A la frontière entre physique atomique et nanotechnologies : l'atome comme sonde haute-résolution des surfaces et interfaces

Size: px
Start display at page:

Download "A la frontière entre physique atomique et nanotechnologies : l'atome comme sonde haute-résolution des surfaces et interfaces"

Transcription

1 A la frontière entre physique atomique et nanotechnologies : l'atome comme sonde haute-résolution des surfaces et interfaces Martial Ducloy Laboratoire de Physique des Lasers/CNRS Institut Galilée Université Paris Nord VILLETANEUSE (F) Funding : CNRS; Univ. PXIII; EU FASTNet network JPOM6

2 ATOM - MICRO/ NANOBODY INTERACTIONS: Implications in many domains of Science and Technology: Cavity QED (entanglement, decoherence) Quantum optics in semiconductors Photonic bandgap materials Spontaneous emission control, thresholdless microlasers STM/SNOM tunnelling microscopies Atom optical devices, integrated atom optics (atom chips, coherent atomic transport, low-d atom trap, nanoscale trap..) Atom lithography, nanotechnologies

3 ATOM-SURFACE INTERACTION The model of electrostatic images (perturbative regime, non resonant coupling) reflector ( ε) vacuum vdw potential (interaction between dipole and dipole-image) D im D 2 ε 1 D + D = ε z z H vdw 3 2 non-retarded and near-field interaction: z -3 D, atomic dipole operator 2 For a neutral atom, ede =, but ed e (atomic dipole fluctuations)

4 OUTLINE 1. Optical spectroscopy approach 2. Beam (momentum) spectroscopy approach 3. Conclusion-Outlook

5 OPTICAL SPECTROSCOPY APPROACHES to ATOM - DIELECTRIC STRUCTURE INTERACTION Reflection spectroscopy Wood 199 Cojan 1954 Woerdman et al dielectric gas Evanescent wave spectroscopy Boissel et al Simoneau et al gas SNOM fluorescence spectroscopy Betzig et al Girard et al etc. substrate fibre tip molecule WGM reflection spectroscopy (Whispering Gallery Mode) Vernooy et al microsphere gas Submicrometric gas cell spectroscopy D. Sarkisyan et al. 22 G. Dutier et al. 23

6 1. Laser spectroscopy of ultra thin cells 2. Reflection spectroscopy G. Dutier, I. Hamdi, P. Todorov, I. Maurin, M.-P. Gorza, M. Fichet, D. Bloch, M.D. (UPN, Villetaneuse, F) S. Saltiel (Sofia University, Bulgaria), A. Lezama (Montevideo, Uruguay) T. Varzhapetyan, D. Sarkisyan (Institute for Physical Research, Armenia)

7 ULTRA THIN GAS CELL Windows (YAG or Sapphire) separated by ring-shaped sapphire spacer low density cell : external pressure changes internal thickness locally Caesium vapour inside the cell D. Sarkisyan et al., Opt. Comm. 2, 21 (21)

8 THICKNESS MEASUREMENTS Ultra Thin Cell = Fabry-Pérot cavity Measurement of reflection coefficient for 3 different lasers : 633nm 852nm 13nm YAG Reflection interface / Reflection first window 2,8 2,4 2 1,6 1,2,8,4 633 nm 852 nm 13 nm Thickness (nm) Thickness between windows : 3nm to 13nm Accuracy < 5nm

9 THICKNESS MEASUREMENTS Thickness is measured by monitoring the reflection coefficient measurement at the point of the experiment using three laser sources (633nm; 894nm; 13nm) thickness (nm) thickness (nm) vertical position, h (mm) horizontal position, x (mm)

10 ω L 1µ m v r p(z) φ =1..1 mm L << φ, atom mean free path (low density) p()= z = z = L Atom dynamics dominated by wall adsorption/desorption: ultra short time-of-flight (TOF) transient behaviour is dominant in atom-light interaction atom motion + boundary effect non-local atom response p(z), i.e. spatial dispersion Strongly anisotropic time-of-flight: very long TOF for atoms moving quasi-parallel to the windows (v z =) absorption singularity, which is Doppler-free for normal incident light

