Ming-Shien Chang. Institute of Atomic and Molecular Sciences Academia Sinica

Size: px
Start display at page:

Download "Ming-Shien Chang. Institute of Atomic and Molecular Sciences Academia Sinica"

Transcription

1 Ming-Shien Chang Institute of Atomic and Molecular Sciences Academia Sinica

2 Introduction to Quantum Information motivation preliminary & terminologies physical implementation Ion Trap QC/QS ion trap physics laser manipulation of ions implementation of a quantum entangling gate application: simulation of quantum magnetism Outlook current status and perspective 1

3

4

5 Qubit = quantum two-level system = spin-1/ particle I 1 1 z 1 1 x 1 1 y i i Choices of qubit: any quantum two-level system conveniently accessible to us. e.g. Photons (flying qubit) Atoms (material qubit) i cos e sin Through out this talk, we mix-use the notations: {, 1} and {, }

6 QC ~ built upon a universal set of quantum logic gates Classical 1-bit NOT Quantum 1-qubit gate (rotation) 1 1 cos + e i sin 1 1 cos 1 e i sin -bit AND qubit XOR (controlled-not, or CNOT) superposition entanglement via CNOT [ + 1] + 1 1

7 Suppose we have a two-qubit phase gate CNOT PG One can realize a CNOT gate by the following steps: Rb ( x, ) R (, ).. b x b b PG b b a b a a a b

8 Superposition parallel processes N inputs f(x) Quantum interference enhances correct outcomes and suppresses erroneous outcomes. quantum logic gates depends on all inputs D. Deutsch (1985) Superposition and entanglement can speed up certain algorithms. n H n 1 H U Entangling Gate H n Solve for f :{,1} {,1} Deutsch-Jozsa (Cleve et al.) algorithm: deterministic and requires only one quiry

9 1. Scalable system of qubits: a b a b. A qubit-specific measurement capability 3. Initialization:,,, 4. A universal set of quantum gates 5. Decoherence times τ >> gate operation time a b 1 a b ; 1. Two additional criteria for quantum communication 6. Interconvert stationary and flying qubits 7. Transmit flying qubits between distant locations D. P. DiVincenzo, Fortschr. Phys , ()

10 Bottom-up Nuclear spin in QD Diamond NVC coherent scalable controllable measurable Trapped ions Atoms in OL Cavity QED molecule NMR Top-down Cooper pair box SQUID

11 Ion quantum computer Advantages Long storage time ( hours to months) Long coherence time ( seconds to minutes) Strong controlled interactions ( khz to MHz) State-of-the-art quantum entangling gates Cirac-Zoller gate Milburn-Schneider-James gate (σ z gate) Molmer-Sorensen gate (σ x gate) Ultrafast gate (multi-mode coherent control) Laserless gate (B field gradient) Perspectives Scalable to a large quantum system (currently < ions) Improve fidelity: toward fault-tolerant QC (infidelity < 1-3 ) fidelities of initialization, state detection, single- and two-qubit gates

12 What is an entangled state? E.g., two particles are entangled if their complete quantum state cannot be expressed as the product of the quantum states of each individual one. I.e., Product state: a, b a b Entangled states: 1 1, ab a b ( 1 ) ( 1 ), a ab b 1 1 a, b a b a b a, b a b a b a b a b Peris-Horodeck criterion, and O. Ghne and G. Toth, Phys Rep 474, 1 (9)

13 Entangled state generation Strategy I. delete some constituent states 1 1, ab a a b b ' a, b a b a b a b a b Strategy II. alter the phase (sign) of some constituent states a, b a b a b a b a b ' Uˆ a, b a b a b a b a b

14 Strategy I Strategy II photodetector beamsplitter photodetector ~ μm optical fibers U 1 i ( e 11) 171 Yb + 1 meter 171 Yb + i U( ) exp{ H}, ps 8.1 MHz H J z z. 1 Moehring et al., Nature 449, 68 (7)

15 Entanglement vs. entangling gate Strategy I. deletion Measurement based: probabilistic No outcome for 11 & Not a gate! Strategy II. spin-dependent phase shift i 1 1 i 1 Interaction based: deterministic A phase gate

16 measurement induced entanglement or 1 Hong-Ou-Mandel Interference - photon bunching for identical photons photon bunching i rr,, rr + e rr, bb,, bb + e bb, ab, AB, AB, i ab, AB, AB, destructive interference of paths, no outcome... unless two photons are not identical rb,, rb + e rb, i br, rb, e br, ab, A, B i a, b AB, A, B A, B A B coincidence photon detection a b Y.H. Shih and C.O. Alley, Proc. nd Int l Symp. Found. Quant. Mech, Tokyo (1986) Hong, Ou, and Mandel, Phys. Rev. Lett., 59, 44 (1987) Y.H. Shih and C.O. Alley, Phys. Rev. Lett. 61, 91 (1988)

17 Preservation of Entanglement Strategy I. deletion Measurement based: probabilistic Entanglement is destroyed upon measurement! Strategy II. spin-dependent phase shift i 1 1 i 1 Interaction based: deterministic Entanglement is preserved.

