replacemet) from P choose idividual with best fitess (break ties at radom) has all advatages of rak-based selectio ad probability that best idividual does ot survive: G. Rudolph: Computatioal Itelligece Witer Term 28/9 4

15 Evolutioary Algorithm Basics Lecture Selectio methods without replacemet populatio P = (x, x 2,..., x µ ) with µ parets ad populatio Q = (y, y 2,..., y λ ) with λ offsprig (µ, λ)-selectio or trucatio selectio o offsprig or comma-selectio rak λ offsprig accordig to their fitess select µ offsprig with best raks best idividual may get lost, λ µ required (µ+λ)-selectio or trucatio selectio o parets + offsprig or plus-selectio merge λ offsprig ad µ parets rak them accordig to their fitess select µ idividuals with best raks best idividual survives for sure G. Rudolph: Computatioal Itelligece Witer Term 28/9 5

16 Evolutioary Algorithm Basics Lecture Selectio methods: Elitism Elitist selectio: best paret is ot replaced by worse idividual. - Itrisic elitism: method selects from paret ad offsprig, best survives with probability - Forced elitism: if best idividual has ot survived the re-ijectio ito populatio, i.e., replace worst selected idividual by previously best paret method P{ select best } from parets & offsprig itrisic elitism eutral < o o fitess proportioate < o o rak proportioate < o o k-ary touramet < o o (µ + λ) = yes yes (µ, λ) = o o G. Rudolph: Computatioal Itelligece Witer Term 28/9 6

17 Evolutioary Algorithm Basics Lecture Variatio operators: deped o represetatio mutatio recombiatio alters a sigle idividual creates sigle offsprig from two or more parets may be applied exclusively (either recombiatio or mutatio) chose i advace exclusively (either recombiatio or mutatio) i probabilistic maer sequetially (typically, recombiatio before mutatio); for each offsprig sequetially (typically, recombiatio before mutatio) with some probability G. Rudolph: Computatioal Itelligece Witer Term 28/9 7

18 Evolutioary Algorithm Basics Variatio i Lecture Idividuals {, } Mutatio a) local choose idex k {,, } uiformly at radom, flip bit k, i.e., x k = x k b) global for each idex k {,, }: flip bit k with probability p m (,) c) olocal choose K idices at radom ad flip bits with these idices d) iversio choose start idex k s ad ed idex k e at radom ivert order of bits betwee start ad ed idex k=2 a) b) K=2 c) k s k e d) G. Rudolph: Computatioal Itelligece Witer Term 28/9 8

19 Evolutioary Algorithm Basics Variatio i Lecture Idividuals {, } Recombiatio (two parets) a) -poit crossover draw cut-poit k {,,-} uiformly at radom; choose first k bits from st paret, choose last -k bits from 2d paret b) K-poit crossover draw K distict cut-poits uiformly at radom; choose bits to k from st paret, choose bits k + to k 2 from 2d paret, choose bits k 2 + to k 3 from st paret, ad so forth c) uiform crossover for each idex i: choose bit i with equal probability from st or 2d paret a) b) c) G. Rudolph: Computatioal Itelligece Witer Term 28/9 9

20 Evolutioary Algorithm Basics Variatio i Lecture Idividuals {, } Recombiatio (multiparet: ρ = #parets) a) diagoal crossover (2 < ρ < ) choose ρ distict cut poits, select chuks from diagoals AAAAAAAAAA BBBBBBBBBB CCCCCCCCCC DDDDDDDDDD b) gee pool crossover (ρ > 2) ABBBCCDDDD BCCCDDAAAA CDDDAABBBB DAAABBCCCC for each gee: choose doatig paret uiformly at radom ca geerate ρ offsprig; otherwise choose iitial chuk at radom for sigle offsprig G. Rudolph: Computatioal Itelligece Witer Term 28/9 2

