The Lorenz Transform

Size: px
Start display at page:

Download "The Lorenz Transform"

Transcription

1 The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the Theory of Relatiity After an introdutory explanation inoling obserers, trains, rods and loks (in Cartesian oordinates), and with the assumption that the speed of light is a onstant, and defines inertial motion relatie to, the atual analysis (pp. 38ff) begins with the hypothesis that the laws of physis are the same in eery inertial frame. Howeer, I interpret some of Bergmann s haraterizations a bit differently. The onstany of the speed of light implies there is an absolute oordinate frame in whih is defined as x = t and x = t x ' = t ' and x = = t x' t' (-x,t ) (-x,t ) (x,t ) (x,t ) Spae (-x,-t ) (-x,-t ) (x,-t ) (x,-t ) Time In this diagram, time moes up ertially, and the position oordinates of a photon modeled as a oordinate partile moe right or left as the time axis rosses their red dotted world lines. Sine the

2 photons do not interat at the point (0,0) shown, they ontinue their straight world lines after they oinide. For a pure oordinate system, it is immaterial when the oordinate photons are reated or destroyed as long as their world lines exist at their ommon point (at that point, they are simultaneous, at any other instant of time, they are separated. x The eloity of light is then defined as = sine is assumed to be isotropi (independent of t diretion) and homogeneous. If a medium is assumed, then the eloity of the medium is then assumed x to be defined as = along some axis passing through the origin at whih is defined t A Mihaelson-Morley apparatus onsists of two orthogonal and equal arms whih were rotated to test the effet of a motion in some diretion with respet to in terms of an interferene pattern, whih would hange along the arms as the system was rotated. Sine no effet was obsered, Lorentz hypothesized that the arms of the apparatus had atually hanged to ompensate for the interation of the medium with the apparatus. Lorentz assumed that the atual length of the arm in the diretion of eloity would be hanged by a fator linear α that would ary as the system was rotated, ausing a ariation in spae and time by interation with the medium. x ' = α( x t), y ' = y = 0, z ' = z = 0 (sine y is orthogonal to this axis, and z is irreleant) In partiular, for = 0 (an orientation orthogonal to the relatie eloity of the medium), x' = α x, = 0. For the orientation in line with the relatie eloity of the medium, x = t, so that x = 0, with α to be determined. In the diretion orthogonal to the position haraterized by α he then assumed that the measurement of time would be affeted by a linear fator of both spae and time, and replaing y with x : t' = γx+ βt so that x ' = t ' = ( γx + βt) Equating the two haraterizations of x, we hae the relation: α( x t) = ( γx + βt) Sine these results apply to arms that are orthogonal, there are no interating terms, and the apparatus is desribed by the lengths of the rotating arms in a medium where is homogeneous and isotropi, and

3 the arm length hange as the system is rotated: The area of the irle an then be alulated by the relation: πα ( x t) = π ( γ x βt) Eliminating π and expanding and rearranging results in the expression: ( β α ) = ( α γ ) + ( α + βγ ) t x xt

4 Equating the oeffiients of x and t ( is a onstant independent of area where s x = x = xx and s t = t = tt),and setting the oeffiient of xt equal to 0 (no interation between spae and time i.e., x and t are orthogonal; this is equialent to using dot and ross produts in the integral form of Maxwell s equations, and the elimination of the salar field to form the EM field tensor in Quantum Eletrodynamis) results in the expressions: 1: β α = : α γ = 1 3: α + βγ = 0 Equating α from 1,: (1 β ) 1: α = : α = 1+ γ (1 β ) = 1+ γ β 1 (1 ) 4: γ = 1 Equating α from (,3) : α = 1+ γ βγ 3: α = βγ,3: 1+ γ = From 1,3 5: γ = (1 β ) ( ) (1 β ) β γ = β Squaring 5 and equating with 4:

5 (1 β ) 1 (1 β ) = 1 β After a bit of algebra, this results in the expression: β = 1 Substituting in 5: 1 (1 ) (1 β ) 1 (1 β ) 1 5: γ = = β β = β 1 = = = 1 1 ( + )( ) ( + )( ) γ = = = = = β β 1 ( + )( ) ( + )( ) = = = = ( + )( ) ( + )( ) ( + )( ) ( + )( ) 1 β = = =

6 β β That is, γ = = β Substituting in Equation 3: 3: α βγ β β = = = β These expressions for α, β andγ are then substituted into the original equations x ' = α( x t) = β( x t) β x t' = γx+ βt = x+ βt = β t β = 1 = We hae the Lorentz transforms (from Bergmann): x ' = ( x t) t ' = x t