18 or 1 heralded entanglement photodetector beamsplitter photodetector = ( 1 blue red 1 ) ( blue + red ) ion state photon state optical fibers upon coincidence photon detection 1 Preserve entangled state for two atomic qubits Moehring et al., Nature 449, 68 (7) Olmschenk et al., Science 33, 486 (9) Maunz et al., PRL 1, 55 (9) Pironi et al., Nature 464, 11 (1) Hong, Ou, Mandel, PRL 59, 44 (1987) Y.H. Shih & C. O. Alley, PRL 61, 91 (1988) C. Simon and W. Irvine, PRL 91, 1145 (3) L.-M. Duan, et. al., Quant. Inf. Comp. 4, 165 (4)

19 Strategy I Strategy II beamsplitter photodetector photodetector ~ μm optical fibers U 1 i ( e 11) 171 Yb + 1 meter 171 Yb + i U( ) exp{ H}, ps 8.1 MHz H J z z. 1 Moehring et al., Nature 449, 68 (7)

20

21 In this talk 171 Yb + is used.

22 Add micromotion discussion Electric Field Vectors E

23 photo ionization lasers cooling lasers E dc atomic beam rf ground static E rf

24 E dc rf ground static E rf

25 S 1/ F=1 37 nm 171 Yb + F= HF m HF 1.64 GHz 1 < few MHz 3-layer, 3-zone trap

26 P 1/ 1..8 S 1/ 1.6 GHz Probability State detection fidelity ~ 97% Photon number 5

27 γ = MHz P 1/ δ ~ few γ S 1/ 1.6 GHz

28 P 1/ S 1/

29 Coupling two ground hyperfine states (qubit states) with a Raman transition (two-photon transition) ~ THz P 1/ ~ MHz Spontaneous emission rate due to off-resonance excitation S 1/ ν =1.6 GHz 1 R 1 λ ~ 37 nm 1 We want spon 1 spon 1 R Δ Ω R

30 Coupling two ground hyperfine states (qubit states) with Raman transition (two-photon transition) P 1/ S 1/ ν =1.6 GHz R 1

31 Rabi oscillation 1..8 P( x1-3 Ramsey oscillation Time (ms) π/ π/ R ( ) Coherence time > 7 ms P() P( ) sin( ), : detuning : phase Time (ms) 5 6 7

32 cm Axial Modes zigzag Transverse Modes zigzag cm H pi 1 xv x i m i, j 1 k( aa k k ) k i ij j cm = center of mass mode transverse e.g. 5 axial 1 / 1 com com zig-zag m Axial cm zig-zag Transverse ion-ion spacing is ~m, while the vibration amplitude is ~ nm. James, APB 66, 181 (1998); Zhu, Monroe, and Duan, PRL 97, 555 (6).

33 cm Axial Modes zigzag Transverse Modes zigzag cm H pi 1 xv x i m i, j 1 k( aa k k ) k i ij j cm = center of mass mode transverse e.g. 5 axial 1 / 1 com com zig-zag m Axial cm zig-zag Transverse ion-ion spacing is ~m, while the vibration amplitude is ~ nm. James, APB 66, 181 (1998); Zhu, Monroe, and Duan, PRL 97, 555 (6).

34 Spin-motion coupling pˆ 1 H ˆ ˆ ˆ z m x E( xˆ) m ( a a 1 ) frequency of applied radiation E ( ˆ ˆ )( e ikxˆ i t L e ikxˆ i t L ) interaction frame; rotating wave approximation H g( ˆ e ikxˆ i t ˆ e ikxˆ i t ) x = L = detuning k = = wavenumber it it xˆ x( ae a e ) m x

35 H g ˆ e ˆ e it it it it ikx ( ae a e ) i t ikx ( ae a e ) it g{ ˆ e (1 ikx ( ae a e ) H. O.] HC..} it it it stationary terms arise in H at particular values of = H g( ˆ ˆ ) kx n 1 1,n H,n = ħg CARRIER = H g( kx )( a a ) 1 kx n 1 1,n1 H +1,n = ħg n 1 1 ST RED SIDEBAND = + H 1 g( kx)( ˆ a ˆ a ) kx n 1 1,n1 H,n = ħg n 1 ST BLUE SIDEBAND kx n 1 1 Lamb-Dicke Limit

36 Δk P 1/ ~ THz S 1/ ν ~1.6 GHz 1 1 Transition rate R ~ 1 MHz ~ few MHz carrier blue sideband red sideband Hc hc.. Hbsb a hc.. Hrsb a hc.. Lamb-Dicke Parameter x kx n 1

37 Δk S 1/ ν ~1.6 GHz 1 1 Transition rate R ~ 1 MHz ~ few MHz carrier blue sideband red sideband Hc hc.. Hbsb a hc.. Hrsb a hc.. Lamb-Dicke Parameter x kx n 1

38 Δk Two ions, transverse modes. Red Motional Sideband Tilt x, CM x, Tilt y, CM y Carrier Blue Motional Sideband CM y, Tilt y, CM x, Tilt x 1.5 Brightness Motional detuning (MHz)

39 1 st Step: Doppler Cooling P 1/ S 1/ ω T D n 1 k B P state linewidth vib. mode freq. I S (RS) C frequency I AS (BS) Thermometry: I I S AS n 1 n

40 P 1/ rsb -pulse n= -1 opt. pump n> ~ S 1/ after Raman Sideband cooling: Red sideband,n,n-1 n ~.5 Blue sideband,n,n+1 frequency frequency