21 Evolutioary Algorithm Basics Variatio i Lecture Idividuals X = π(,, ) Mutatio a) local 2-swap / -traslocatio b) global draw umber K of 2-swaps, apply 2-swaps K times K is positive radom variable; its distributio may be uiform, biomial, geometrical, ; E[K] ad V[K] may cotrol mutatio stregth expectatio variace G. Rudolph: Computatioal Itelligece Witer Term 28/9 2

22 G. Rudolph: Computatioal Itelligece Witer Term 28/9 22 Evolutioary Algorithm Basics Lecture Variatio i Idividuals X = π(,, ) Recombiatio (two parets) a) order-based crossover (OBX) - select two idices k ad k 2 with k k 2 uiformly at radom - copy gees k to k 2 from st paret to offsprig (keep positios) - copy gees from left to right from 2 d paret, startig after positio k x x x 7 6 x b) partially mapped crossover (PMX) - select two idices k ad k 2 with k k 2 uiformly at radom - copy gees k to k 2 from st paret to offsprig (keep positios) - copy all gees ot already cotaied i offsprig from 2 d paret (keep positios) - from left to right: fill i remaiig gees from 2 d paret x x x 7 6 x x x

23 Evolutioary Algorithm Basics Variatio i Lecture Idividuals X Mutatio additive: Y = X + Z (Z: -dimesioal radom vector) offsprig = paret + mutatio a) local Z with bouded support Defiitio Let f Z : + be p.d.f. of r.v. Z. f The set { x Z : f Z (x) > } is termed the support of Z. x b) olocal Z with ubouded support f Z most frequetly used! x G. Rudolph: Computatioal Itelligece Witer Term 28/9 23

24 Evolutioary Algorithm Basics Variatio i Lecture Idividuals X Recombiatio (two parets) a) all crossover variats adapted from b) itermediate c) itermediate (per dimesio) d) discrete e) simulated biary crossover (SBX) for each dimesio with probability p c draw from: G. Rudolph: Computatioal Itelligece Witer Term 28/9 24

25 Evolutioary Algorithm Basics Variatio i Lecture Idividuals X Recombiatio (multiparet), ρ 3 parets a) itermediate where ad (all poits i covex hull) b) itermediate (per dimesio) G. Rudolph: Computatioal Itelligece Witer Term 28/9 25

26 Evolutioary Algorithm Basics Lecture Theorem Let f: be a strictly quasicovex fuctio. If f(x) = f(y) for some x y the every offsprig geerated by itermediate recombiatio is better tha its parets. Proof: G. Rudolph: Computatioal Itelligece Witer Term 28/9 26

27 Evolutioary Algorithm Basics Lecture Theorem Let f: be a differetiable fuctio ad f(x) < f(y) for some x y. If (y x) f(x) < the there is a positive probability that a offsprig geerated by itermediate recombiatio is better tha both parets. Proof: G. Rudolph: Computatioal Itelligece Witer Term 28/9 27

General Lower Bounds for the Running Time of Evolutionary Algorithms

General Lower Bounds for the Running Time of Evolutionary Algorithms Geeral Lower Bouds for the Ruig Time of Evolutioary Algorithms Dirk Sudholt Iteratioal Computer Sciece Istitute, Berkeley, CA 94704, USA Abstract. We preset a ew method for provig lower bouds i evolutioary

More information

On comparison of different approaches to the stability radius calculation. Olga Karelkina

On comparison of different approaches to the stability radius calculation. Olga Karelkina O compariso of differet approaches to the stability radius calculatio Olga Karelkia Uiversity of Turku 2011 Outlie Prelimiaries Problem statemet Exact method for calculatio stability radius proposed by

More information

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs.

ECEN 655: Advanced Channel Coding Spring Lecture 7 02/04/14. Belief propagation is exact on tree-structured factor graphs. ECEN 655: Advaced Chael Codig Sprig 014 Prof. Hery Pfister Lecture 7 0/04/14 Scribe: Megke Lia 1 4-Cycles i Gallager s Esemble What we already kow: Belief propagatio is exact o tree-structured factor graphs.