11 Excitation of Cs D 1 resonance line (894 nm) 6P 1/2 R extremely thin cell (ETC) FM laser (λ = 894 nm) P = 1 nw f = 1 cm f = 1 cm T 6S 1/2

12 Transmission: Dicke narrowing and revival Rb nanocell ; λ = 78nm ; I =.4 mw/cm2 ; transitions F=2 F=1, 2, 3 Sarkisyan et al., Phys Rev A 69, 6582 (24)

13 Transmission in an ETC : the Dicke narrowing Linear interaction + Transient regime σ 1 Λ ( ) ( Λt t z/v 1 e ) = with Λ = γeg i( δ kv) ABSORPTION over z (z [,L]) α = I I Re ( v ) dv σ ( t z/v ) + L W eg = dz + ( ) ΛL L v + v α Re W v ( 1 e ) dv 2 Λ Λ Linear absorption A log singularity Interferometric effect Dicke effect: At δ =, and for L = λ/2, all velocities contribute constructively to the signal, like 1/v

14 The Bloch vector model for Dicke narrowing Sarkisyan et al, Phys Rev A 69, 6582 (24) r Ω ds dt a) r r = S B Z Ω =δ-kv B S, B r = δ kv Y X L=λ/2 Y L=λ For δ=: S rotates around B at angular velocity ~ kv (if Ω ) up to a duration τ = L/v X X b) c) dsy (Coherent) Transmission S y dz (Incoherent) Fluorescence dz S z Y

15 Collapse and revival of Dicke narrowing : λ/2, 3λ/2, etc... Direct Cs(D 1 ) Transmission J. Opt. Soc. Am. B, 2, 793 (23) 22 nm 335 nm 447 nm (x7.6) (x1.8) (x.9) λ/2 Europhysics Letters, 63, 35 (23) FM Transmission 45 nm 67 nm (x1.8) 78 nm (x1.4) 89 nm (x1) λ 89 nm 15 nm (x1) 111 nm 1235 nm 1 MHz (x1.7) (x.8) <3λ/2 1 MHz 115 nm

16 Dicke narrowing in two-photon transition k 1 +k 2 3> k 1 i B ω 2 ω 1 2> 1> k 2 r r k 1 + k L=Λ/2 with Λ =2π/ 2 Dutier et al, Phys. Rev. A72, 451R (25)

17 Cavity Quantum Electrodynamics in Dielectric Nanocells

18 Cs (D 1) FM transmission for very small thickness (5-2nm) and YAG windows F=3 225 (5)nm 9 (5)nm 53 (3)nm F=4 1 GHz CELL THICKNESS (nm) vdw SHIFT (MHz)

19 Transmission, FM mode, D1-Cs line, YAG windows F = 3 F = 4 THEORY YAG D1 L = 225;9;55 nm γ = 24;4;23 MHz ku = 25 MHz C 3 = 3 KHz.µm 3 EXPERIMENT 225 nm 117 MHz 13 o 9 nm 15 o red shift 55 nm 2 o detuning (MHz) detuning (MHz)

20 COMPARISON THEORY vs EXPERIMENT vdw SHIFT (MHz) EXPERIMENT THEORY 1/L 3 slope 1 CELL THICKNESS (nm) 2

21 Thin cell transmission at L = λ/2 (46nm)/sapphire window 6 D 5/2 6 D 3/2 921nm 917nm 6 P 3/2 852nm 6 S 1/2 Cesium

22 Transmission en Cellule Ultra Mince à d = 32 nm Objectif : Résolution Spatiale du van der Waals à moins de 5nm,8 T = 38/33 d = 32 nm P 852 = 2.6 mw abs pompe (852) = 5% - 11 GHz Bruit ~ 2.1-6,6 Signal ~ Absorption,4,2, 917, 917,5 918, nm