41 ˆ r H ˆ ˆ rsb ahc.. 1 S 1/ 1

42 ˆ r H ˆ ˆ rsb ahc.. 1 S 1/ 1

43 ˆ r H ˆ ˆ rsb ahc S 1/ 1 S 1/ 1 State mapping: ( + ) m

44 ˆ r H ˆ ˆ rsb ahc S 1/ 1 S 1/ 1 State mapping: ( + ) m ( m + 1 m ) Cirac and Zoller, PRL 74, 491 (1995)

45 Scientific American, July 1, 8 laser cool to rest (n=), map j th qubit to phonon flip k th qubit if phonon present map phonon back to j th qubit entangled state! Cirac and Zoller, PRL 74, 491 (1995) Schmidt-Kaler et al., Nature 4, 48 (3)

46

47 ˆ( ) A a * a Displacement Op.: ˆ e ( ) ( ) A D Coherent state: () t D( ) D t e D D iim( * ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) iim( D D D e ) * Here we have used Baker-Campbell-Hausdorff relation ee e A B C, where C AB [ AB, ] ([ A,[ AB, ]] [[ AB, ], B])

48 Ht ta ta * () [ () () ] n i Ut ( ) limexp{ Ht ( k ) t} exp{ i( t)} D( ( t)), n k 1 where t t/ n, t kt, and t () t dt' ('), t k t t' * ( t) Im dt' ( t') dt'' ( t'').

49 1 H aa f txa ftxa * ( ) () () H t f t x ae f t x a e * () () i t I () it f t i( ) t () Fe / F* x Fx it it HI () t ae a e i Ut ( ) exp{ ( Ht ( ') dt' dt' dt''[ Ht ( '), Ht ( '')] )} i t 1 t t ' Fx t it' () ' it t e dt (1 e ) Fx

50 Entangling Ions via Spin-Dependent Force Bichromatic Raman lasers create spin-dependent force: H Fxˆ( ) Fx ( aˆaˆ ) ˆ z x y (or, ) 1 imt imt z i m m im, Ht () [ ae ae ] rsb bsb Bichromatic Δk b r HF HF

51 Entangling Ions via Spin-Dependent Force Bichromatic Raman lasers create spin-dependent force: H Fxˆ( ) Fx ( aˆaˆ ) ˆ z x y (or, ) 1 i U( ) Texp{ H( t) dt} 1 i i exp{ H ( t) dt dt dt [ H ( t ), H ( t )] } ~ exp{ i } imt imt z i m m im, Ht () [ ae ae ] 1 1 z z 1 t Magnus expansion ( ) U() 11 i 1 i 1

52 z Fx H Fx (1 z) ~ z p -1 1 Right circularly polarized light : s Qubits subject to 1 st order Zeeman shift.

53 z Fx H Fx (1 z) ~ z p ~1 MHz THz s Don t work for clock states with dipole allowed transitions! ~ 1 GHz

54 x Fx H Fx (1 x) ~ x p ~1 MHz THz s Apply spin-dependent force and flip the spin simultaneously: σ z force in the x basis ~ 1 GHz

55 X Fx iti iti H x( ae a e ) x ~ Z + Z x ~ Z - Z X p X x Initial in = Z =( X - X ) motion= Apply bichromatic force: = X + X - = Z ( - -) + Z ( + -)

56 Spin dependent force time scan 1..8 (b) (c) without sb cooling with sb cooling P() time (ms)

57 σ x force on two ions: Molmer-Sorensen ( σ x σ x ) Gate Δk b HF r HF n+1 n n-1 n n n n n 1 n 1 t ( n1 n) t Molmer & Sorensen, PRL 8, 1971 (1999) & PRL 8, 1835 (1999)

58 σ x force on two ions: Molmer-Sorensen ( σ x σ x ) Gate Δk n b HF r HF n+1 n n-1 t T i T cos( ) e sin( ) n choose T, then 4 1 i 1 e ( n1 n) Molmer & Sorensen, PRL 8, 1971 (1999) & PRL 8, 1835 (1999) t

59 σ x force on two ions: Molmer-Sorensen ( σ x σ x ) Gate Δk n b HF r HF n+1 n n-1 t Generally t i t cos( ) e sin( ) t i t cos( ) e sin( ) t i ' t cos( ) e sin( ) t t i ' t cos( ) e sin( ) Molmer & Sorensen, PRL 8, 1971 (1999) & PRL 8, 1835 (1999) n

60 1 ( i e ) Brightness Parity C.M. Tilt.5. LP TP..1. Brightness.3.4 Time (ms) P( ) P( ) P( ) P( ).5.6 BP( ) P( ) P( ) Parity Normal node freq. (MHz) Gate fidelity: F~98%!

61 P( ) P( ) P( ) P( ) Parity oscillation 1. P()+P()-P()-P() e.g F~98% 3 4 phase (deg) Gate operation number 15 D F D 6 P()+P(() Parity Gate fidelity , with pure F ideal 1 i ideal e mix ideal P( ) P( ) F

62

63 Ising spins in transverse B field: H J B i, j z z z x x ij i j i i XY model: x x y y H J ( ) i, j ij i j i j XXZ model : (~ Bose-Hubbard under Holstein-Primakoff transformation) x x y y z z z H Jij( i j i j ) Jij i j i, j Possible Observations Quantum phase transition Spin frustration Complex entangled states Provided tunable spin-spin interactions: Strength, Sign (ferro or anti-ferro), Range, Coupling graph (geometry).