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

APPENDIX: STUDY CASES A SURVEY OF NONPARAMETRIC TESTS FOR THE STATISTICAL ANALYSIS OF EVOLUTIONARY COMPUTATION EXPERIMENTS

APPENDIX: STUDY CASES A SURVEY OF NONPARAMETRIC TESTS FOR THE STATISTICAL ANALYSIS OF EVOLUTIONARY COMPUTATION EXPERIMENTS A survey of oparametric tests for the statistical aalysis of evolutioary computatio experimets. Appedix 1 APPENDIX: STUDY CASES A SURVEY OF NONPARAMETRIC TESTS FOR THE STATISTICAL ANALYSIS OF EVOLUTIONARY

More information

Drift analysis and average time complexity of evolutionary algorithms

Drift analysis and average time complexity of evolutionary algorithms Artificial Itelligece 127 (2001) 57 85 Drift aalysis ad average time complexity of evolutioary algorithms Ju He a,xiyao b, a Departmet of Computer Sciece, Norther Jiaotog Uiversity, Beijig 100044, PR Chia

More information

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014

Grouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014 Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group

More information

Intro to Learning Theory

Intro to Learning Theory Lecture 1, October 18, 2016 Itro to Learig Theory Ruth Urer 1 Machie Learig ad Learig Theory Comig soo 2 Formal Framework 21 Basic otios I our formal model for machie learig, the istaces to be classified

More information

arxiv: v1 [cs.ne] 4 Sep 2017

arxiv: v1 [cs.ne] 4 Sep 2017 Theoretical Aalysis of Stochastic Search Algorithms Per Kristia Lehre School of Computer Sciece, Uiversity of Birmigham, Birmigham, UK Pietro S. Oliveto Departmet of Computer Sciece, Uiversity of Sheffield,

More information

Optimal Design of Accelerated Life Tests with Multiple Stresses

Optimal Design of Accelerated Life Tests with Multiple Stresses Optimal Desig of Accelerated Life Tests with Multiple Stresses Y. Zhu ad E. A. Elsayed Departmet of Idustrial ad Systems Egieerig Rutgers Uiversity 2009 Quality & Productivity Research Coferece IBM T.

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Chapter 6 Infinite Series

Chapter 6 Infinite Series Chapter 6 Ifiite Series I the previous chapter we cosidered itegrals which were improper i the sese that the iterval of itegratio was ubouded. I this chapter we are goig to discuss a topic which is somewhat

More information

Optimization Methods MIT 2.098/6.255/ Final exam

Optimization Methods MIT 2.098/6.255/ Final exam Optimizatio Methods MIT 2.098/6.255/15.093 Fial exam Date Give: December 19th, 2006 P1. [30 pts] Classify the followig statemets as true or false. All aswers must be well-justified, either through a short

More information

Sequences and Series of Functions

Sequences and Series of Functions Chapter 6 Sequeces ad Series of Fuctios 6.1. Covergece of a Sequece of Fuctios Poitwise Covergece. Defiitio 6.1. Let, for each N, fuctio f : A R be defied. If, for each x A, the sequece (f (x)) coverges

More information

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes

The Maximum-Likelihood Decoding Performance of Error-Correcting Codes The Maximum-Lielihood Decodig Performace of Error-Correctig Codes Hery D. Pfister ECE Departmet Texas A&M Uiversity August 27th, 2007 (rev. 0) November 2st, 203 (rev. ) Performace of Codes. Notatio X,

More information

( ) = p and P( i = b) = q.

( ) = p and P( i = b) = q. MATH 540 Radom Walks Part 1 A radom walk X is special stochastic process that measures the height (or value) of a particle that radomly moves upward or dowward certai fixed amouts o each uit icremet of

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

More information

Mathematical Statistics - MS

Mathematical Statistics - MS Paper Specific Istructios. The examiatio is of hours duratio. There are a total of 60 questios carryig 00 marks. The etire paper is divided ito three sectios, A, B ad C. All sectios are compulsory. Questios