7 Important Note: Bergmann s parameters γ and β are reersed from that of onentional notation in my experiene, and in the following analyses the notation will be reersed as well. The result is the Lorentz transform: x ' = ( x t) γ z' = z ( = 0) x t' = ( t ) γ 1 with γ =, β = β (where t has replaed y in a spatial oneption of the model) The transform in (x,t) is: x ' = ( x t) γ x t' = ( t ) γ 1 with γ =, β = β The Time Dilation Equation Note that for x = t, x t' = ( t ) γ x x ' = t ' = ( t ) γ = ( t t) γ = ( x t) γ That is, from a purely algebrai perspetie, under the ondition x=t, the time and spae transforms are idential. This is beause has not been speified for both positie and negatie alues ( parity ), whih means we must also onsider the relation x ' = ( x + t) γ Adding these two together gies: x = xγ so that x = xγ For x = t and x =t, this gies the so-alled time dilation equation (notie that x has been expliitly eliminated by the relations t = x/ and t =x /:

8 t t' = = tγ Time an then be haraterized as a then a saling fator that desribes a eloity in relation to a eloity for a gien length or radius that relates to, with all parameters independent of whether a Galilean or a Radial oordinate system is seleted. I indiate this by using apital letters for these parameters, so that: T / T = 1 V C Time is then said to be oariant with eloity for either oordinate system, sine it transforms in diret proportion to eloity.

9 Part II - The Coariant formulation of STR The relatiisti Equations of Speial Theory of Relatiity an be deried independently of a oordinate system, where C and V are haraterized as mass reation rates and T and T are onsidered as reation times, with a hange in the total mass of the (single) system from M 0 =CT to M =CT is haraterized by a V perturbation VT where V is defined in terms of C by the relation β =. C We assume that C is deried from Coulomb s and Ampere s laws by Maxell s equations, so that 1 C = εµ 0 0 If perturbation V is independent of C, so that the system mass before and after the perturbation an be haraterized by ( CT ) ( VT ) ( CT ) = + or ( M ) = ( VT ) + ( M ) = ( M ) + ( M ) 0 0 V (M V is the mass added by during the perturbation T at the reation rate V) ( M ) = ( VT ) + ( M ) C C C ( ) C ( ) C ( ' ) 4 VT = VCT = M V C = P C, where P= MV ' is the relatiisti momentum. Then the relatiisti energy equation is ( MC ) = PC + ( M0C ) E' = PC + E 0 The ratio of mass reation times is gien by; T ' 1 =, that is T ' = 0 T 0 V V C T C

10 The following diagrams show these relationships: M 0 =CT M =CT E 0 =M 0 C E =M C M V = VT PC=(M V)C=h I hae inluded h as a preursor to relatiisti quantum mehanis. Here the interpretation is that if there is a hange of state (from E to E 0 ) in a distant soure emitting an photon of energy h that Is deteted loally, and there is a hange in the sensor of the same amount, then nothing has interated with it along its path. Howeer, if there is a hange due to interation, the obsered energy of the photon will derease, whih is obsered as a hange in h, and is responsible for the red shift. Note that Doppler (first or seond order) is not an issue here, sine the oherene length of the photon is tiny ompared to the length of the journey.

11 Part III Co-Variane and Contra-Variane We hae seen that the Lorentz transform an be interpreted as a time dilation equation in a spaetime oordinate system (x,t) with the assumption of the onstant eloity of light if both positie and negatie eloities are inluded in the analysis (whih satisfies the ondition of isotropy of both and for physial laws), where all other eloities are determined by the relation /. We hae also seen that the same equation an be deried independently of a oordinate system in the Energy-Momentum system (E,K) for a single partile (system) with an initial M 0 perturbed by an additional mass M V to a final mass M, with the transition desribed by saling fators (T,T ) The two domains (x,t) and (E,K) are independent of eah other; the Lorentz transformation was aomplished without referene to mass, and the Mass-Energy relationships were deried without referene to a oordinate system. If we set the ratios / = V/C with =C and = V we an then relate the (E,K) domain to the (x,t) domain by breaking and into their spae-time omponents. The ratio of eloities in Galilean oordinates is: lengths and time interals are defined. x t x t = = x x t t, where indiates that disrete In the relatiisti (E,K) domain, the mass reation rates V and C are related by the saling fators T and T by: V T0 = C T ' T' T, 0 x t V T0 CT0 M = = = = = x t C T ' CT ' M ' For a hange in /, the relation =C an be presered for ariations in energy proided that one of the parameters C and hae a oordinate in ommon. That means there are two possible solutions; that in whih a ommon spatial interal is assumed, and that in whih a ommon interal of time is assumed.