64 1. Scalable system of qubits: a b 1 ; a b 1.. A qubit-specific measurement capability 3. Initialization:,,, 4. A Global universal and always-on set of quantum interactions gates (analogue version, no error accumulation) 5. Decoherence can serve as environment for the studied system. Easier, and closer to Feynman s original proposal for a QC.

65 H XY B i J ( i) () i ( j) y ij x x i j P() 1..5 Rabi oscillations R ( ) Ramsey oscillations π/ π/ Coherence time > 7 ms..5 (ms).1

66 (J ij ) i () i J () i ( j) y ij x x i j H B Axial com Axial Modes Axial zigzag Transverse Modes Transverse zigzag Ttransverse com Δk m 5 1 J m m i j i j m i, j, m m

67 Spin frustration in triangular lattice J (khz) 1-1 Frustration Frustration J 1 J Detuning s -1 = ( / com ) z

68 ground states vs. spin-spin couplings,,,,, J (khz) 1-1 Frustration Frustration J 1 J Detuning s -1 = ( / com ) z

69 Exact Ground State (Theory) Freericks and Duan ZIGZAG TILT COM P(Ferro)= P()+P() 1. B/J rms s COM z.

70 Quantum simulation: implementation Initializ ation Cooling Optical Pumping Ht () J Bt () R x (/) () i ( j) () i ij x x y i j i Ground state J B 1 Ground state R y (/) Detection () x x x Adiabatically following () T ˆ t t e H () dt () i Lloyd, Science 73, 173 (1996) and (8). Farhi et al., Science 9, 47 (1); ( ion simulator) Friedenauer et al., Nat. Phys., 4, 757 (8)

71 Phase diagram measurement Measurement Theory: given ramp Theory: GS Kim et al., Nature 465, 59 (1)

72 Universal phase diagram FM AFM

73 FM ground state:? or? AFM frustrated ground state: If we know the density matrix (8 x 8), we can know the underlying state. However, density matrix is hard to reconstruct.? J>? Luckily there is a short cut

74 FM ground state: AFM frustrated ground state: GHZ state Witness = (1) () (3) J z 4 5 ( J J ), W state Witness = 9 4 y z? J 1 i? () i J>? O. Ghne and G. Toth, Phys Rep 474, 1 (9). GHZ state witness Links frustration to ground state entanglement.

75 PM = P(all up) + P(all down) QS of transverse Ising model with all FM interactions time (ms) spins 3 spins 4 spins 5 spins 6 spins 7 spins 8 spins 9 spins Sharper phase transition as # of spins increases. Islam et al., Nature Communication (11)

76

77 Harmonic external axial potential ( z ) μm 375 μm z r linear crystal: r z.73n.86 z 4 μm

78 Ion Trap Chips NIST-Boulder GaTech/MIT Maryland Ulm

79 Scaling a single crystal to >> 1 ions Uniformly-spaced ion crystal (spacing = s) r 7 (3) e 3 ms U() z log 1 z / R U 4 ~ z (quartic) R > > >

80 Raman transition with picosecond lasers I(f) f n =n- f = repetition rate=1/t = Comb offset from harmonics of = Phase slip b/t carrier & envelope each round trip Advantages: Built-in phase locked frequency comb for Raman transitions. E(t) t Requirements: 1. Bandwidth HF splitting. Lock carrier envelop phase r.t D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, S. T. Cundiff, Science 88, 635 ().

81 Impulsive (fast) spin-dependent kicks two sequential -pulses e e e e p = ħk no speed limit! no temperature limit! (only require harmonicity) eg: 4-pulse protocol Garcia-Ripoll, Zoller, & Cirac, PRL 91, (3)

82 A quantum computer with ~1 qubits G.-D. Lin, et al., EPL 86, 64 (9) p c Optimal control: finding the right pulse sequence to bring the atom back to its initial state, regardless of the details of that initial state. x c Garcia-Ripoll, Zoller, & Cirac, PRL 91, (3) PRL 14, 1451 (1), PRL 15, 95 (1)

83 Quantum Information Processing Trapped ion QC/QS o Driving coherent dynamics with lasers o Implementing a quantum entangling gate o Engineering spin-spin interactions o Quantum simulator of a three-spin network Outlook o Scalable to larger number of qubits (spins) o Entangling (fast) gates with a ultrafast pulse laser. 81

84 Grad Students Steven Olmschenk Jon Sterk Simcha Korenblit Dave Hayes Rajibul Islam Andrew Manning Jonathan Mizrahi Dave Hucul Crystal Senko Undergrads Brian Fields Kenny Lee Postdocs Dzmitry Matsukevich Kihwan Kim Peter Maunz Wes Campbell Le Luo Qudsia Quraishi Emily Edwards Theory Coworkers U of Michigan: Luming Duan Guin-Dar Lin Georgetown Univ. J. Freericks C.-C. J. Wang pfc@jqi

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions

Quantum Information Processing with Trapped Ions. Experimental implementation of quantum information processing with trapped ions Quantum Information Processing with Trapped Ions Overview: Experimental implementation of quantum information processing with trapped ions 1. Implementation concepts of QIP with trapped ions 2. Quantum

