τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /.

Size: px
Start display at page:

Download "τ = 10 seconds . In a non-relativistic N 1 = N The muon survival is given by the law of radioactive decay N(t)=N exp /."

Transcription

1 Muons on the moon Time ilation using ot prouts Time ilation using Lorentz boosts Cheking the etor formula Relatiisti aition of eloities Why you an t eee the spee of light by suessie boosts Doppler shifts Cop Raar Classifiation of interals Time-like,spae-like, light-one Proper time Getting to the proper frame Spae-like interals Spae-like interals an ausality Speial Relatiity

2 What will we o in this hapter? In this hapter we will work out some of the onsequenes of Speial Relatiity. Our first eample esribes an eperiment to measure the time ilation of osmi ray muons. We o this using ot prout inariants as well as Lorentz boosts. We net obtain a formula for the relatie eloity between two referene frames whih iffers from the Newtonian form. This formula shows that one annot eee the spee of light by by suessie boosts. We isuss the relatiisti Doppler shift for eletromagneti waes an isuss how op raar works. We onlue by isussing the lassifiation of spae-time interals base on the interal ot prout. We show that if the square interal is greater than zero, there eists a referene frame where the two eents hae no spatial separation an the minimum time separation obserable in any referene frame. This minimum time is alle the proper time. We esribe how to jump to this frame. Suh interals are known as time-like interals. If the square interal is negatie, we say that the interal is spae-like. We show that there eists a frame where the two eents our simultaneously an with the minimum spatial separation. If two eents hae a spae-like interal, they annot be ausally linke in the sense that one eent annot ause the other eent. Eents that hae time-like interals, howeer, are not neessarily ausally linke, of ourse.

3 Muons on the mountain The muon is a subatomi partile whih an be thought of as a heay eletron. It is the priniple omponent to osmi rays an has an aerage lifetime of. miroseons. This lifetime an be easily measure by stopping the muon in plasti an looking for its eay with sintillation ounters. osmi μ The trigger bo (left) requires the upper pale to fire an that the lower to not fire. The bo forms the sope trigger. The time between the muon arrial an its eay light is measure on sope. The muon surial is gien by the law of raioatie eay N(t)=N ep /. 6 to. 0 seons 0 ( t τ ) The stoppe muon time elays are well fit τ = Mt MKinley 600 m The typial osmi ray mu moes at about 98% of the spee of light. To trael from the top of Mt. MKinley to sea leel woul take: 600m 6 Δ t = 0 seons m/ s or about 0 ( ) τ μ. In a non-relatiisti N = N 000 worl sea leel ep( 0) Mt MKinley But this isn t een lose to being true. There is only a fator of 5 ifferene in the osmi rate on the top an bottom of a mountain. 3

4 #: ( 0 h) #: ( (h/) 0) Lets analyze this relatiistially We show two eents # when the muon passes the mountain top an # when the muon hits sea leel. h = 600 m How muh time has elapse in the muon frame? We will sole this problem seeral ways. The best way is to iretly use inariane of the interal square length. h r = ( h/ h) ri r = h ν In the muon frame r = Δ 0 sine ( tμ ) the two eents take plae at the muon position. Thus r ir μ ( t ) = Δ μ μ μ Thus ( tμ ) h Δ = h ν ( tμ ) h h h Δ = = ν ν h or Δ tμ = or Δ t =Δt ν 8 ( ) μ earth The time between two eents loate at the same position in some frame is alle the proper time. We will show that it is always the minimum time measure in any frame. Plugging in the numbers we get 600 Δ t μ = = se This is only lifetimes rather than 0! Hene many more muons at the top of Mt. MKinley surie their trip to sea leel before 4 eaying than Newton woul preit.

5 ( / - ) r = h h From last leture, the boost for illustrate ase was t' γ γ t = ' γ γ Muon on Mountain w/ Boosts h = 600 m ' We nee to reerse the sign for our ase t ' γ γ h / = = ' γ γ -h γ γ / h / γh / γh / = γ / γ -h γh γh h h h t ' = γ = = We note that ' =0 whih is a goo hek that we hae inee booste to the μ's rest frame We finally hek the result with the etor form. r i t ' = γ t ; r = h ˆ, = ˆ, t = h / h h h t ' = γ t ' = γ h t' = t' is the proper time sine '=0 To the muon, the mountain is traeling upwars with a eloity. It takes the h mountain a time of Δt μ = to pass from top to sea leel. The muon thus measures the mountain height as: h' = Δ t = h μ h' is Lorentz ontrate 5