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

arxiv: v1 [cs.ai] 20 Nov 2013

arxiv: v1 [cs.ai] 20 Nov 2013 Aalyzig Evolutioary Optimizatio i Noisy Eviromets Chao Qia, Yag Yu, Zhi-Hua Zhou Natioal Key Laboratory for Novel Software Techology Najig Uiversity, Najig 20023, Chia arxiv:3.4987v [cs.ai] 20 Nov 203

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week Lecture: Cocept Check Exercises Starred problems are optioal. Statistical Learig Theory. Suppose A = Y = R ad X is some other set. Furthermore, assume P X Y is a discrete

More information

Simulation. Two Rule For Inverting A Distribution Function

Simulation. Two Rule For Inverting A Distribution Function Simulatio Two Rule For Ivertig A Distributio Fuctio Rule 1. If F(x) = u is costat o a iterval [x 1, x 2 ), the the uiform value u is mapped oto x 2 through the iversio process. Rule 2. If there is a jump

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Differentiable Convex Functions

Differentiable Convex Functions Differetiable Covex Fuctios The followig picture motivates Theorem 11. f ( x) f ( x) f '( x)( x x) ˆx x 1 Theorem 11 : Let f : R R be differetiable. The, f is covex o the covex set C R if, ad oly if for

More information

Support vector machine revisited

Support vector machine revisited 6.867 Machie learig, lecture 8 (Jaakkola) 1 Lecture topics: Support vector machie ad kerels Kerel optimizatio, selectio Support vector machie revisited Our task here is to first tur the support vector

More information

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering

CEE 522 Autumn Uncertainty Concepts for Geotechnical Engineering CEE 5 Autum 005 Ucertaity Cocepts for Geotechical Egieerig Basic Termiology Set A set is a collectio of (mutually exclusive) objects or evets. The sample space is the (collectively exhaustive) collectio

More information

Optimization Methods: Linear Programming Applications Assignment Problem 1. Module 4 Lecture Notes 3. Assignment Problem

Optimization Methods: Linear Programming Applications Assignment Problem 1. Module 4 Lecture Notes 3. Assignment Problem Optimizatio Methods: Liear Programmig Applicatios Assigmet Problem Itroductio Module 4 Lecture Notes 3 Assigmet Problem I the previous lecture, we discussed about oe of the bech mark problems called trasportatio

More information

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.

w (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ. 2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of o-time jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For

More information

Reinforcement Learning Based Dynamic Selection of Auxiliary Objectives with Preserving of the Best Found Solution

Reinforcement Learning Based Dynamic Selection of Auxiliary Objectives with Preserving of the Best Found Solution Reiforcemet Learig Based Dyamic Selectio of Auxiliary Objectives with Preservig of the Best Foud Solutio arxiv:1704.07187v1 [cs.ne] 24 Apr 2017 Abstract Efficiecy of sigle-objective optimizatio ca be improved

More information

STAT Homework 2 - Solutions

STAT Homework 2 - Solutions STAT-36700 Homework - Solutios Fall 08 September 4, 08 This cotais solutios for Homework. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better isight.

More information

Stochastic Simulation

Stochastic Simulation Stochastic Simulatio 1 Itroductio Readig Assigmet: Read Chapter 1 of text. We shall itroduce may of the key issues to be discussed i this course via a couple of model problems. Model Problem 1 (Jackso

More information

The coalescent coalescence theory

The coalescent coalescence theory The coalescet coalescece theory Peter Beerli September 1, 009 Historical ote Up to 198 most developmet i populatio geetics was prospective ad developed expectatios based o situatios of today. Most work

More information

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010, 2007, 2004 Pearso Educatio, Ic. Comparig Two Proportios Read the first two paragraphs of pg 504. Comparisos betwee two percetages are much more commo

More information

Simple Random Sampling!