More information

Quantum Networks with Atoms and Photons

Quantum Networks with Atoms and Photons Quantum Networks with Atoms and Photons C. Monroe 1, W. Campbell, C. Cao 1, T. Choi 1, S. Clark 1, S. Debnath 1, C. Figgatt 1, D. Hayes, D. Hucul 1, V. Inlek 1, R. Islam 1, S. Korenblit 1, K. Johnson 1,

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Dietrich Leibfried Time and Frequency Division National Institute of Standards and Technology Boulder, CO USA The remaining QIP challenge DiVincenzo requirements:

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion ion interaction induced by laser pulses that excite the ion`s

More information

arxiv:quant-ph/ v1 29 Apr 2003

arxiv:quant-ph/ v1 29 Apr 2003 Atomic Qubit Manipulations with an Electro-Optic Modulator P. J. Lee, B. B. Blinov, K. Brickman, L. Deslauriers, M. J. Madsen, R. arxiv:quant-ph/0304188v1 29 Apr 2003 Miller, D. L. Moehring, D. Stick,

More information

Short Course in Quantum Information Lecture 8 Physical Implementations

Short Course in Quantum Information Lecture 8 Physical Implementations Short Course in Quantum Information Lecture 8 Physical Implementations Course Info All materials downloadable @ website http://info.phys.unm.edu/~deutschgroup/deutschclasses.html Syllabus Lecture : Intro

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

Quantum information processing with trapped ions

Quantum information processing with trapped ions Quantum information processing with trapped ions Courtesy of Timo Koerber Institut für Experimentalphysik Universität Innsbruck 1. Basic experimental techniques 2. Two-particle entanglement 3. Multi-particle

More information

Quantum Logic Spectroscopy and Precision Measurements

Quantum Logic Spectroscopy and Precision Measurements Quantum Logic Spectroscopy and Precision Measurements Piet O. Schmidt PTB Braunschweig and Leibniz Universität Hannover Bad Honnef, 4. November 2009 Overview What is Quantum Metrology? Quantum Logic with

More information

Towards Quantum Computation with Trapped Ions

Towards Quantum Computation with Trapped Ions Towards Quantum Computation with Trapped Ions Ion traps for quantum computation Ion motion in linear traps Nonclassical states of motion, decoherence times Addressing individual ions Sideband cooling of

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T.

An optical frequency comb is generated by use. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T. Internal State Cooling With a Femtosecond Optical Frequency Comb S. MALINOVSKAYA, V. PATEL, T. COLLINS Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, NJ 07030

More information

arxiv: v1 [quant-ph] 14 Mar 2014

arxiv: v1 [quant-ph] 14 Mar 2014 Modular Entanglement of Atomic Qubits using both Photons and Phonons D. Hucul, I. V. Inlek, G. Vittorini, C. Crocker, S. Debnath, S. M. Clark, and C. Monroe Joint Quantum Institute, University of Maryland

More information

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions

Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Entanglement and Transfer of of Quantum Information with Trapped Ca + Ions Rainer Blatt Institut für Experimentalphysik, Universität Innsbruck, Institut für Quantenoptik und Quanteninformation, Österreichische

More information

arxiv: v2 [quant-ph] 9 Jan 2009

arxiv: v2 [quant-ph] 9 Jan 2009 Large Scale Quantum Computation in an Anharmonic Linear Ion Trap G.-D. Lin 1, S.-L. Zhu 2,1, R. Islam 3, K. Kim 3, M.-S. Chang 3, S. Korenblit 3, C. Monroe 3, and L.-M. Duan 1 1 FOCUS Center and MCTP,

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

arxiv: v2 [quant-ph] 25 Jun 2013

arxiv: v2 [quant-ph] 25 Jun 2013 Quantum Catalysis of Magnetic Phase Transitions in a Quantum Simulator arxiv:.698v [quant-ph] Jun P. Richerme, C. Senko, S. Korenblit, J. Smith, A. Lee, R. Islam, W. C. Campbell, and C. Monroe Joint Quantum

More information

Rydberg excited Calcium Ions for quantum interactions

Rydberg excited Calcium Ions for quantum interactions Warsaw 08.03.2012 Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Igor Lesanovsky Outline 1. The R-ION consortium Who are we? 2. Physics Goals What State are of we the

More information

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert

Which technology? Quantum processor. Cavity QED NMR. Superconducting qubits Quantum dots. Trapped atoms/ions. A. Ekert Which technology? 000 001 010 011 Quantum processor 100 011 110 011 Cavity QED NMR Superconducting qubits Quantum dots Trapped atoms/ions A. Ekert Which technology? 000 001 010 011 Quantum processor 100

More information

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state.