6 Relatiisti eloity aition formula Consier a partile moing with eloity u in a frame moing with eloity wrt the lab frame. We gie the interal between # an #. I # # = ( Δt, uδt) ' Δt' γ γ Δt γδt+uγδt = = Δ' γ γ uδt γδt+ γ uδt We use a positie sign in the matri sine when objet is traeling along boost ais it appears with a larger eloity in booste (prime) frame. Δ ' γδt+ γuδt ' = = ( Δt')/ γδt+u γδt / ' + u = + u / u ( ) This formula is learly ifferent from the Galilean eloity formula = u +. It has the effet of preenting one from surpassing the spee of light by suessie boosts. Here is a plot of ersus for arious u. You only hae approahing but neer eeeing. / / u = 0 u = 0.5 u = 0.50 u = u = 0.9 = ' = + = *0.9 Close, but no igar! 6

7 # Doppler shift # We hae a light emitter at rest in the prime frame whih is moing at a eloity with respet to the unprime frame where there is a light etetor at =. Eent # is sening of the first wae at = = t = t =0. Eent # is the sening of the seon wae at = 0, t = τ. We are going to fin the oorinates of eent an eent in the reeier (unprime) frame using a Lorentz boost. We will then stay in the unprime frame an ompute the time when eah of the two waes are reeie. The elay between the when the two waes are reeie is the perio of the Doppler shifte light. ' ' t γ γ 0 0 = = γ γ 0 0 t γ γ ' τ γ ' τ = = γ γ 0 γ τ' # ( ) # 0,0 ( γ τ ', γτ ') ( re) T# = + t = ( re) γτ ' T# = + t = + γτ ' ( re) T# = + γτ ' ( ) Δ T = τ = + γτ ' = γτ ' ( ) ( ) 7

8 More Doppler Shifts re sen ( ) ( ) From last slie τ = γτ'. In terms of frequenies: fre = / τ an fsen = / τ ' fsen = γ ( ) fre = f f γ fre = fsen = fsen + f = f f > f re sen re sen ( ) ( )( + ) ( ) We reeie an inrease in frequeny if the soure approahes the reeier as shown aboe. The -ratio woul inert if soure was retreating from reeier an we woul reeie a lower frequeny. Lets apply this to op raar with a ouble Doppler shift. The raar striking the retreating ar is shifte own. The ar ats as an eho soure of what it reeies an the op reeies a shifte own ersion of the ar eho. f = f an f = f + re sen sen re ar op ar ar sen op sen op 9-7 ( 0 )( ) 8 re sen sen sen fop = far = fop = fop Δf f re f fop = = = f + + For a 00 km/hr ar / -7 0 if f= GHz Δf 0 00 Hz Beat freq

9 Classifiation of interals Consier the interal between eents r = ( Δt r). Components of repen on the frame they are iewe in, but rr i is the same in all frames an an thus be use to lassify the interal. rr i > 0 is alle "time-like" rr i = 0 is alle "light one" rr i < 0 is alle "spae-like" If two eents are separate by a "time-like" interal, there is a frame where the two eents take plae at ifferent times but at the same loation. In fat it is ery easy to fin suh a frame by a Lorentz boost inline along the separation etor between the two eents. # ' ( t ) Δt' γ γ t = 0 γ γ 0 = γ + ( t t) γ ( ) ( ) r or ( ) ( ) = = t t t t # But if >, then γ=/ - will be imaginary. Hene we only hae suh a frame r r Δt > r or if < or = < ( t t) Δt ( Δt) rir = r ir > 0 ( Time-like interal) 9

10 When we hae a time-like interal, the boost to eliminate Δ is simply the apparent eloity etor between the two eents! In this frame there is no spatial separation an a (proper) time separation of Proper time Δt Δ t = proper In any other frame, Δt' > Δt whih ( Δt' ) r' ir' = r ir = ( Δt proper ) ( proper ) rr i proper is ery easy to show using inariants Δt'= Δ t + r' i r' >Δt proper Boosting to arbitrary frames mies Δt' an r ' an moes us along a hyperbola of form Δt' r ' r i ' = onstant. ( ) 0 Δt proper The aboe is plot of the time an spae oorinates for a time-like interal iewe in many frames. In the proper frame there is no spatial separation an a minimal time interal. As one boosts away from this frame, the time interals an spae interals both get large an the interal approah an r asymptote gien by Δ t = r The asymptote is the relationship one woul get for light. For a fie spatial separation, the time interal is always larger than that for light. 0

11 ( t' ) Spae-like interals For the ase where rr i < 0, we an no longer efine a proper time. But an show that there is a minimal separation between the eents ( Δt' ) r' ir' = r ir r' = Δ + r > r ir By boosting from frame to frame we moe along the re hyperbola shown below for the ase where r ' = Δt lightone time-like min spae-like r # ' If two eents are linke by a spae-like interal, they annot be ausally linke in the sense that eent # annot hae ause eent #. This is beause there is a referene frame (ompute below) where eent # an eent # our simultaneously but separate. Fin for this frame. lab Chek w/ Lorentz boost # ( ˆ ) ; ηlab γ ( ˆ ) ηlab ir lab γ ( i ˆ ) r = Δ t r r = Δ t ˆ η = = Δt r r = 0 Δt Δt Δt = = min rrˆ ˆ = i osθr ˆ ˆ r r Possible if Δ t < rr i & not unique ( ) ( t t) γ ( ) t ( t) min ( ) ( t ) 0 γ γ t = Δ ' γ γ 0 = γ = =