12 Case 1: x = x (o-ariant transformation) In this ase, we hae t M0 = = t M ', so that t = t M 0 M ' For M = M 0, we hae that t = t As M inreases along with V, t also inreases. Sine M in (E,K) is diretly proportional to t in the oordinate system, we say that the transformation is o-ariant. (We hae ignored parity, sine we assume equal alues set at the midpoint by squaring the parameters in the solution)., The interpretation of oariane is that an inertial objet (for < ) will take longer to traerse a gien distane than a photon, with an inreased total mass determined by the ratio M 0 /M. Here the fator 1 1 M ( ) 0 M ' is interpreted as an inreased density of the system as a whole for V/C.

13 Case : t = t (ontra-ariant transformation) x V M0 In this ase, we hae = = = x C M ', so that M 0 x = x M ' For M ' = M0, we hae x = 0, whih means that no additional mass has been added to the rest mass. As M ' inreases, x dereases, meaning that an inertial objet for < will not trael as far in M 0 a gien time as a photon. Again, the fator an be interpreted as a density, whih M ' inreases as inreasing mass (relatie to that of a photon); howeer, sine the result is inersely proportional to V/C, the transformation is ontra-ariant with respet to the oordinate system.

14 The Cartesian s. Radial oordinates At this point in the analysis, it is eident that the ontext is that of an area; either that of a square where eah element on the left and right side are interpreted as its sides, or as a irle, in whih eah side is interpreted as a radius, and: Area Square = Area Cirle = s = α ( x t) = ( γx βt) r = πα ( x t) = π[ ( γ x βt)] The two are, of ourse, related by π, sine t r = α( x t) = ( γx βt) -x x -t

15 The analysis of the Lorentz transform in Cartesian oordinates iolates the assumption of the homogeneity of spae and time, sine the distane from the origin at (0,0) to the perimeter of the square is only equal to that of the irle at the horizontal and ertial axes of the diagram aboe (t = t = 0 or x = x = 0). This means that is only independent of at these points. Howeer, if is a onstant, then must be independent of for all alues of, whih an only be true if the relation x ' = α( x t), y ' = y, z ' = z is taken to be that of a radius, in whih ase is orthogonal to as a tangent to the irumferene. r ' = α( r t), θ' = θ = π, ϕ' = ϕ = π t' = γr βt and r = t r ' = t ' The same analysis fan be performed, with the result that r = t = ( r t ) Also, note that is no longer defined by the relation = x/ t but rather by the relation: ( t ) ( t ') t r = 1 1 1, t' t t' = = r' If = 0 the denominator (or equialently, positie and negatie radii are inluded), then r r = and r is o-ariant with eloity, as are mass and energy. Howeer the density at a point on the irumferene is ontra-ariant with r.

The Lorentz Transform 2

The Lorentz Transform 2 The Lorentz Transform Chuk Keyser 1/4/13 (Work in Progress) Most reent update: 1/16/13 Forward When I was a junior at UCSB in the 196 s, I took a ourse in Modern Physis that desribed the Speial Theory

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Chapter 35. Special Theory of Relativity (1905)

Chapter 35. Special Theory of Relativity (1905) Chapter 35 Speial Theory of Relatiity (1905) 1. Postulates of the Speial Theory of Relatiity: A. The laws of physis are the same in all oordinate systems either at rest or moing at onstant eloity with

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

Special Relativity Simply Debunked in Five Steps!

Special Relativity Simply Debunked in Five Steps! Speial Relatiity Simply Debunked in Fie Steps! Radwan M. Kassir Abstrat The speed of light postulate is losely examined from the perspetie of two inertial referene frames unprimed ( stationary ) and primed

More information

The Thomas Precession Factor in Spin-Orbit Interaction

The Thomas Precession Factor in Spin-Orbit Interaction p. The Thomas Preession Fator in Spin-Orbit Interation Herbert Kroemer * Department of Eletrial and Computer Engineering, Uniersity of California, Santa Barbara, CA 9306 The origin of the Thomas fator

More information

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation VII. Relatiisti optis eletromagneti fields in inertial frames of referene VII. Relatiisti optis Eletromagneti fields in inertial frames of referene Galilean transformation Before 1900 the spae and time