Different ion-qubit choises. - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Different ion-qubit choises - One electron in the valence shell; Alkali like 2 S 1/2 ground state. Electronic levels Structure n 2 P 3/2 n 2 P n 2 P 1/2 w/o D Be + Mg + Zn + Cd + 313 nm 280 nm 206 nm 226

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Zero-point cooling and low heating of trapped 111 Cd + ions

Zero-point cooling and low heating of trapped 111 Cd + ions PHYSICAL REVIEW A 70, 043408 (2004) Zero-point cooling and low heating of trapped 111 Cd + ions L. Deslauriers, P. C. Haljan, P. J. Lee, K-A. Brickman, B. B. Blinov, M. J. Madsen, and C. Monroe FOCUS Center,

More information

Kenneth Brown, Georgia Tech

Kenneth Brown, Georgia Tech Kenneth Brown, Georgia Tech Choice of Bits 100 BC 1949 AD 1949 AD 1822 (1991) AD 2013 AD Hearing Aid Images from www.hearingaidmuseum.com Choices of Qubits Waterloo Bristol Wisconsin NMR Photons Neutral

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

Cooling Using the Stark Shift Gate

Cooling Using the Stark Shift Gate Imperial College London Cooling Using the Stark Shift Gate M.B. Plenio (Imperial) A. Retzker (Imperial) Maria Laach 7/3/007 Department of Physics and Institute for Mathematical Sciences Imperial College

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

The Nobel Prize in Physics 2012

The Nobel Prize in Physics 2012 The Nobel Prize in Physics 2012 Serge Haroche Collège de France and École Normale Supérieure, Paris, France David J. Wineland National Institute of Standards and Technology (NIST) and University of Colorado

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University

Brian King. SQuInT summer school June, Dept. Physics and Astronomy, McMaster University Ion Traps for Quantum Computing Ann Arbor Garching Innsbruck Boulder SQuInT summer school June, 2003 Brian King Dept. Physics and Astronomy, McMaster University http://physserv.mcmaster.ca/~kingb/king_b_h.html

More information

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France

Quantum information processing with individual neutral atoms in optical tweezers. Philippe Grangier. Institut d Optique, Palaiseau, France Quantum information processing with individual neutral atoms in optical tweezers Philippe Grangier Institut d Optique, Palaiseau, France Outline Yesterday s lectures : 1. Trapping and exciting single atoms

More information

Manipulation of single neutral atoms in optical lattices

Manipulation of single neutral atoms in optical lattices PHYSICAL REVIEW A 74, 436 6 Manipulation of single neutral atoms in optical lattices Chuanwei Zhang, S. L. Rolston, and S. Das Sarma Condensed Matter Theory Center, Department of Physics, University of

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Quantum computation with trapped ions

Quantum computation with trapped ions Abstract Since the first preparation of a single trapped, laser-cooled ion by Neuhauser et el. in 198, a continuously increasing degree of control over the of single ions has been achieved, such that what

More information

arxiv: v1 [quant-ph] 24 Aug 2007

arxiv: v1 [quant-ph] 24 Aug 2007 1 arxiv:0708.395v1 [quant-ph] 4 Aug 007 Recent progress on the manipulation of single atoms in optical tweezers for quantum computing A. Browaeys, J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y. Miroshnychenko,

More information

Quantum information processing with trapped atoms

Quantum information processing with trapped atoms Quantum information processing with trapped atoms Introduction Fundamentals: ion iontraps, quantum bits, bits, quantum gates Implementations: 2-qubit gates, teleportation, More recent, more advanced, Jürgen

More information

Quantum simulation of spin models on an arbitrary lattice with trapped ions

Quantum simulation of spin models on an arbitrary lattice with trapped ions Home Search Collections Journals About Contact us My IOPscience Quantum simulation of spin models on an arbitrary lattice with trapped ions This content has been downloaded from IOPscience. Please scroll

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

Superconducting Qubits Lecture 4

Superconducting Qubits Lecture 4 Superconducting Qubits Lecture 4 Non-Resonant Coupling for Qubit Readout A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, PRA 69, 062320 (2004) Measurement Technique Dispersive Shift

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

The trapped-ion qubit tool box. Roee Ozeri

The trapped-ion qubit tool box. Roee Ozeri The trapped-ion qubit tool box Contemporary Physics, 5, 531-550 (011) Roee Ozeri Weizmann Institute of Science Rehovot, 76100, Israel ozeri@weizmann.ac.il Physical Implementation of a quantum computer

More information

Simulations of Magnetic Spin Phases with Atoms/Ions/Molecules

Simulations of Magnetic Spin Phases with Atoms/Ions/Molecules Simulations of Magnetic Spin Phases with Atoms/Ions/Molecules D. Stamper-Kurn, A. Vishwanath, J. Moore R. Scalettar C. Chin A. Rey, J. Ye J. Freericks R. Slusher C. Monroe, T. Porto, I Spielman, W. Phillips

More information

Trapped Ions: Condensed Matter From The Bottom Up. Chris Monroe University of Maryland

Trapped Ions: Condensed Matter From The Bottom Up. Chris Monroe University of Maryland Trapped Ions: Condensed Matter From The Bottom Up Chris Monroe University of Maryland Trapped Ion Spin Hamiltonian Engineering Ground states and Adiabatic Protocols Dynamics Many-Body Spectroscopy Propagation

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Cold Ions and their Applications for Quantum Computing and Frequency Standards

Cold Ions and their Applications for Quantum Computing and Frequency Standards Cold Ions and their Applications for Quantum Computing and Frequency Standards Trapping Ions Cooling Ions Superposition and Entanglement Ferdinand Schmidt-Kaler Institute for Quantum Information Processing

More information

Errors in trapped-ion quantum gates due to spontaneous photon scattering

Errors in trapped-ion quantum gates due to spontaneous photon scattering Errors in trapped-ion quantum gates due to spontaneous photon scattering R. Ozeri,* W. M. Itano, R. B. Blakestad, J. Britton, J. Chiaverini, J. D. Jost, C. Langer, D. Leibfried, R. Reichle, S. Seidelin,

More information

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks

Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave and optical spectroscopy in r.f. traps Application to atomic clocks Microwave spectroscopy for hyperfine structure t measurements Energy of a hyperfine state Hyperfine coupling constants: A:

More information

Quantum gates in rare-earth-ion doped crystals

Quantum gates in rare-earth-ion doped crystals Quantum gates in rare-earth-ion doped crystals Atia Amari, Brian Julsgaard Stefan Kröll, Lars Rippe Andreas Walther, Yan Ying Knut och Alice Wallenbergs Stiftelse Outline Rare-earth-ion doped crystals

More information

Controlling the Interaction of Light and Matter...