Chapter 35. Special Theory of Relativity (1905)

Chapter 35. Special Theory of Relativity (1905) Chapter 35 Speial Theory of Relatiity (1905) 1. Postulates of the Speial Theory of Relatiity: A. The laws of physis are the same in all oordinate systems either at rest or moing at onstant eloity with

More information

Relativity III. Review: Kinetic Energy. Example: He beam from THIA K = 300keV v =? Exact vs non-relativistic calculations Q.37-3.

Relativity III. Review: Kinetic Energy. Example: He beam from THIA K = 300keV v =? Exact vs non-relativistic calculations Q.37-3. Relatiity III Today: Time dilation eamples The Lorentz Transformation Four-dimensional spaetime The inariant interal Eamples Reiew: Kineti Energy General relation for total energy: Rest energy, 0: Kineti

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts Today: eiew of Eam: Tomorrow, 7:30-9:00pm, DUANE GB30 You an bring paper (etter format written on both sides with whateer you think might help you during the eam. But you annot bring the tetbook or leture

More information

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time!

Simultaneity. CHAPTER 2 Special Theory of Relativity 2. Gedanken (Thought) experiments. The complete Lorentz Transformation. Re-evaluation of Time! CHAPTER Speial Theory of Relatiity. The Need for Aether. The Mihelson-Morley Eperiment.3 Einstein s Postulates.4 The Lorentz Transformation.5 Time Dilation and Length Contration.6 Addition of Veloities.7

More information

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation)

Announcements. Today s class. The Lorentz transformation. Lorentz transformation (Relativistic version of Galileo transformation) Announements Reading for Monda:. -.5 HW 3 is posted. Due net Wed. noon. The Frida was a TYPO! IT I DUE WEDNEDAY! Toda s lass Lorent transformation Doppler shift First Midterm is on the 6 th. Will oer relatiit

More information

Doppler Effect (Text 1.3)

Doppler Effect (Text 1.3) Doppler Effet (et 1.3) Consider a light soure as a soure sending out a tik eery 1/ν and these tiks are traeling forward with speed. tik tik tik tik Doppler Effet (et 1.3) Case 1. Obserer oing transersely.

More information

8.022 (E&M) Lecture 11

8.022 (E&M) Lecture 11 8.0 (E&M) Leture Topis: Introdution to Speial Relatiit Length ontration and Time dilation Lorentz transformations Veloit transformation Speial relatiit Read for the hallenge? Speial relatiit seems eas

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS

PHYSICS FOR THE IB DIPLOMA CAMBRIDGE UNIVERSITY PRESS Option A Relatiity A The beginnings of relatiity Learning objeties It is said that Albert Einstein, as a boy, asked himself what would happen if he held a mirror in front of himself and ran forward at

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course

Journal of Theoretics Vol.5-2 Guest Commentary Relativistic Thermodynamics for the Introductory Physics Course Journal of heoretis Vol.5- Guest Commentary Relatiisti hermodynamis for the Introdutory Physis Course B.Rothenstein bernhard_rothenstein@yahoo.om I.Zaharie Physis Department, "Politehnia" Uniersity imisoara,

More information

Special Relativity Simply Debunked in Five Steps!

Special Relativity Simply Debunked in Five Steps! Speial Relatiity Simply Debunked in Fie Steps! Radwan M. Kassir Abstrat The speed of light postulate is losely examined from the perspetie of two inertial referene frames unprimed ( stationary ) and primed

More information

Time Contraction: The Possibility of Faster Than Light without Violation of Lorentz Transformation or Causality and the Vacuum Energy Dependent

Time Contraction: The Possibility of Faster Than Light without Violation of Lorentz Transformation or Causality and the Vacuum Energy Dependent Artile International Journal of Modern Theoretial Physis, 014, 3(1): 44-73 International Journal of Modern Theoretial Physis Journal homepage:www.modernsientifipress.om/journals/ijmtp.aspx ISSN: 169-746

More information

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery

Relativity and Astrophysics Lecture 10 Terry Herter. Doppler Shift The Expanding Universe Hubble s discovery Doppler Eet Doppler Eet Relatiity and Astrophysis Leture 0 Terry Herter Outline Doppler Shit The Expanding Unierse Hubble s disoery Reading Spaetime Physis: Chapter 4 Problem L-, page (due today/monday)