Simple Random Sampling! Simple Radom Samplig! Professor Ro Fricker! Naval Postgraduate School! Moterey, Califoria! Readig:! 3/26/13 Scheaffer et al. chapter 4! 1 Goals for this Lecture! Defie simple radom samplig (SRS) ad discuss

More information

Lecture 12: November 13, 2018

Lecture 12: November 13, 2018 Mathematical Toolkit Autum 2018 Lecturer: Madhur Tulsiai Lecture 12: November 13, 2018 1 Radomized polyomial idetity testig We will use our kowledge of coditioal probability to prove the followig lemma,

More information

Lecture Notes for Analysis Class

Lecture Notes for Analysis Class Lecture Notes for Aalysis Class Topological Spaces A topology for a set X is a collectio T of subsets of X such that: (a) X ad the empty set are i T (b) Uios of elemets of T are i T (c) Fiite itersectios

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 22

Discrete Mathematics for CS Spring 2008 David Wagner Note 22 CS 70 Discrete Mathematics for CS Sprig 2008 David Wager Note 22 I.I.D. Radom Variables Estimatig the bias of a coi Questio: We wat to estimate the proportio p of Democrats i the US populatio, by takig

More information

A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem

A Novel Genetic Algorithm using Helper Objectives for the 0-1 Knapsack Problem A Novel Geetic Algorithm usig Helper Objectives for the 0-1 Kapsack Problem Ju He, Feidu He ad Hogbi Dog 1 arxiv:1404.0868v1 [cs.ne] 3 Apr 2014 Abstract The 0-1 kapsack problem is a well-kow combiatorial

More information

HOMEWORK 2 SOLUTIONS

HOMEWORK 2 SOLUTIONS HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k

More information

Machine Learning Brett Bernstein

Machine Learning Brett Bernstein Machie Learig Brett Berstei Week 2 Lecture: Cocept Check Exercises Starred problems are optioal. Excess Risk Decompositio 1. Let X = Y = {1, 2,..., 10}, A = {1,..., 10, 11} ad suppose the data distributio

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Patter Recogitio Classificatio: No-Parametric Modelig Hamid R. Rabiee Jafar Muhammadi Sprig 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2/ Ageda Parametric Modelig No-Parametric Modelig

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Summary. Recap ... Last Lecture. Summary. Theorem

Summary. Recap ... Last Lecture. Summary. Theorem Last Lecture Biostatistics 602 - Statistical Iferece Lecture 23 Hyu Mi Kag April 11th, 2013 What is p-value? What is the advatage of p-value compared to hypothesis testig procedure with size α? How ca

More information

Markov Decision Processes

Markov Decision Processes Markov Decisio Processes Defiitios; Statioary policies; Value improvemet algorithm, Policy improvemet algorithm, ad liear programmig for discouted cost ad average cost criteria. Markov Decisio Processes

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Chapter 9: Numerical Differentiation

Chapter 9: Numerical Differentiation 178 Chapter 9: Numerical Differetiatio Numerical Differetiatio Formulatio of equatios for physical problems ofte ivolve derivatives (rate-of-chage quatities, such as velocity ad acceleratio). Numerical

More information

On Random Line Segments in the Unit Square

On Random Line Segments in the Unit Square O Radom Lie Segmets i the Uit Square Thomas A. Courtade Departmet of Electrical Egieerig Uiversity of Califoria Los Ageles, Califoria 90095 Email: tacourta@ee.ucla.edu I. INTRODUCTION Let Q = [0, 1] [0,

More information

1 of 7 7/16/2009 6:06 AM Virtual Laboratories > 6. Radom Samples > 1 2 3 4 5 6 7 6. Order Statistics Defiitios Suppose agai that we have a basic radom experimet, ad that X is a real-valued radom variable

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

Chapter 8: STATISTICAL INTERVALS FOR A SINGLE SAMPLE. Part 3: Summary of CI for µ Confidence Interval for a Population Proportion p

Chapter 8: STATISTICAL INTERVALS FOR A SINGLE SAMPLE. Part 3: Summary of CI for µ Confidence Interval for a Population Proportion p Chapter 8: STATISTICAL INTERVALS FOR A SINGLE SAMPLE Part 3: Summary of CI for µ Cofidece Iterval for a Populatio Proportio p Sectio 8-4 Summary for creatig a 100(1-α)% CI for µ: Whe σ 2 is kow ad paret