Controlling the Interaction of Light and Matter... Control and Measurement of Multiple Qubits in Circuit Quantum Electrodynamics Andreas Wallraff (ETH Zurich) www.qudev.ethz.ch M. Baur, D. Bozyigit, R. Bianchetti, C. Eichler, S. Filipp, J. Fink, T. Frey,

More information

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011

Quantum Information NV Centers in Diamond General Introduction. Zlatko Minev & Nate Earnest April 2011 Quantum Information NV Centers in Diamond General Introduction Zlatko Minev & Nate Earnest April 2011 QIP & QM & NVD Outline Interest in Qubits. Why? Quantum Information Motivation Qubit vs Bit Sqrt(Not)

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

A central problem in cryptography: the key distribution problem.

A central problem in cryptography: the key distribution problem. Scientific American 314, 48-55 (2016) A central problem in cryptography: the key distribution problem. Mathematics solution: public key cryptography. Public-key cryptography relies on the computational

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Quantum information processing and cavity QED experiments with trapped Ca + ions

Quantum information processing and cavity QED experiments with trapped Ca + ions Quantum information processing and cavity QED experiments with trapped Ca + ions S. Gulde, H. Häffner, M. Riebe, G. Lancaster, A. Mundt, A. Kreuter, C. Russo, C. Becher, J. Eschner, F. Schmidt-Kaler, I.

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013

Ground state cooling via Sideband cooling. Fabian Flassig TUM June 26th, 2013 Ground state cooling via Sideband cooling Fabian Flassig TUM June 26th, 2013 Motivation Gain ultimate control over all relevant degrees of freedom Necessary for constant atomic transition frequencies Do

More information

Atomic Ion Transduction: Phonons and Photons. C Monroe. Univ. of Maryland

Atomic Ion Transduction: Phonons and Photons. C Monroe. Univ. of Maryland Atomic Ion Transduction: Phonons and Photons (1) Gate-based & analog control of many qubits (2) Phonon engineering (3) Atom-photonic interfaces C Monroe Univ. of Maryland 171 Yb + Spin Manipulation 2 P

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Quantum Simulation with Rydberg Atoms

Quantum Simulation with Rydberg Atoms Hendrik Weimer Institute for Theoretical Physics, Leibniz University Hannover Blaubeuren, 23 July 2014 Outline Dissipative quantum state engineering Rydberg atoms Mesoscopic Rydberg gates A Rydberg Quantum

More information

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling

QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling QUANTUM TECHNOLOGIES: THE SECOND QUANTUM REVOLUTION* Jonathan P. Dowling Quantum Science & Technologies Group Hearne Institute for Theoretical Physics Louisiana State University http://quantum.phys.lsu.edu

More information

ABSTRACT QUANTUM SIMULATION OF INTERACTING SPIN MODELS WITH TRAPPED IONS

ABSTRACT QUANTUM SIMULATION OF INTERACTING SPIN MODELS WITH TRAPPED IONS ABSTRACT Title of dissertation: QUANTUM SIMULATION OF INTERACTING SPIN MODELS WITH TRAPPED IONS Kazi Rajibul Islam, Doctor of Philosophy, 2012 Dissertation directed by: Professor Christopher Monroe Joint

More information

Entanglement creation and characterization in a trapped-ion quantum simulator

Entanglement creation and characterization in a trapped-ion quantum simulator Time Entanglement creation and characterization in a trapped-ion quantum simulator Christian Roos Institute for Quantum Optics and Quantum Information Innsbruck, Austria Outline: Highly entangled state

More information

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS

QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS 1 QUANTUM INFORMATION PROCESSING AND RAMSEY SPECTROSCOPY WITH TRAPPED IONS C. F. ROOS, M. CHWALLA, T. MONZ, P. SCHINDLER, K. KIM, M. RIEBE, and R. BLATT Institut für Experimentalphysik, Universität Innsbruck,

More information

Prospects for a superradiant laser

Prospects for a superradiant laser Prospects for a superradiant laser M. Holland murray.holland@colorado.edu Dominic Meiser Jun Ye Kioloa Workshop D. Meiser, Jun Ye, D. Carlson, and MH, PRL 102, 163601 (2009). D. Meiser and MH, PRA 81,

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham

Rydberg excited Calcium Ions for quantum interactions. Innsbruck Mainz Nottingham Rydberg excited Calcium Ions for quantum interactions Innsbruck Mainz Nottingham Brussels 26.03.2013 The R-ION Consortium Ferdinand Schmidt-Kaler University of Mainz/Germany Trapped ions Experiment Jochen

More information

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium

Conference on Research Frontiers in Ultra-Cold Atoms. 4-8 May Generation of a synthetic vector potential in ultracold neutral Rubidium 3-8 Conference on Research Frontiers in Ultra-Cold Atoms 4-8 May 9 Generation of a synthetic vector potential in ultracold neutral Rubidium SPIELMAN Ian National Institute of Standards and Technology Laser

More information

Quantum information processing with trapped Ca+ ions

Quantum information processing with trapped Ca+ ions r[ THE ROYAL 10.1098/rsta.2003.1206 *Je. SOCIETY Quantum information processing with trapped Ca+ ions BY S. GULDE1, H. HAFFNER1, M. RIEBE1, G. LANCASTER1, C. BECHER1, J. ESCHNER1, F. SCHMIDT-KALER1, I.