23 MODELS FOR SURFACE INTERACTIONS IN ETC s n n d L=2d z 1. Two-window model: sum of the potentials of the two windows; the contribution of multiple reflections between thin cell windows is neglected. 1 ε vdwshift( δ d ) Re d ε + 1 ( 1 δ d ) ( 1+ δ d ) where δ = z d 2. Exact solution : account for multiple reflections between the two windows; solution in form of trilogarithm functions (Li 3 or Lerch function) [Nha - Jhe, 1996; Barton, 1997] 3. (Polynomial fit to the exact solution)

24 Role of the cell thickness on transmission spectra two level theoretical model with vw λ = 917 nm (x1.1) (x4.97) L=5nm L=65nm ku=25 MHz γ = 3 MHz C 3 =7.55 khz.µm (ω ω ) MHz L=8nm (x2.96) L=13nm

25 YAG/Cs thin cell transmission and reflection strong red shift L=5 nm λ=917 nm T=22 C, change of transmission 5 GHz free space resonance 6 D 5/2 6 P 3/2 917 nm tunable probe 852 nm pump reflection signal Fit obtained with C 3 = 7.55 khz.µm 3 6 S 1/2 Cesium frequency detuning

26 ATOM-SURFACE INTERACTION : dielectric interface The model of Electrostatic images vw potential : an interaction between dipole and dipole-image reflector (ε) vacuum H vw = - ε -1 ε + 1 D² +D z ² 16 z 3 A summing over virtual transitions ω ij D im D z <i D² i> = Σj r(ω ij )<i D j> <j D i> For ε(ω ij ) complex (i.e. absorption) How the image coefficient r behaves?

27 DIELECTRIC SURFACE Dielectric permittivity ε(ω) : complex, dispersive (ω) Ground State : quantum fluctuations : level shift δe g g h = δeq = 3 4π z atomic polarisability du α g ( iu) ε ε ( iu) ( iu) dielectric ( 1) (surface response) Excited state : - resonant shift induced by VIRTUAL EMISSION COUPLINGS. i δe δe i i δe δe i r = Q + R 1 2 ε ( ωij ) 1 D 3 ij Re z j< i ε ωij + 1 = 16 ( ) Surface resonance determined by the poles of [(ε(ω i-j ) -1) / (ε(ω i-j ) +1)] i.e. a virtual atomic de-excitation coupled to a "virtual" polariton of the dielectric surface - AND ALSO : i j via real emission in a polariton mode: 1/z 3 Im [(ε(ω i-j ) -1) / (ε(ω i-j ) +1)]

28 Dispersive dielectric ε 2 =ε(ω) k z ε k x Λ=1/Κ x e -Kz vacuum ε 1 =1 z Surface guided mode : for ε(ω)+1< Wave vector : k x 2 = k 2. ε/(ε+1) ; k z 2 (vacuum) = -K 2 = k 2 /(ε+1) (k = ω/c) Surface polaritons : poles of 1/(ε(ω)+1) ε -1 : - phase velocity - evanescent wave depth, Λ=1/K mode volume decreases vacuum field, E v, increases (diverges if no dissipation) maximum coupling strength between photon and material excitation (e.g. phonons for dielectric media) The near-field of the excited atom dipole (scaling like 1/z 3 at the interface) couples to surface polariton two coupled oscillators

29 THE DIELECTRIC IMAGE COEFFICIENT The case of SAPPHIRE 1 r (ω> ) Virtual, r(ω< ) -2,,1,2,3,4,5 ω (1 14 Hz ) ABSORPTION of the atom (always non resonant) Virtual EMISSION of the atom : possibility of a resonant COUPLING to a ABSORPTION in a SURFACE POLARITON MODE