More information

Mixtures of Gaussians and the EM Algorithm

Mixtures of Gaussians and the EM Algorithm Mixtures of Gaussias ad the EM Algorithm CSE 6363 Machie Learig Vassilis Athitsos Computer Sciece ad Egieerig Departmet Uiversity of Texas at Arligto 1 Gaussias A popular way to estimate probability desity

More information

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234

Exam II Covers. STA 291 Lecture 19. Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Location CB 234 STA 291 Lecture 19 Exam II Next Tuesday 5-7pm Memorial Hall (Same place as exam I) Makeup Exam 7:15pm 9:15pm Locatio CB 234 STA 291 - Lecture 19 1 Exam II Covers Chapter 9 10.1; 10.2; 10.3; 10.4; 10.6

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1

Skip Lists. Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 S 3 S S 1 Presetatio for use with the textbook, Algorithm Desig ad Applicatios, by M. T. Goodrich ad R. Tamassia, Wiley, 2015 Skip Lists S 3 15 15 23 10 15 23 36 Skip Lists 1 What is a Skip List A skip list for

More information

Algorithms for Clustering

Algorithms for Clustering CR2: Statistical Learig & Applicatios Algorithms for Clusterig Lecturer: J. Salmo Scribe: A. Alcolei Settig: give a data set X R p where is the umber of observatio ad p is the umber of features, we wat

More information

CS284A: Representations and Algorithms in Molecular Biology

CS284A: Representations and Algorithms in Molecular Biology CS284A: Represetatios ad Algorithms i Molecular Biology Scribe Notes o Lectures 3 & 4: Motif Discovery via Eumeratio & Motif Represetatio Usig Positio Weight Matrix Joshua Gervi Based o presetatios by

More information

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) =

0, otherwise. EX = E(X 1 + X n ) = EX j = np and. Var(X j ) = np(1 p). Var(X) = Var(X X n ) = PROBABILITY MODELS 35 10. Discrete probability distributios I this sectio, we discuss several well-ow discrete probability distributios ad study some of their properties. Some of these distributios, lie

More information

Generalized Semi- Markov Processes (GSMP)

Generalized Semi- Markov Processes (GSMP) Geeralized Semi- Markov Processes (GSMP) Summary Some Defiitios Markov ad Semi-Markov Processes The Poisso Process Properties of the Poisso Process Iterarrival times Memoryless property ad the residual

More information

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function.

It is always the case that unions, intersections, complements, and set differences are preserved by the inverse image of a function. MATH 532 Measurable Fuctios Dr. Neal, WKU Throughout, let ( X, F, µ) be a measure space ad let (!, F, P ) deote the special case of a probability space. We shall ow begi to study real-valued fuctios defied

More information

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover.

Theorem 3. A subset S of a topological space X is compact if and only if every open cover of S by open sets in X has a finite subcover. Compactess Defiitio 1. A cover or a coverig of a topological space X is a family C of subsets of X whose uio is X. A subcover of a cover C is a subfamily of C which is a cover of X. A ope cover of X is

More information

(7 One- and Two-Sample Estimation Problem )

(7 One- and Two-Sample Estimation Problem ) 34 Stat Lecture Notes (7 Oe- ad Two-Sample Estimatio Problem ) ( Book*: Chapter 8,pg65) Probability& Statistics for Egieers & Scietists By Walpole, Myers, Myers, Ye Estimatio 1 ) ( ˆ S P i i Poit estimate:

More information

Lecture 11: Pseudorandom functions

Lecture 11: Pseudorandom functions COM S 6830 Cryptography Oct 1, 2009 Istructor: Rafael Pass 1 Recap Lecture 11: Pseudoradom fuctios Scribe: Stefao Ermo Defiitio 1 (Ge, Ec, Dec) is a sigle message secure ecryptio scheme if for all uppt

More information

AMS570 Lecture Notes #2

AMS570 Lecture Notes #2 AMS570 Lecture Notes # Review of Probability (cotiued) Probability distributios. () Biomial distributio Biomial Experimet: ) It cosists of trials ) Each trial results i of possible outcomes, S or F 3)