More information

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix Eletromagneti Theory Prof. Ruiz, UNC Asheille, dotorphys on YouTube Chapter B Notes. Speial Relatiity B1. The Rotation Matrix There are two pairs of axes below. The prime axes are rotated with respet to

More information

arxiv:physics/ Oct 2002

arxiv:physics/ Oct 2002 Dedution of Lorentz Transformation from the eistene of absolute rest. Dedution of the speed of light in any frame of referene. Rodrigo de Abreu Centro de Eletrodinâmia e Departamento de Físia do IST Abstrat

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option A Relatiity A The beginnings of relatiity Learning objeties It is said that Albert Einstein, as a boy, asked himself what would happen if he held a mirror in front of himself and ran forward at

More information

Special Relativity Einstein

Special Relativity Einstein Speial Relatiity Einstein - 1905 Published 5 papers in Annalen der Physik Photoeletri effet (led to Nobel Prize in 191) Brownian Motion (proed existene of atoms) Speial Relatiity Speial Relatiity (E=m

More information

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course Journal of heoretis Vol.5- Guest Commentary Relatiisti hermodynamis for the Introdutory Physis Course B.Rothenstein bernhard_rothenstein@yahoo.om I.Zaharie Physis Department, "Politehnia" Uniersity imisoara,

More information

Relativity III. Review: Kinetic Energy. Example: He beam from THIA K = 300keV v =? Exact vs non-relativistic calculations Q.37-3.

Relativity III. Review: Kinetic Energy. Example: He beam from THIA K = 300keV v =? Exact vs non-relativistic calculations Q.37-3. Relatiity III Today: Time dilation eamples The Lorentz Transformation Four-dimensional spaetime The inariant interal Eamples Reiew: Kineti Energy General relation for total energy: Rest energy, 0: Kineti

More information

MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY

MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY Inquiry, ol. 8, no., Deember 007, pp. 4 49 IIGSS Aademi Publisher MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY LI ZIFENG Petroleum Engineering Institute, Yanshan Uniersity, Qinhuangdao,

More information

On the derivation of the Lorentz-transformation

On the derivation of the Lorentz-transformation On the deriation of the Lorentz-transformation Johan F Prins CATHODIXX 8 Portland Plae, Northliff ext. 15, Johannesburg 195, South Afria johanprins@athodixx.om Abstrat The onentional way to derie the equations

More information

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts Today: eiew of Eam: Tomorrow, 7:30-9:00pm, DUANE GB30 You an bring paper (etter format written on both sides with whateer you think might help you during the eam. But you annot bring the tetbook or leture

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations Uniersidad Central de Venezuela From the SeletedWorks of Jorge A Frano June, Relatiisti Analysis of Doppler Effet and Aberration based on Vetorial Lorentz Transformations Jorge A Frano, Uniersidad Central

More information

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery Doppler Eet Doppler Eet Relatiity and Astrophysis Leture 0 Terry Herter Outline Doppler Shit The Expanding Unierse Hubble s disoery Reading Spaetime Physis: Chapter 4 Problem L-, page (due today/monday)

More information

Volume Charge Density in Most General Lorentz Transformation

Volume Charge Density in Most General Lorentz Transformation Publiations Aailable Online J. Si. Res. 8(), 59-65 (016) JOURNA OF SCIENTIFIC RESEARCH www.banglajol.info/inde.php/jsr Volume Charge Densit in Most General orent Transformation S. A. Bhuian *, A. R. Baiid

More information

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time!

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time! CHAPTER Speial Theory of Relatiity. The Need for Aether. The Mihelson-Morley Eperiment.3 Einstein s Postulates.4 The Lorentz Transformation.5 Time Dilation and Length Contration.6 Addition of Veloities.7

More information

On the Logical Inconsistency of the Special Theory of Relativity. Stephen J. Crothers. 22 nd February, 2017

On the Logical Inconsistency of the Special Theory of Relativity. Stephen J. Crothers. 22 nd February, 2017 To ite this paper: Amerian Journal of Modern Physis. Vol. 6 No. 3 07 pp. 43-48. doi: 0.648/j.ajmp.070603. On the Logial Inonsisteny of the Speial Theory of Relatiity Stephen J. Crothers thenarmis@yahoo.om

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Doppler Effect (Text 1.3)

Doppler Effect (Text 1.3) Doppler Effet (et 1.3) Consider a light soure as a soure sending out a tik eery 1/ν and these tiks are traeling forward with speed. tik tik tik tik Doppler Effet (et 1.3) Case 1. Obserer oing transersely.