More information

Chapter 28 Special Relativity

Chapter 28 Special Relativity Galilean Relatiity Chapter 8 Speial Relatiity A passenger in an airplane throws a ball straight up. It appears to oe in a ertial path. The law of graity and equations of otion under unifor aeleration are

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Chapter 39 Relativity

Chapter 39 Relativity Chapter 39 Relatiity from relatie motion to relatiity 39. The Priniple of Galilean Relatiity The laws of mehanis mst be the same in all inertial frames of referene. Galilean spae-time transformation eqations

More information

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation

VII. Relativistic optics. Electromagnetic fields in inertial frames of reference. dt j ( ) ψ = 0. ri r j. Galilean transformation VII. Relatiisti optis eletromagneti fields in inertial frames of referene VII. Relatiisti optis Eletromagneti fields in inertial frames of referene Galilean transformation Before 1900 the spae and time

More information

Special Relativity Entirely New Explanation

Special Relativity Entirely New Explanation 8-1-15 Speial Relatiity Entirely New Eplanation Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAEL, HOLON 54-54855 Introdution In this paper I orret a minor error in Einstein's theory of Speial Relatiity,

More information

Agenda 2/12/2017. Modern Physics for Frommies V Gravitation Lecture 6. Special Relativity Einstein s Postulates. Einstein s Postulates

Agenda 2/12/2017. Modern Physics for Frommies V Gravitation Lecture 6. Special Relativity Einstein s Postulates. Einstein s Postulates /1/17 Fromm Institute for Lifelong Learning Uniersit of San Franiso Modern Phsis for Frommies V Graitation Leture 6 Agenda Speial Relatiit Einstein s Postulates 15 Februar 17 Modern Phsis V Leture 6 1

More information

Special Relativity Electromagnetic and Gravitation combined Into one theory

Special Relativity Electromagnetic and Gravitation combined Into one theory --5 Speial Relatiity Eletromagneti and Graitation ombined Into one theory Mourii Shahter mourii@gmail.om mourii@walla.o.il ISRAE, HOON 54-54855 Introdution In this paper, I try to ombine Eletromagneti

More information

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations

Relativistic Analysis of Doppler Effect and Aberration based on Vectorial Lorentz Transformations Uniersidad Central de Venezuela From the SeletedWorks of Jorge A Frano June, Relatiisti Analysis of Doppler Effet and Aberration based on Vetorial Lorentz Transformations Jorge A Frano, Uniersidad Central

More information

arxiv:physics/ Oct 2002

arxiv:physics/ Oct 2002 Dedution of Lorentz Transformation from the eistene of absolute rest. Dedution of the speed of light in any frame of referene. Rodrigo de Abreu Centro de Eletrodinâmia e Departamento de Físia do IST Abstrat

More information

Special Relativity Einstein

Special Relativity Einstein Speial Relatiity Einstein - 1905 Published 5 papers in Annalen der Physik Photoeletri effet (led to Nobel Prize in 191) Brownian Motion (proed existene of atoms) Speial Relatiity Speial Relatiity (E=m

More information

πx 4πR and that of the entire sphere is therefore the mass

πx 4πR and that of the entire sphere is therefore the mass Answers to test yoursel questions Topi 9 9 imple harmoni motion They are not simple harmoni beause as shown in the textboo the restoring ore whereas opposite to, is not proportional to the isplaement away

More information

l. For adjacent fringes, m dsin m

l. For adjacent fringes, m dsin m Test 3 Pratie Problems Ch 4 Wave Nature of Light ) Double Slit A parallel beam of light from a He-Ne laser, with a wavelength of 656 nm, falls on two very narrow slits that are 0.050 mm apart. How far

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now?

If the speed of light were smaller than it is, would relativistic phenomena be more or less conspicuous than they are now? Physis 07 Problem. If the speed of light were smaller than it is, would relatiisti phenomena be more or less onspiuous than they are now? All of the phenomena of speial relatiity depend upon the fator

More information

PHYS 2020 Spring 2012 Announcements

PHYS 2020 Spring 2012 Announcements PHYS 2020 Spring 2012 Announements Continuing to adjust the shedule to relet the progress o the letures: HW #7 is now due Mon. Apr 9 1 Chapter 24 Eletromagneti Waes Next 3 hapters on the behaior o light

More information

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday!