30 Re[( ε -1)/( ε -1)] extraord. ordinary wavelength (µm) Surface response for an isotropic medium whose permittivity ε is either ε ord or ε extr of sapphire 1 Re[( ε -1)/( ε -1)] 5-5 θ= wavelength (µm) Sapphire window with different directions of the birefringence axis: normal to the interface (i.e. ε eff = (ε ord ε extr) 1/2 ) off- normal to the interface parallel to the interface

31 REPULSIVE vw INTERACTION µm 6 D 3/2 SAPPHIRE surface response µm 7 P 3/2 7 P 1/2 1 21µm 12 µm 6 P 1/2 876 nm 894 nm Re[( ε -1)/( ε -1)] 5-5 θ=9 45 sapphire surface polaritons 6 S 1/2 Cs wavelength (µm) birefringence axis: normal to the interface off- normal to the interfac parallel to the interface Observation by selective reflection (i.e. 1-wall, probing at ~λ/2π) H. Failache et al, Phys. Rev. Lett. 83, 5647 (1999) ; Eur. Phys. J D 23, 237 (23) M. P. Gorza et al, Eur. Phys. J D 15, 113 (21)

32 R=R + R(ω) z E NR +E res z E i Vapour v z > : transient dipole response (desorbing atoms) v z < : steady-state dipole response Spatial dispersion Non-local response of dipole polarisation, whose amplitude P depends on z sub-doppler singularity at normal incidence Singular contribution of v z = atoms [ Cojan, 1954 ; Woerdman Schuurmans, 1975 ] REFLECTION CHANGE : E res dz p(z) exp (2ikz) Doppler - free vapour dispersion explored on a layer z ~ 1/k ~ λ opt /2π ( typically 1-15 nm)

33 15.57 µm 6 D 5 3/ MHz 4 7 P 3/ MHz µm 3 7 P 1/ MHz 876 nm 4 6 P 1/ GHz nm 21µm 12 µm 4 6 S 1/ GHz 3 Sapphire surface polaritons Cs Sapphire YAG Pump (894 nm) FM probe (876 nm) SR cell SA cell

34 YAG Sapphire 8 MHz

35 γ 5 4 (MHz) F = 4 F = Pressure ( mtorr ) C 3 (khz.µm 3 )

36 vdw shift near the ω S resonance for µ vdw shift) (in 2 µ 2 /L 3 ) Position in the cell x/l ω / ω S

37 vdw shift for ω/ω S =.999 for µ vdw shift for position in the cell x/l ω/ω S =1.1 for µ ε 1 Re ε + 1 ω S

38 lλ (µm) mm waveguide modes (between sapphire walls) Waveguide modes Sapphire walls 2 λ T 18 Transverse mode (antisymmetric) λ L Surface mode λ λ S =12.2µm at =12.15 (Cs 6P-6D) Longitudinal mode (symmetric) KL L: surface distance ; K: wavevector along surface

39 SURFACE RESONANCES in ATOM - STRUCTURE INTERACTION 1/ Dielectric microstructure High-Q morphology dependent resonances (MDR): Ex.: Mie resonances, or Whispering Gallery Modes (WGM) of microspheres Braginsky et al 1987 Haroche et al Influence on atom-surface interaction : Vacuum Rabi splitting Klimov et al 1997 For nano-bodies, no propagation no resonances 2/ Dispersive dielectric / metal surface polariton Polariton frequency tuning via : Material birefringence (c-axis orientation) Form factor in surface response * plane : (ε-1)/(ε+1) * nanosphere : (ε-1)/(ε+2) * nano-ellipsoid.

40 DIPOLE DECAY RATE NEAR ANY BODY γ γ 3 de ( r, ω) R atom = 1+ Im dk E R - field reflected by nanobody d - dipole momentum γ - free space decay rate This result is valid within classic as well as quantum perturbation theory For nanobodies one can use pertubation theory quasistatic de ( r', ω ) ( R) 2 d solution = a1 + b1k + ck 1 + id1k + nonradiative lo sses radiative losses γ 3 a1 3 = I m Re ( d1 +...) γ 2 k 2... γ radiative 2 total = d 2 γ d d total - dipole momentum of atom + nanobody system a 1 =?, d total =?