More information

Stellar Aberration, Relative Motion, and the Lorentz Factor

Stellar Aberration, Relative Motion, and the Lorentz Factor ong Beah 010 PROCEEDINGS of the NP 1 Stellar berration, Relatie Motion, and the orentz Fator Joseph. Rybzyk 139 Stetson Drie, Chalfont, P 18914-3751 e-mail: jarybzyk@erizon.net Presented are the results

More information

Journal of Theoretics Vol.4-4

Journal of Theoretics Vol.4-4 Journal of Theoretis ol.4-4 Cherenko s Partiles as Magnetons Dipl. Ing. Andrija Radoić Nike Strugara 3a, 3 Beograd, Yugoslaia Eail: andrijar@eunet.yu Abstrat: The artile will show that the forula for Cherenko

More information

8.022 (E&M) Lecture 11

8.022 (E&M) Lecture 11 8.0 (E&M) Leture Topis: Introdution to Speial Relatiit Length ontration and Time dilation Lorentz transformations Veloit transformation Speial relatiit Read for the hallenge? Speial relatiit seems eas

More information

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003 arxiv:physis/0308036v1 [physis.lass-ph] 8 Aug 003 On the meaning of Lorentz ovariane Lszl E. Szab Theoretial Physis Researh Group of the Hungarian Aademy of Sienes Department of History and Philosophy

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now?

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now? Physis 07 Problem. If the speed of light were smaller than it is, would relatiisti phenomena be more or less onspiuous than they are now? All of the phenomena of speial relatiity depend upon the fator

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Journal of Physical Mathematics

Journal of Physical Mathematics Journal of Physial Mathematis Researh Artile Artile Journal of Physial Mathematis Makanae, J Phys Math 207, 8: DOI: 0.472/2090-0902.00025 OMICS Open International Aess Verifying Einstein s Time by Using

More information

Chapter 39 Relativity

Chapter 39 Relativity Chapter 39 Relatiity from relatie motion to relatiity 39. The Priniple of Galilean Relatiity The laws of mehanis mst be the same in all inertial frames of referene. Galilean spae-time transformation eqations

More information

On the quantitative effects

On the quantitative effects International Journal of Modern Physis and Appliation 4; (): 8-4 Published online September, 4 (http://www.aasit.org/journal/ijmpa) On the quantitatie effets Chang-Wei Hu Beijing Relatiity Theory Researh

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

arxiv:gr-qc/ v7 14 Dec 2003

arxiv:gr-qc/ v7 14 Dec 2003 Propagation of light in non-inertial referene frames Vesselin Petkov Siene College, Conordia University 1455 De Maisonneuve Boulevard West Montreal, Quebe, Canada H3G 1M8 vpetkov@alor.onordia.a arxiv:gr-q/9909081v7

More information

Chapter 28 Special Relativity

Chapter 28 Special Relativity Galilean Relatiity Chapter 8 Speial Relatiity A passenger in an airplane throws a ball straight up. It appears to oe in a ertial path. The law of graity and equations of otion under unifor aeleration are

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Time Contraction: The Possibility of Faster Than Light without Violation of Lorentz Transformation or Causality and the Vacuum Energy Dependent

Time Contraction: The Possibility of Faster Than Light without Violation of Lorentz Transformation or Causality and the Vacuum Energy Dependent Artile International Journal of Modern Theoretial Physis, 014, 3(1): 44-73 International Journal of Modern Theoretial Physis Journal homepage:www.modernsientifipress.om/journals/ijmtp.aspx ISSN: 169-746

More information

Agenda 2/12/2017. Modern Physics for Frommies V Gravitation Lecture 6. Special Relativity Einstein s Postulates. Einstein s Postulates

Agenda 2/12/2017. Modern Physics for Frommies V Gravitation Lecture 6. Special Relativity Einstein s Postulates. Einstein s Postulates /1/17 Fromm Institute for Lifelong Learning Uniersit of San Franiso Modern Phsis for Frommies V Graitation Leture 6 Agenda Speial Relatiit Einstein s Postulates 15 Februar 17 Modern Phsis V Leture 6 1

More information

arxiv:physics/ v4 [physics.gen-ph] 9 Oct 2006

arxiv:physics/ v4 [physics.gen-ph] 9 Oct 2006 The simplest derivation of the Lorentz transformation J.-M. Lévy Laboratoire de Physique Nuléaire et de Hautes Energies, CNRS - IN2P3 - Universités Paris VI et Paris VII, Paris. Email: jmlevy@in2p3.fr