More information

A Probabilistic Analysis of Quicksort

A Probabilistic Analysis of Quicksort A Probabilistic Aalysis of Quicsort You are assumed to be familiar with Quicsort. I each iteratio this sortig algorithm chooses a pivot ad the, by performig comparisios with the pivot, splits the remaider

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

arxiv: v2 [cs.ne] 26 Nov 2014

arxiv: v2 [cs.ne] 26 Nov 2014 How Crossover Speeds Up Buildig-Block Assembly i Geetic Algorithms arxiv:403.6600v2 [cs.ne] 26 Nov 204 Dirk Sudholt Departmet of Computer Sciece, Uiversity of Sheffield, Uited Kigdom Abstract We re-ivestigate

More information

Lecture 2: Concentration Bounds

Lecture 2: Concentration Bounds CSE 52: Desig ad Aalysis of Algorithms I Sprig 206 Lecture 2: Cocetratio Bouds Lecturer: Shaya Oveis Ghara March 30th Scribe: Syuzaa Sargsya Disclaimer: These otes have ot bee subjected to the usual scrutiy

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm

Study on Coal Consumption Curve Fitting of the Thermal Power Based on Genetic Algorithm Joural of ad Eergy Egieerig, 05, 3, 43-437 Published Olie April 05 i SciRes. http://www.scirp.org/joural/jpee http://dx.doi.org/0.436/jpee.05.34058 Study o Coal Cosumptio Curve Fittig of the Thermal Based

More information

Application to Random Graphs

Application to Random Graphs A Applicatio to Radom Graphs Brachig processes have a umber of iterestig ad importat applicatios. We shall cosider oe of the most famous of them, the Erdős-Réyi radom graph theory. 1 Defiitio A.1. Let

More information

CS 330 Discussion - Probability

CS 330 Discussion - Probability CS 330 Discussio - Probability March 24 2017 1 Fudametals of Probability 11 Radom Variables ad Evets A radom variable X is oe whose value is o-determiistic For example, suppose we flip a coi ad set X =

More information

PC5215 Numerical Recipes with Applications - Review Problems

PC5215 Numerical Recipes with Applications - Review Problems PC55 Numerical Recipes with Applicatios - Review Problems Give the IEEE 754 sigle precisio bit patter (biary or he format) of the followig umbers: 0 0 05 00 0 00 Note that it has 8 bits for the epoet,

More information

arxiv: v1 [cs.ne] 26 Mar 2014

arxiv: v1 [cs.ne] 26 Mar 2014 How Crossover Speeds Up Buildig-Block Assembly i Geetic Algorithms arxiv:403.6600v [cs.ne] 26 Mar 204 Dirk Sudholt Departmet of Computer Sciece, Uiversity of Sheffield, Uited Kigdom Abstract We re-ivestigate

More information

EE260: Digital Design, Spring n Binary Addition. n Complement forms. n Subtraction. n Multiplication. n Inputs: A 0, B 0. n Boolean equations:

EE260: Digital Design, Spring n Binary Addition. n Complement forms. n Subtraction. n Multiplication. n Inputs: A 0, B 0. n Boolean equations: EE260: Digital Desig, Sprig 2018 EE 260: Itroductio to Digital Desig Arithmetic Biary Additio Complemet forms Subtractio Multiplicatio Overview Yao Zheg Departmet of Electrical Egieerig Uiversity of Hawaiʻi

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

IP Reference guide for integer programming formulations.

IP Reference guide for integer programming formulations. IP Referece guide for iteger programmig formulatios. by James B. Orli for 15.053 ad 15.058 This documet is iteded as a compact (or relatively compact) guide to the formulatio of iteger programs. For more

More information

Lecture 2: Monte Carlo Simulation

Lecture 2: Monte Carlo Simulation STAT/Q SCI 43: Itroductio to Resamplig ethods Sprig 27 Istructor: Ye-Chi Che Lecture 2: ote Carlo Simulatio 2 ote Carlo Itegratio Assume we wat to evaluate the followig itegratio: e x3 dx What ca we do?