41 SPONTANEOUS EMISSION OF AN ATOM PLACED NEAR PROLATE NANOSPHEROID GENERAL EXPRESSION γ γ 2 = d total 2 d d total - dipole momentum of atom + nanospheroid system d - dipole momentum of atom RESULTS ξη, = 1 ( ξ ) 2 γ dq1 = 1+ G1 γ dξ γ dq1 ( ξ ) ξ 1 = 1+ G11 γ dξ ξ ξη, = G 1 G 1 и G 11 - reflection coefficients = G 11 ( ε 1) ξ ( Q1 ( ξ) ) ξ εq1 ( ξ) = ( ε 1) ξ 1 ( Q ( )) ξ ξ 1 εξq1( ξ) Q - Legendre functions,

42

43

44 Conclusion Interest of nm-thin gas cells for investigating: QED in dielectric FP nano-cavity Nanophysics with free atoms; atom-surface interaction in 2-2nm range Novel regime of atom dynamics and atom-light interactions (Dicke regime) PROSPECTS Modification of atomic fluorescence, branching ratios ; non-radiative decays Repulsive walls [e. g., Cs (6D) with sapphire windows], or prism windows (evanescent-wave atom mirrors): Atom confinement, atom bound states, new type of atom traps, atom optics in nm-confined space Nano-structured walls for higher-d confinement Nano-cavity QED in the non-zero temperature limit Atom-atom interaction in confined space

45 HR Beam Spectroscopy: Off-Diagonal van der Waals interaction and Atom interferometry J.-C. Karam, J. Grucker, F. Perales, G. Vassilev, J. Baudon, J. Robert, M. Boustimi, V. Bocvarski (1), J. Reinhardt, M.D. Laboratoire de Physique des Lasers Université Paris Nord (1) Institute of Physics, Pregrevica, Beograd, Yugoslavia

46 "BEAM SPECTROSCOPY" APPROACHES TO ATOM-STRUCTURES INTERACTION - Beam deflection by metal surfaces Raskin et al. 1969, Shih et al Beam transmission in microslits Haroche et al. 1988, Hinds et al Energy thresholds in atomic mirrors (evanescent wave mirror) Aspect et al Coherent atomic diffraction by material gratings (small angle) Toennies et al Inelastic beam diffraction by micro/nano-gratings (large angle) Boutsimi et al Quantum reflection of ultra-cold atom Shimizu et al. 21

47 Non scalar van der Waals Potential Induced dipole induced dipole image interaction non retarded regime ( z < 1 nm ) D D D V = 1 4πε 4 3 D 2 + D 16z D + D z = D + 3 D z 2 z 3 -z z Scalar ( ) T Quadrupolar ( 2) T The quadrupolar term is not rotating-invariant (anisotropic) Coupling between internal state and external motion

48 Metastables levels of Ar spin-orbit coupling of 3p hole, spin of the 4s electron

49 Coupling between the two metastable levels of Ar, Kr 2,m,;2, P T P P D P z 3 ( 2) = D if m=, P P m = = D = = = i m, 2 3 z z 3 m, z 3 P D i i D P P D P 174meV E *: Ar = 65meV E *: Kr =

50 Kinematics of inelastic transitions Conservation of total Energy of the atom Conservation of the momentum in the plan // to the surface v v = f = v 2 cosθ vf cosθf + 2 E m 1/2 θ E > θ cosθ cosθf = 1+ E E < E θ f θ f Threshold for E < v 2 2 E m

51 Experimental Device Exo-energetic process Time of flight detection 3slits disc X*( 3 P 2 ) Pulsed source T 3-4 µs v Grating ( or slit ) θf v f Z X*( 3 P ) X Distances are 121 mm and 164 mm

52 Source and detection. Thermal Effusive Beam ( v = 55m/s for Ar) Pulsed electronic Bombardment ( T=3-4 µs, T 1,5 ms) δv v 8% Velocity selection Angular width after collimation : θ = 1.4 Maximum flux of 2 atoms/s Angular resolution of the detection :.43 Detection Noise <1-3 Hz Good detection efficiency (plate + channeltron) 2 % Acquisition time : 1 3 s s for each point!