Physics 2D Lecture Slides Lecture : Jan 11th 200. First Quiz This Friday! Physis D Letre Slides Letre : Jan 11th 00 Viek Sharma UCSD Physis First Qiz This Friday! Bring a Ble Book, allator; hek battery Make sre yo remember the ode nmber for this ose gien to yo (reord it some

More information

Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω =

Moment of inertia: (1.3) Kinetic energy of rotation: Angular momentum of a solid object rotating around a fixed axis: Wave particle relationships: ω = FW Phys 13 E:\Exel files\h 18 Reiew of FormulasM3.do page 1 of 6 Rotational formulas: (1.1) The angular momentum L of a point mass m, moing with eloity is gien by the etor produt between its radius etor

More information

Volume Charge Density in Most General Lorentz Transformation

Volume Charge Density in Most General Lorentz Transformation Publiations Aailable Online J. Si. Res. 8(), 59-65 (016) JOURNA OF SCIENTIFIC RESEARCH www.banglajol.info/inde.php/jsr Volume Charge Densit in Most General orent Transformation S. A. Bhuian *, A. R. Baiid

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Everything should be made as simple as possible, but not simpler -A. Einstein

Everything should be made as simple as possible, but not simpler -A. Einstein r1 Eerything should be made as simple as possible, but not simpler -A. Einstein r2 SR1... -3-2 -1 0 1 2 3... Synchronizing clocks At the origin, at three o clock, the clock sends out a light signal to

More information

On the derivation of the Lorentz-transformation

On the derivation of the Lorentz-transformation On the deriation of the Lorentz-transformation Johan F Prins CATHODIXX 8 Portland Plae, Northliff ext. 15, Johannesburg 195, South Afria johanprins@athodixx.om Abstrat The onentional way to derie the equations

More information

Special relativity. Announcements:

Special relativity. Announcements: Announcements: Special relatiity Homework solutions are posted! Remember problem soling sessions on Tuesday from 1-3pm in G140. Homework is due on Wednesday at 1:00pm in wood cabinet in G2B90 Hendrik Lorentz

More information

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer

Doppler-Voigt-Einstein Selforganization The Mechanism for Information Transfer Apeiron, Vol. 7, No., Otober Doppler-Voigt-Einstein Selforganization The ehanism for Information Transfer Jiří Stáek Laboratory of Diffusion Proesses Prague, Czeh Republi Email: staek@olny.z Doppler-Voigt-Einstein

More information

On the Logical Inconsistency of the Special Theory of Relativity. Stephen J. Crothers. 22 nd February, 2017

On the Logical Inconsistency of the Special Theory of Relativity. Stephen J. Crothers. 22 nd February, 2017 To ite this paper: Amerian Journal of Modern Physis. Vol. 6 No. 3 07 pp. 43-48. doi: 0.648/j.ajmp.070603. On the Logial Inonsisteny of the Speial Theory of Relatiity Stephen J. Crothers thenarmis@yahoo.om

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

Physics 43 HW 2 Chapter 39 Problems given from 7 th Edition

Physics 43 HW 2 Chapter 39 Problems given from 7 th Edition Physis 3 HW Chater 39 Problems gien from 7 th Edition Problems:, 7,, 9, 1, 0,,, 9, 33, 35, 3, 0, 5,. How fast must a meter stik be moing if its length is measured to shrink to 0.500 m? P39. L = L L Taking

More information

Electromagnetism and Relativity

Electromagnetism and Relativity Chapter 6: Idea 5 Eletromagnetism and Relatiity The fats are relatie, but the law is absolute. When you understand this statement, then you understand Relatiity! Introdution We hae taken an historial approah

More information

MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY

MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY Inquiry, ol. 8, no., Deember 007, pp. 4 49 IIGSS Aademi Publisher MOVING OBJECTS OBSERVATION THEORY IN PLACE OF SPECIAL RELATIVITY LI ZIFENG Petroleum Engineering Institute, Yanshan Uniersity, Qinhuangdao,

More information

The Thomas Precession Factor in Spin-Orbit Interaction

The Thomas Precession Factor in Spin-Orbit Interaction p. The Thomas Preession Fator in Spin-Orbit Interation Herbert Kroemer * Department of Eletrial and Computer Engineering, Uniersity of California, Santa Barbara, CA 9306 The origin of the Thomas fator

More information

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities

General Lorentz Boost Transformations, Acting on Some Important Physical Quantities General Lorentz Boost Transformations, Acting on Some Important Physical Quantities We are interested in transforming measurements made in a reference frame O into measurements of the same quantities as

More information

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix

Electromagnetic Theory Prof. Ruiz, UNC Asheville, doctorphys on YouTube Chapter B Notes. Special Relativity. B1. The Rotation Matrix Eletromagneti Theory Prof. Ruiz, UNC Asheille, dotorphys on YouTube Chapter B Notes. Speial Relatiity B1. The Rotation Matrix There are two pairs of axes below. The prime axes are rotated with respet to

More information

Special Theory of Time- Asymmetric Relativity 1 2

Special Theory of Time- Asymmetric Relativity 1 2 Part I Speial Theory of Time- Asymmetri Relatiity 1 The expanding-unierse osmology is founded on the assumption that Einstein s Relatiity is appliable to the entire unierse. This osmology settles diffiulties