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS

REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS REAL ANALYSIS II: PROBLEM SET 1 - SOLUTIONS 18th Feb, 016 Defiitio (Lipschitz fuctio). A fuctio f : R R is said to be Lipschitz if there exists a positive real umber c such that for ay x, y i the domai

More information

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jump n,l

Upper and Lower Bounds on Unrestricted Black-Box Complexity of Jump n,l Upper ad Lower Bouds o Urestricted Black-Box Complexity of Jump,l Maxim Buzdalov 1, Mikhail Kever 1, ad Bejami Doerr 1 ITMO Uiversity, 49 Kroverkskiy av., Sait-Petersburg, Russia, 197101 mbuzdalov@gmail.com,

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

5 Many points of continuity

5 Many points of continuity Tel Aviv Uiversity, 2013 Measure ad category 40 5 May poits of cotiuity 5a Discotiuous derivatives.............. 40 5b Baire class 1 (classical)............... 42 5c Baire class 1 (moder)...............

More information

1 Duality revisited. AM 221: Advanced Optimization Spring 2016

1 Duality revisited. AM 221: Advanced Optimization Spring 2016 AM 22: Advaced Optimizatio Sprig 206 Prof. Yaro Siger Sectio 7 Wedesday, Mar. 9th Duality revisited I this sectio, we will give a slightly differet perspective o duality. optimizatio program: f(x) x R

More information

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues

Queuing Theory. Basic properties, Markovian models, Networks of queues, General service time distributions, Finite source models, Multiserver queues Queuig Theory Basic properties, Markovia models, Networks of queues, Geeral service time distributios, Fiite source models, Multiserver queues Chapter 8 Kedall s Notatio for Queuig Systems A/B/X/Y/Z: A

More information

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov Microarray Ceter BIOSTATISTICS Lecture 5 Iterval Estimatios for Mea ad Proportio dr. Petr Nazarov 15-03-013 petr.azarov@crp-sate.lu Lecture 5. Iterval estimatio for mea ad proportio OUTLINE Iterval estimatios

More information

Penalty approaches for Assignment Problem with single side constraint via Genetic Algorithms

Penalty approaches for Assignment Problem with single side constraint via Genetic Algorithms Joural of Mathematical Modellig ad Applicatio 2010, Vol. 2, No.2, 60-86 Pealty approaches for Assigmet Problem with sigle side costrait via Geetic Algorithms Jayata Majumdar Departmet of Mathematics, Durgapur

More information

Chapter 2 The Monte Carlo Method

Chapter 2 The Monte Carlo Method Chapter 2 The Mote Carlo Method The Mote Carlo Method stads for a broad class of computatioal algorithms that rely o radom sampligs. It is ofte used i physical ad mathematical problems ad is most useful

More information

STAT Homework 1 - Solutions

STAT Homework 1 - Solutions STAT-36700 Homework 1 - Solutios Fall 018 September 11, 018 This cotais solutios for Homework 1. Please ote that we have icluded several additioal commets ad approaches to the problems to give you better

More information

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc.

Chapter 22. Comparing Two Proportions. Copyright 2010 Pearson Education, Inc. Chapter 22 Comparig Two Proportios Copyright 2010 Pearso Educatio, Ic. Comparig Two Proportios Comparisos betwee two percetages are much more commo tha questios about isolated percetages. Ad they are more

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

Expectation-Maximization Algorithm.

Expectation-Maximization Algorithm. Expectatio-Maximizatio Algorithm. Petr Pošík Czech Techical Uiversity i Prague Faculty of Electrical Egieerig Dept. of Cyberetics MLE 2 Likelihood.........................................................................................................

More information

Frequentist Inference

Frequentist Inference Frequetist Iferece The topics of the ext three sectios are useful applicatios of the Cetral Limit Theorem. Without kowig aythig about the uderlyig distributio of a sequece of radom variables {X i }, for

More information