53 Transition 3 P 3 P 2 of Kr* Results with a single slit Efficiency I / I = (1.46 ±.26 ) µm,8 Kr* 436 m/s 73 6 Kr* m/s 1 µm Counts,6,4 DCS 8, TOF channel (1 channel = 3.33µs) θ (deg.)

54 Results for the 3 P 3 P 2 transition of Ar* 4 Velocity dependence of the peak angular position Section efficace différentielle (arb. unit) Ar* 356 m/s 535 m/s θ (deg.)

55 Experimental Device (bis) 3 slits disc Endo-energetic process Ar*( 3 P ) Time of flight Detection Grating Pulsed source T : 3-4 µs v θr θ f v f Z X Ar*( 3 P 2 )

56 Results for the 3 P 2 3 P transition of Ar* Grating angle to the atomic beam axis o θ r = 6 TOF Analysis Integration time : 16 s! 1 v = 13m.s ± 15% v f,expected = 51m. s 1 Wide Peak : Velocity selection less efficient at high velocities Channel At long TOF : Metastability exchange with residual gas?

57 Influence of initial velocity Counts in the expected TOF domain as a function of the selected velocity v threshold Velocity Resolution limited by the velocity selection width : δv v 15%

58 Coherence and initial velocity. * Slow Atoms : λ 3 nm for Ar* (.2 nm in a thermal beam) Large transverse coherence length accessible by collimation. - Coherent irradiation of several grating slits - Reduced roughness effects at scales < λ («atomic speckle») Necessity of a E of a few µev Zeeman Transitions

59 Coupling between Zeeman sublevels 3 X* P2 x : J B = 2 [ ] 1 [ ( )] 2 3 V C + Q J J /3 x α, j = 3 3, α α Z m i Z V m j x m =, ± 2 D D Transitions are possible! -z z ± ; 2 x x x ; x x ; x x x x m = ±2

60 Kinematics of Zeeman transitions Ar* 3 P2 E = m g µ m = ±2 B B Grazing incidence : tanθ f E = E 1/2 v 3.3m/ s = B of a few 1 2 Gauss E E 4 = 6.1 B( G)

61 METASTABILITY-EXCHANGE SOURCE Supersonic beam ~ 3 K nozzle v few K Shock wave 1 bar 1-4 bar skimmer Intense pressure difference narrow beam narrow velocity distribution δv/v ~ 1% + Metastability exchange Supersonic beam Ar e - Electron bombardement Ar* Ar* Exchange Ar* +Ar Ar + Ar* Low momentum transfer during the exchange process Metastable atoms with the supersonic beam properties = δθ.35 mrad

62 Application: He *, Ar* diffraction Double collimation θ =.3 mrad Silicon nitride grating Λ= 1 nm counts counts angle (mrad), -,5-1, -1,5-2, -2,5-3, angle (mrad) He* λ ~ 162 nm (Linear plot) Ar* λ ~ 51 nm (Log plot) calculations experiment

63 Ne* B γ : Inelastic scattering angle Position Detector γ G 289G 145G G-test counts γ - angle (mrad)

64 γ E g µ = B B m E E B 1 m γ (B (G)) 1/ X X 2 X X X 3 X X? angle γ (mrad) Experimental evidence for surface-induced vdw Zeeman transitions

65

66 Next step : cooling of Ar* ( 3 P 2) Zeeman slower Ar* 3 P 2 B detector V =3.6 m/s laser λ = 811 nm mirror M laser Grating increase of l C λ db P m,m (θ,ρ) deviation γ atom interferometer?