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Derivation of Transformation and One-Way Speed of Light in Kinematics of Special Theory of Ether

Derivation of Transformation and One-Way Speed of Light in Kinematics of Special Theory of Ether Amerian Journal of Modern Physis 07; 66: 40-47 http:www.sienepublishinggroup.omjajmp doi: 0.648j.ajmp.070606.5 ISSN: 36-8867 Print; ISSN: 36-889 Online Deriation of Transformation and One-Way Speed of

More information

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College 3-14-06 1 Propagation of waves through a medium As you ll reall from last semester, when the speed of sound is measured

More information

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS 1 MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS Musa D. Abdullahi 1 Bujumbura Street, Wuse, Abuja, Nigeria E-mail: musadab@outlook.om Abstrat As

More information

TAP 702-6: Binary stars

TAP 702-6: Binary stars TAP 702-6: Binary stars Orbiting binary stars: A type of ariable star. This type of ariable star onsists of two stars orbiting around eah other. When the dier star is in front of the brighter one, the

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Relativistic Energy Derivation

Relativistic Energy Derivation Relatiistic Energy Deriation Flamenco Chuck Keyser //4 ass Deriation (The ass Creation Equation ρ, ρ as the initial condition, C the mass creation rate, T the time, ρ a density. Let V be a second mass

More information

Pseudo-Superluminal Motion 1

Pseudo-Superluminal Motion 1 seudo-superluminal Motion 1 On seudo-superluminal Motion Anamitra alit Author /Teaher(free-laner physiist),india,154 Motijheel Aenue,Kolkata:700074 palit.anamitra@gmail.om h:91-33-5514464 Abstrat: Modern

More information

Test of General Relativity Theory by Investigating the Conservation of Energy in a Relativistic Free Fall in the Uniform Gravitational Field

Test of General Relativity Theory by Investigating the Conservation of Energy in a Relativistic Free Fall in the Uniform Gravitational Field Test of General Relatiity Theory by Inestigating the Conseration of Energy in a Relatiisti Free Fall in the Uniform Graitational Field By Jarosla Hyneek 1 Abstrat: This paper inestigates the General Relatiity

More information

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer Apeiron, Vol. 7, No., Otober Doppler-Voigt-Einstein Selforganization The ehanism for Information Transfer Jiří Stáek Laboratory of Diffusion Proesses Prague, Czeh Republi Email: staek@olny.z Doppler-Voigt-Einstein

More information

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM.

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. S. Kanagaraj Eulidean Relativity s.kana.raj@gmail.om (1 August 009) Abstrat By re-interpreting the speial relativity (SR) postulates based on Eulidean

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

A Classical Reconstruction of Relativity

A Classical Reconstruction of Relativity A Classial Reonstrution o Relatiity Abstrat Delan Traill B.S July 5, By inerting a key assumption o Relatiity Theory, one an understand its predited odd eets o time dilation, length ontration and mass

More information

Special Theory of Time- Asymmetric Relativity 1 2

Special Theory of Time- Asymmetric Relativity 1 2 Part I Speial Theory of Time- Asymmetri Relatiity 1 The expanding-unierse osmology is founded on the assumption that Einstein s Relatiity is appliable to the entire unierse. This osmology settles diffiulties

More information

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation)

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation) Announements Reading for Monda:. -.5 HW 3 is posted. Due net Wed. noon. The Frida was a TYPO! IT I DUE WEDNEDAY! Toda s lass Lorent transformation Doppler shift First Midterm is on the 6 th. Will oer relatiit

More information

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER (No general ausality without superluminal veloities) by Dr. Tamas Lajtner Correspondene via web site: www.lajtnemahine.om ABSTRACT...2 1. SPACETIME

More information

Physics Essays volume 16, number 3, 2003

Physics Essays volume 16, number 3, 2003 Physis Essays olume 6, number 3, 003 Calulation of So-Called General Relatiisti Phenomena by Adaning Newton s Theory of Graitation, Maintaining Classial Coneptions of Spae and Relatiity Reiner Georg Ziefle

More information

Velocity Addition in Space/Time David Barwacz 4/23/

Velocity Addition in Space/Time David Barwacz 4/23/ Veloity Addition in Spae/Time 003 David arwaz 4/3/003 daveb@triton.net http://members.triton.net/daveb Abstrat Using the spae/time geometry developed in the previous paper ( Non-orthogonal Spae- Time geometry,

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

Special Relativity Electromagnetic and Gravitation combined Into one theory

Special Relativity Electromagnetic and Gravitation combined Into one theory --5 Speial Relatiity Eletromagneti and Graitation ombined Into one theory Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAE, HOON 54-54855 Introdution In this paper, I try to ombine Eletromagneti

More information

Special and General Relativity

Special and General Relativity 9/16/009 Speial and General Relativity Inertial referene frame: a referene frame in whih an aeleration is the result of a fore. Examples of Inertial Referene Frames 1. This room. Experiment: Drop a ball.