More information

Announcements. Review: Lorentz & velocity transformations (relativistic version of Galileo) Transformations (in 1D) Some examples

Announcements. Review: Lorentz & velocity transformations (relativistic version of Galileo) Transformations (in 1D) Some examples Announeents Reading for Monda: Chapter.6-. First Mid-ter is in das (Feb. 9 th, 7:30p). It will oer Chapters &. Reiew: Lorentz & eloit transforations (relatiisti ersion of Galileo) Transforations (in D)

More information

Stellar Aberration, Relative Motion, and the Lorentz Factor

Stellar Aberration, Relative Motion, and the Lorentz Factor ong Beah 010 PROCEEDINGS of the NP 1 Stellar berration, Relatie Motion, and the orentz Fator Joseph. Rybzyk 139 Stetson Drie, Chalfont, P 18914-3751 e-mail: jarybzyk@erizon.net Presented are the results

More information

On the quantitative effects

On the quantitative effects International Journal of Modern Physis and Appliation 4; (): 8-4 Published online September, 4 (http://www.aasit.org/journal/ijmpa) On the quantitatie effets Chang-Wei Hu Beijing Relatiity Theory Researh

More information

Special Relativity. Relativity

Special Relativity. Relativity 10/17/01 Speial Relativity Leture 17 Relativity There is no absolute motion. Everything is relative. Suppose two people are alone in spae and traveling towards one another As measured by the Doppler shift!

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Espen Gaarder Haug Norwegian University of Life Sciences January 5, 2017

Espen Gaarder Haug Norwegian University of Life Sciences  January 5, 2017 Einstein ersus FitzGerald, Lorentz, and Larmor Length Contration Einstein s Length Contration is Also Consistent with Anisotropi One-Way Speed of Light Espen Gaarder Haug Norwegian Uniersity of Life Sienes

More information

High Energy Astrophysics

High Energy Astrophysics High Energ Astrophsis Essentials Giampaolo Pisano Jodrell Bank Centre for Astrophsis - Uniersit of Manhester giampaolo.pisano@manhester.a.uk - http://www.jb.man.a.uk/~gp/ Februar 01 Essentials - Eletromagneti

More information

TENSOR FORM OF SPECIAL RELATIVITY

TENSOR FORM OF SPECIAL RELATIVITY TENSOR FORM OF SPECIAL RELATIVITY We begin by realling that the fundamental priniple of Speial Relativity is that all physial laws must look the same to all inertial observers. This is easiest done by

More information

PHYS1169: Tutorial 8 Solutions

PHYS1169: Tutorial 8 Solutions PHY69: Tutorial 8 olutions Wae Motion ) Let us consier a point P on the wae with a phase φ, so y cosϕ cos( x ± ωt) At t0, this point has position x0, so ϕ x0 ± ωt0 Now, at some later time t, the position

More information

Slowing time by stretching the waves in special relativity

Slowing time by stretching the waves in special relativity Slowing time by strething the waes in speial relatiity Denis Mihel To ite this ersion: Denis Mihel. Slowing time by strething the waes in speial relatiity: The elusie transerse Doppler effet. 04.

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

A Classical Reconstruction of Relativity

A Classical Reconstruction of Relativity A Classial Reonstrution o Relatiity Abstrat Delan Traill B.S July 5, By inerting a key assumption o Relatiity Theory, one an understand its predited odd eets o time dilation, length ontration and mass

More information

Test of General Relativity Theory by Investigating the Conservation of Energy in a Relativistic Free Fall in the Uniform Gravitational Field

Test of General Relativity Theory by Investigating the Conservation of Energy in a Relativistic Free Fall in the Uniform Gravitational Field Test of General Relatiity Theory by Inestigating the Conseration of Energy in a Relatiisti Free Fall in the Uniform Graitational Field By Jarosla Hyneek 1 Abstrat: This paper inestigates the General Relatiity

More information

Pseudo-Superluminal Motion 1

Pseudo-Superluminal Motion 1 seudo-superluminal Motion 1 On seudo-superluminal Motion Anamitra alit Author /Teaher(free-laner physiist),india,154 Motijheel Aenue,Kolkata:700074 palit.anamitra@gmail.om h:91-33-5514464 Abstrat: Modern

More information

Reversal in time order of interactive events: Collision of inclined rods

Reversal in time order of interactive events: Collision of inclined rods Reersal in time order of interactie eents: Collision of inclined rods Published in The European Journal of Physics Eur. J. Phys. 27 819-824 http://www.iop.org/ej/abstract/0143-0807/27/4/013 Chandru Iyer

More information

Special and General Relativity

Special and General Relativity 9/16/009 Speial and General Relativity Inertial referene frame: a referene frame in whih an aeleration is the result of a fore. Examples of Inertial Referene Frames 1. This room. Experiment: Drop a ball.