67 Conclusion New metastable atom source for atom optics and atom surface interaction studies Study of atom-surface interaction effects on magnetic sublevels (e.g. scattering with ) m

Atoms as quantum probes of near field thermal emission

Atoms as quantum probes of near field thermal emission Atoms as quantum probes of near field thermal emission A. Laliotis, J. C d Aquinho Carvalho, I. Maurin, T. Passerat de Silans, M. Ducloy, D. Bloch Laboratoire de Physique des Lasers, CNRS - Université

More information

High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness

High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness 10 High Resolution Laser Spectroscopy of Cesium Vapor Layers with Nanometric Thickness Stefka Cartaleva 1, Anna Krasteva 1, Armen Sargsyan 2, David Sarkisyan 2, Dimitar Slavov 1, Petko Todorov 1 and Kapka

More information

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion

Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion Thermal Emission in the Near Field from Polar Semiconductors and the Prospects for Energy Conversion R.J. Trew, K.W. Kim, V. Sokolov, and B.D Kong Electrical and Computer Engineering North Carolina State

More information

Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapour nanocell

Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapour nanocell Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapour nanocell A. Laliotis, I. Maurin, P. Todorov, I. Hamdi, G. Dutier, A. Yarovitski,

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

SELECTIVE REFLECTION SPECTROSCOPY AT THE INTERFACE BETWEEN A CALCIUM FLUORIDE WINDOW AND Cs VAPOUR

SELECTIVE REFLECTION SPECTROSCOPY AT THE INTERFACE BETWEEN A CALCIUM FLUORIDE WINDOW AND Cs VAPOUR SELECTIVE REFLECTION SPECTROSCOPY AT THE INTERFACE BETWEEN A CALCIUM FLUORIDE WINDOW AND Cs VAPOUR Athanasios Laliotis, Isabelle Maurin, Michèle Fichet, Daniel Bloch, Martial Ducloy Laboratoire de Physique

More information

Exploring the van der Waals atom-surface attraction in the nanometric range

Exploring the van der Waals atom-surface attraction in the nanometric range March 2007 EPL, 77 (2007) 54001 doi: 10.1209/0295-5075/77/54001 www.epljournal.org Exploring the van der Waals atom-surface attraction in the nanometric range M. Fichet 1,G.Dutier 1, A. Yarovitsky 1(a),P.Todorov

More information

Optics, Light and Lasers

Optics, Light and Lasers Dieter Meschede Optics, Light and Lasers The Practical Approach to Modern Aspects of Photonics and Laser Physics Second, Revised and Enlarged Edition BICENTENNIAL.... n 4 '':- t' 1 8 0 7 $W1LEY 2007 tri

More information

GROUND-STATE HANLE RESONANCES IN CESIUM VAPOR CONFINED IN NANOSCOPIC THIN CELL (progress report)

GROUND-STATE HANLE RESONANCES IN CESIUM VAPOR CONFINED IN NANOSCOPIC THIN CELL (progress report) GROUND-STATE HANLE RESONANCES IN CESIUM VAPOR (progress report) M. Auzinsh, K. Blush, Riga, Latvia C. Andreeva, S. Cartaleva, L. Petrov Institute of Electronics, Bulgarian Academy of Sciences Sofia, Bulgaria

More information

Transit time broadening contribution to the linear evanescent susceptibility

Transit time broadening contribution to the linear evanescent susceptibility Supplementary note 1 Transit time broadening contribution to the linear evanescent susceptibility In this section we analyze numerically the susceptibility of atoms subjected to an evanescent field for

More information

Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell

Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell Invited Paper Testing the distance-dependence of the van der Waals interaction between an atom and a surface through spectroscopy in a vapor nanocell A. Laliotis, I. Maurin, P. Todorov, I. Hamdi, G. Dutier,