More information

Espen Gaarder Haug Norwegian University of Life Sciences January 5, 2017

Espen Gaarder Haug Norwegian University of Life Sciences  January 5, 2017 Einstein ersus FitzGerald, Lorentz, and Larmor Length Contration Einstein s Length Contration is Also Consistent with Anisotropi One-Way Speed of Light Espen Gaarder Haug Norwegian Uniersity of Life Sienes

More information

Does Heisenberg s Uncertainty Collapse at the Planck Scale? Heisenberg s Uncertainty Principle Becomes the Certainty Principle

Does Heisenberg s Uncertainty Collapse at the Planck Scale? Heisenberg s Uncertainty Principle Becomes the Certainty Principle Does Heisenberg s Unertainty Collapse at the Plank Sale? Heisenberg s Unertainty Priniple Beomes the Certainty Priniple Espen Gaarder Haug Norwegian Uniersity of Life Sienes June 7, 08 Abstrat In this

More information

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER (WHY IS THE SPEED OF LIGHT CONSTANT?) Dr. Tamas Lajtner Correspondene via web site: www.lajtnemahine.om. ABSTRACT... 2 2. SPACETIME CONTINUUM BY

More information

How the Thrust of Shawyer s Thruster can be Strongly Increased

How the Thrust of Shawyer s Thruster can be Strongly Increased How the Thrust of Shawyer s Thruster an be Strongly Inreased Fran De Aquino Professor Emeritus of Physis, Maranhao State Uniersity, UEMA. Titular Researher (R) of National Institute for Spae Researh, INPE

More information

Metric of Universe The Causes of Red Shift.

Metric of Universe The Causes of Red Shift. Metri of Universe The Causes of Red Shift. ELKIN IGOR. ielkin@yande.ru Annotation Poinare and Einstein supposed that it is pratially impossible to determine one-way speed of light, that s why speed of

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

Communicating Special Relativity Theory s Mathematical Inconsistencies

Communicating Special Relativity Theory s Mathematical Inconsistencies Communiating Speial Relatiity Theory s Mathematial Inonsistenies Steen B Bryant Primitie Logi, In, 704 Sansome Street, San Franiso, California 94111 Stee.Bryant@RelatiityChallenge.Com Einstein s Speial

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Vol. 4, No. 6 June 2014 ISSN ARPN Journal of Science and Technology All rights reserved.

Vol. 4, No. 6 June 2014 ISSN ARPN Journal of Science and Technology All rights reserved. Vol. 4, No. 6 June 4 ISSN 5-77 ARPN Journal of Siene and Tehnology -4. All rights resered. http://www.ejournalofsiene.org Light Speed Anisotropy Constraints ia Measurement of Relatiisti Light Aerration

More information

Critical Reflections on the Hafele and Keating Experiment

Critical Reflections on the Hafele and Keating Experiment Critial Refletions on the Hafele and Keating Experiment W.Nawrot In 1971 Hafele and Keating performed their famous experiment whih onfirmed the time dilation predited by SRT by use of marosopi loks. As

More information

Concept of Scalar-Vector Potential in the Contemporary Electrodynamic, Problem of Homopolar Induction and Its Solution

Concept of Scalar-Vector Potential in the Contemporary Electrodynamic, Problem of Homopolar Induction and Its Solution International Journal of Physis, 04, Vol., No. 6, 0-0 Aailable online at http://pubs.siepub.om/ijp//6/4 Siene and Eduation Publishing DOI:0.69/ijp--6-4 Conept of Salar-Vetor Potential in the Contemporary

More information

The Matter-Antimatter Concept Revisited

The Matter-Antimatter Concept Revisited Volume PROGRESS IN PHYSICS April 00 he Matter-Antimatter Conept Reisited Patrik Marquet Postal address: 7 rue du no 9350 Villiers/Marne Paris Frane Email: patrik.marquet6@wanadoo.fr In this paper we briefly

More information

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

To determine the biasing conditions needed to obtain a specific gain each stage must be considered. PHYSIS 56 Experiment 9: ommon Emitter Amplifier A. Introdution A ommon-emitter oltage amplifier will be tudied in thi experiment. You will inetigate the fator that ontrol the midfrequeny gain and the low-and

More information

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk Einstein s Three Mistakes in Speial Relativity Revealed Copyright Joseph A. Rybzyk Abstrat When the evidene supported priniples of eletromagneti propagation are properly applied, the derived theory is

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /.

τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /. Muons on the moon Time ilation using ot prouts Time ilation using Lorentz boosts Cheking the etor formula Relatiisti aition of eloities Why you an t eee the spee of light by suessie boosts Doppler shifts

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

UNCERTAINTY RELATIONS AS A CONSEQUENCE OF THE LORENTZ TRANSFORMATIONS. V. N. Matveev and O. V. Matvejev

UNCERTAINTY RELATIONS AS A CONSEQUENCE OF THE LORENTZ TRANSFORMATIONS. V. N. Matveev and O. V. Matvejev UNCERTAINTY RELATIONS AS A CONSEQUENCE OF THE LORENTZ TRANSFORMATIONS V. N. Matveev and O. V. Matvejev Joint-Stok Company Sinerta Savanoriu pr., 159, Vilnius, LT-315, Lithuania E-mail: matwad@mail.ru Abstrat

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

TENSOR FORM OF SPECIAL RELATIVITY

TENSOR FORM OF SPECIAL RELATIVITY TENSOR FORM OF SPECIAL RELATIVITY We begin by realling that the fundamental priniple of Speial Relativity is that all physial laws must look the same to all inertial observers. This is easiest done by

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

Special relativity. Announcements:

Special relativity. Announcements: Announcements: Special relatiity Homework solutions are posted! Remember problem soling sessions on Tuesday from 1-3pm in G140. Homework is due on Wednesday at 1:00pm in wood cabinet in G2B90 Hendrik Lorentz

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Special Relativity Entirely New Explanation

Special Relativity Entirely New Explanation 8-1-15 Speial Relatiity Entirely New Eplanation Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAEL, HOLON 54-54855 Introdution In this paper I orret a minor error in Einstein's theory of Speial Relatiity,

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

High Energy Astrophysics

High Energy Astrophysics High Energ Astrophsis Essentials Giampaolo Pisano Jodrell Bank Centre for Astrophsis - Uniersit of Manhester giampaolo.pisano@manhester.a.uk - http://www.jb.man.a.uk/~gp/ Februar 01 Essentials - Eletromagneti

More information

Experimental & theoretical evidences of fallacy of space-time concept and actual state of existence of the physical universe

Experimental & theoretical evidences of fallacy of space-time concept and actual state of existence of the physical universe Indian Journal of iene and Tehnology ol. 5 No.3 (Mar 0) IN: 0974-6846 Experimental & theoretial eidenes of fallay of spae-time onept and atual state of existene of the physial unierse Mohammad hafiq Khan

More information

On the Absolute Meaning of Motion

On the Absolute Meaning of Motion On the Absolute Meaning of Motion H. Edwards Publiation link: https://doi.org/10.1016/j.rinp.2017.09.053 Keywords: Kinematis; Gravity; Atomi Cloks; Cosmi Mirowave Bakground Abstrat The present manusript

More information

A Spatiotemporal Approach to Passive Sound Source Localization

A Spatiotemporal Approach to Passive Sound Source Localization A Spatiotemporal Approah Passive Sound Soure Loalization Pasi Pertilä, Mikko Parviainen, Teemu Korhonen and Ari Visa Institute of Signal Proessing Tampere University of Tehnology, P.O.Box 553, FIN-330,

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Illustrating the relativity of simultaneity Bernhard Rothenstein 1), Stefan Popescu 2) and George J. Spix 3)

Illustrating the relativity of simultaneity Bernhard Rothenstein 1), Stefan Popescu 2) and George J. Spix 3) Illustrating the relativity of simultaneity ernhard Rothenstein 1), Stefan Popesu ) and George J. Spix 3) 1) Politehnia University of Timisoara, Physis Department, Timisoara, Romania, bernhard_rothenstein@yahoo.om

More information

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry

9 Geophysics and Radio-Astronomy: VLBI VeryLongBaseInterferometry 9 Geophysis and Radio-Astronomy: VLBI VeryLongBaseInterferometry VLBI is an interferometry tehnique used in radio astronomy, in whih two or more signals, oming from the same astronomial objet, are reeived

More information

Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω =

Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω = FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 1 of 6 Rotational formulas: (1.1) The angular momentum L of a point mass m, moing with eloity is gien by the etor produt between its radius etor

More information