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Generation and classification of robust remote symmetric Dicke states

Generation and classification of robust remote symmetric Dicke states Vol 17 No 10, October 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(10)/3739-05 Chinese Physics B and IOP Publishing Ltd Generation and classification of robust remote symmetric Dicke states Zhu Yan-Wu(

More information

High Accuracy Strontium Ion Optical Clock

High Accuracy Strontium Ion Optical Clock High Accuracy Strontium Ion Optical Clock Helen Margolis, Geoff Barwood, Hugh Klein, Guilong Huang, Stephen Lea, Krzysztof Szymaniec and Patrick Gill T&F Club 15 th April 2005 Outline Optical frequency

More information

Protocols and Techniques for a Scalable Atom Photon Quantum

Protocols and Techniques for a Scalable Atom Photon Quantum Protocols and Techniques for a Scalable Atom Photon Quantum Network L. Luo, D. Hayes, T.A. Manning, D.N. Matsukevich, P. Maunz, S. Olmschenk, J.D. Sterk, and C. Monroe Joint Quantum Institute, University

More information

arxiv:quant-ph/ v2 26 Jan 1999

arxiv:quant-ph/ v2 26 Jan 1999 Quantum computation with ions in thermal motion Anders Sørensen and Klaus Mølmer Institute of Physics and Astronomy, University of Aarhus DK-8 Århus C arxiv:quant-ph/9839v 6 Jan 999 We propose an implementation

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Cooperative atom-light interaction in a blockaded Rydberg ensemble Cooperative atom-light interaction in a blockaded Rydberg ensemble α 1 Jonathan Pritchard University of Durham, UK Overview 1. Cooperative optical non-linearity due to dipole-dipole interactions 2. Observation

More information

Differential Phase Shift Quantum Key Distribution and Beyond

Differential Phase Shift Quantum Key Distribution and Beyond Differential Phase Shift Quantum Key Distribution and Beyond Yoshihisa Yamamoto E. L. Ginzton Laboratory, Stanford University National Institute of Informatics (Tokyo, Japan) DPS-QKD system Protocol System

More information

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara Quantum Integrated Circuits Quantum currents & voltages Microfabricated atoms Digital to Analog Converter

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Quantum information processing using linear optics

Quantum information processing using linear optics Quantum information processing using linear optics Karel Lemr Joint Laboratory of Optics of Palacký University and Institute of Physics of Academy of Sciences of the Czech Republic web: http://jointlab.upol.cz/lemr

More information

Quantum simulation with superconducting circuits

Quantum simulation with superconducting circuits Quantum simulation with superconducting circuits Summary: introduction to quantum simulation with superconducting circuits: quantum metamaterials, qubits, resonators motional averaging/narrowing: theoretical

More information

Quantum computing hardware

Quantum computing hardware Quantum computing hardware aka Experimental Aspects of Quantum Computation PHYS 576 Class format 1 st hour: introduction by BB 2 nd and 3 rd hour: two student presentations, about 40 minutes each followed

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Functional quantum nodes for entanglement distribution

Functional quantum nodes for entanglement distribution 61 Chapter 4 Functional quantum nodes for entanglement distribution This chapter is largely based on ref. 36. Reference 36 refers to the then current literature in 2007 at the time of publication. 4.1

More information

IBM Systems for Cognitive Solutions

IBM Systems for Cognitive Solutions IBM Q Quantum Computing IBM Systems for Cognitive Solutions Ehningen 12 th of July 2017 Albert Frisch, PhD - albert.frisch@de.ibm.com 2017 IBM 1 st wave of Quantum Revolution lasers atomic clocks GPS sensors

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities

Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities CQIQC-V -6 August, 03 Toronto Solid-state quantum communications and quantum computation based on single quantum-dot spin in optical microcavities Chengyong Hu and John G. Rarity Electrical & Electronic

More information

An introduction to Quantum Computing using Trapped cold Ions

An introduction to Quantum Computing using Trapped cold Ions An introduction to Quantum Computing using Trapped cold Ions March 10, 011 Contents 1 Introduction 1 Qubits 3 Operations in Quantum Computing 3.1 Quantum Operators.........................................

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps

QuAMP Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps QuAMP 2013 Towards large scale quantum informa4on processing: Sta4c magne4c field gradient quantum gates and microfabricated ion traps Kim Lake University of Sussex Talk Outline Ion Trapping and Ytterbium

More information

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR

A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR International Journal of Modern Physics B c World Scientific Publishing Company A SINGLE-ION STOCHASTIC QUANTUM PROCESSOR PAUL BLACKBURN MIGUEL ORSZAG Facultad de Física, Pontificia Universidad Católica

More information