More information

Modern Physics I Solutions to Homework 4 Handout

Modern Physics I Solutions to Homework 4 Handout Moern Physis I Solutions to Homework 4 Hanout TA: Alvaro Núñez an33@sires.nyu.eu New York University, Department of Physis, 4 Washington Pl., New York, NY 0003. Bernstein, Fishbane, Gasiorowiz: Chapter

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Journal of Theoretics Vol.4-4

Journal of Theoretics Vol.4-4 Journal of Theoretis ol.4-4 Cherenko s Partiles as Magnetons Dipl. Ing. Andrija Radoić Nike Strugara 3a, 3 Beograd, Yugoslaia Eail: andrijar@eunet.yu Abstrat: The artile will show that the forula for Cherenko

More information

Does Heisenberg s Uncertainty Collapse at the Planck Scale? Heisenberg s Uncertainty Principle Becomes the Certainty Principle

Does Heisenberg s Uncertainty Collapse at the Planck Scale? Heisenberg s Uncertainty Principle Becomes the Certainty Principle Does Heisenberg s Unertainty Collapse at the Plank Sale? Heisenberg s Unertainty Priniple Beomes the Certainty Priniple Espen Gaarder Haug Norwegian Uniersity of Life Sienes June 7, 08 Abstrat In this

More information

Experimental & theoretical evidences of fallacy of space-time concept and actual state of existence of the physical universe

Experimental & theoretical evidences of fallacy of space-time concept and actual state of existence of the physical universe Indian Journal of iene and Tehnology ol. 5 No.3 (Mar 0) IN: 0974-6846 Experimental & theoretial eidenes of fallay of spae-time onept and atual state of existene of the physial unierse Mohammad hafiq Khan

More information

The Geometrodynamic Foundation of Electrodynamics

The Geometrodynamic Foundation of Electrodynamics Jay R. Yablon, May 4, 16 The Geometroynamic Founation of Electroynamics 1. Introuction The equation of motion for a test particle along a geoesic line in cure spacetime as ν specifie by the metric interal

More information

Doppler shifts in astronomy

Doppler shifts in astronomy 7.4 Doppler shift 253 Diide the transformation (3.4) by as follows: = g 1 bck. (Lorentz transformation) (7.43) Eliminate in the right-hand term with (41) and then inoke (42) to yield = g (1 b cos u). (7.44)

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

The Matter-Antimatter Concept Revisited

The Matter-Antimatter Concept Revisited Volume PROGRESS IN PHYSICS April 00 he Matter-Antimatter Conept Reisited Patrik Marquet Postal address: 7 rue du no 9350 Villiers/Marne Paris Frane Email: patrik.marquet6@wanadoo.fr In this paper we briefly

More information

Math 225B: Differential Geometry, Homework 6

Math 225B: Differential Geometry, Homework 6 ath 225B: Differential Geometry, Homework 6 Ian Coley February 13, 214 Problem 8.7. Let ω be a 1-form on a manifol. Suppose that ω = for every lose urve in. Show that ω is exat. We laim that this onition

More information

Introduction to Relativistic Mechanics and the Concept of Mass

Introduction to Relativistic Mechanics and the Concept of Mass Introdution to Relatiisti Mehanis and the Conept of Mass Gron Tudor Jones Uniersity of Birmingham CRN HST014 Introdution to relatiisti kinematis and the onept of mass Mass is one of the most fundamental

More information

TAP 702-6: Binary stars

TAP 702-6: Binary stars TAP 702-6: Binary stars Orbiting binary stars: A type of ariable star. This type of ariable star onsists of two stars orbiting around eah other. When the dier star is in front of the brighter one, the

More information

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7 FW Phys 13 G:\13 leture\13 tests\forulas final3.dox page 1 of 7 dr dr r x y z ur ru (1.1) dt dt All onseratie fores derie fro a potential funtion U(x,y,z) (1.) U U U F gradu U,, x y z 1 MG 1 dr MG E K

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Red Shift and Blue Shift: A realistic approach

Red Shift and Blue Shift: A realistic approach Red Shift and Blue Shift: A ealisti appoah Benhad Rothenstein Politehnia Uniesity of Timisoaa, Physis Dept., Timisoaa, Romania E-mail: benhad_othenstein@yahoo.om Coina Nafonita Politehnia Uniesity of Timisoaa,

More information

Physics Essays volume 16, number 3, 2003

Physics Essays volume 16, number 3, 2003 Physis Essays olume 6, number 3, 003 Calulation of So-Called General Relatiisti Phenomena by Adaning Newton s Theory of Graitation, Maintaining Classial Coneptions of Spae and Relatiity Reiner Georg Ziefle

More information

Einstein's Energy Formula Must Be Revised

Einstein's Energy Formula Must Be Revised Eintein' Energy Formula Mut Be Reied Le Van Cuong uong_le_an@yahoo.om Information from a iene journal how that the dilation of time in Eintein peial relatie theory wa proen by the experiment of ientit

More information

1. RELATIVISTIC KINEMATICS

1. RELATIVISTIC KINEMATICS 1. RELATIVISTIC KINEMATICS The one truth of whih the human mind an be ertain indeed, this is the meaning of onsiousness itself is the reognition of its own existene. That we may be seure in this truth

More information

How the Thrust of Shawyer s Thruster can be Strongly Increased

How the Thrust of Shawyer s Thruster can be Strongly Increased How the Thrust of Shawyer s Thruster an be Strongly Inreased Fran De Aquino Professor Emeritus of Physis, Maranhao State Uniersity, UEMA. Titular Researher (R) of National Institute for Spae Researh, INPE

More information

Problem set 6 for the course Theoretical Optics Sample Solutions

Problem set 6 for the course Theoretical Optics Sample Solutions Karlsruher Institut für Tehnologie KIT) Institut für theoretishe Festkörperphysik SS01 Prof. Dr. G. Shön, Dr. R. Frank 15.06.01 http://www.tfp.kit.eu/stuium-lehre.php Tutorial: Group 1, Name: Group, Group

More information

Journal of Physical Mathematics

Journal of Physical Mathematics Journal of Physial Mathematis Researh Artile Artile Journal of Physial Mathematis Makanae, J Phys Math 207, 8: DOI: 0.472/2090-0902.00025 OMICS Open International Aess Verifying Einstein s Time by Using

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College 3-14-06 1 Propagation of waves through a medium As you ll reall from last semester, when the speed of sound is measured

More information

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

To determine the biasing conditions needed to obtain a specific gain each stage must be considered. PHYSIS 56 Experiment 9: ommon Emitter Amplifier A. Introdution A ommon-emitter oltage amplifier will be tudied in thi experiment. You will inetigate the fator that ontrol the midfrequeny gain and the low-and

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

General Physics I. Lecture 18: Lorentz Transformation. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 18: Lorentz Transformation. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 18: Lorentz Transformation Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Experimental erification of the special theory Lorentz transformation

More information

Feb 6, 2013 PHYSICS I Lecture 5

Feb 6, 2013 PHYSICS I Lecture 5 95.141 Feb 6, 213 PHYSICS I Lecture 5 Course website: faculty.uml.edu/pchowdhury/95.141/ www.masteringphysics.com Course: UML95141SPRING213 Lecture Capture h"p://echo36.uml.edu/chowdhury213/physics1spring.html

More information

Vol. 4, No. 6 June 2014 ISSN ARPN Journal of Science and Technology All rights reserved.

Vol. 4, No. 6 June 2014 ISSN ARPN Journal of Science and Technology All rights reserved. Vol. 4, No. 6 June 4 ISSN 5-77 ARPN Journal of Siene and Tehnology -4. All rights resered. http://www.ejournalofsiene.org Light Speed Anisotropy Constraints ia Measurement of Relatiisti Light Aerration

More information

Physics 4A Solutions to Chapter 4 Homework

Physics 4A Solutions to Chapter 4 Homework Physics 4A Solutions to Chapter 4 Homework Chapter 4 Questions: 4, 1, 1 Exercises & Problems: 5, 11, 3, 7, 8, 58, 67, 77, 87, 11 Answers to Questions: Q 4-4 (a) all tie (b) 1 and tie (the rocket is shot

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Transformation of Orbital Angular Momentum and Spin Angular Momentum

Transformation of Orbital Angular Momentum and Spin Angular Momentum Aerian Jornal of Matheatis and Statistis 6, 65: 3-6 DOI: 593/jajs6653 Transforation of Orbital Anglar Moent and Spin Anglar Moent Md Tarek Hossain *, Md Shah Ala Departent of Physis, Shahjalal Uniersity

More information

Tolga Yarman Okan University, Akfirat, Istanbul, TURKEY

Tolga Yarman Okan University, Akfirat, Istanbul, TURKEY 67 Yarman: Superluminal Waelike Interation ol. 9 Superluminal Waelike Interation, or the Same, De roglie Relationship, as Imposed by the Law of Energy Conseration, in All Kinds of Interation, Making a

More information

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS

MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS 1 MOTION OF AN ELECTRON IN CLASSICAL AND RELATIVISTIC ELECTRODYNAMICS AND AN ALTERNATIVE ELECTRODYNAMICS Musa D. Abdullahi 1 Bujumbura Street, Wuse, Abuja, Nigeria E-mail: musadab@outlook.om Abstrat As

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information