More information

Formation of Narrow Optical Resonance by Micrometer Thin Rb- Vapor Layer

Formation of Narrow Optical Resonance by Micrometer Thin Rb- Vapor Layer Formation of Narrow Optical Resonance by Micrometer Thin Rb- Vapor Layer A. Sargsyan Institute for Physical Research, NAS of Armenia, Ashtarak-00, Armenia, sarmeno@mail.ru ABSTRACT Recently developed thin

More information

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Single Emitter Detection with Fluorescence and Extinction Spectroscopy Single Emitter Detection with Fluorescence and Extinction Spectroscopy Michael Krall Elements of Nanophotonics Associated Seminar Recent Progress in Nanooptics & Photonics May 07, 2009 Outline Single molecule

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord

Atom interferometry. Quantum metrology and fundamental constants. Laboratoire de physique des lasers, CNRS-Université Paris Nord Diffraction Interferometry Conclusion Laboratoire de physique des lasers, CNRS-Université Paris Nord Quantum metrology and fundamental constants Diffraction Interferometry Conclusion Introduction Why using

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308)

Wednesday 3 September Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) Session 3: Metamaterials Theory (16:15 16:45, Huxley LT308) (invited) TBC Session 3: Metamaterials Theory (16:45 17:00, Huxley LT308) Light trapping states in media with longitudinal electric waves D McArthur,

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Superconductivity Induced Transparency

Superconductivity Induced Transparency Superconductivity Induced Transparency Coskun Kocabas In this paper I will discuss the effect of the superconducting phase transition on the optical properties of the superconductors. Firstly I will give

More information

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017

Quantum Optics exam. M2 LOM and Nanophysique. 28 November 2017 Quantum Optics exam M LOM and Nanophysique 8 November 017 Allowed documents : lecture notes and problem sets. Calculators allowed. Aux francophones (et francographes) : vous pouvez répondre en français.

More information

Stimulated Emission Devices: LASERS

Stimulated Emission Devices: LASERS Stimulated Emission Devices: LASERS 1. Stimulated Emission and Photon Amplification E 2 E 2 E 2 hυ hυ hυ In hυ Out hυ E 1 E 1 E 1 (a) Absorption (b) Spontaneous emission (c) Stimulated emission The Principle

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy Section I Q1. Answer (i) (b) (ii) (d) (iii) (c) (iv) (c) (v) (a) (vi) (b) (vii) (b) (viii) (a) (ix)

More information

Hong-Ou-Mandel effect with matter waves

Hong-Ou-Mandel effect with matter waves Hong-Ou-Mandel effect with matter waves R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, DB, C. I. Westbrook Laboratoire Charles Fabry, Institut d Optique, CNRS, Univ Paris-Sud Progresses in quantum information

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Elements of Quantum Optics

Elements of Quantum Optics Pierre Meystre Murray Sargent III Elements of Quantum Optics Fourth Edition With 124 Figures fya Springer Contents 1 Classical Electromagnetic Fields 1 1.1 Maxwell's Equations in a Vacuum 2 1.2 Maxwell's

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 04 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 4: outline 2 Characterization of nanomaterials SEM,

More information

Quadratic nonlinear interaction

Quadratic nonlinear interaction Nonlinear second order χ () interactions in III-V semiconductors 1. Generalities : III-V semiconductors & nd ordre nonlinear optics. The strategies for phase-matching 3. Photonic crystals for nd ordre

More information

Signal regeneration - optical amplifiers

Signal regeneration - optical amplifiers Signal regeneration - optical amplifiers In any atom or solid, the state of the electrons can change by: 1) Stimulated absorption - in the presence of a light wave, a photon is absorbed, the electron is

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii

LIST OF TOPICS BASIC LASER PHYSICS. Preface xiii Units and Notation xv List of Symbols xvii ate LIST OF TOPICS Preface xiii Units and Notation xv List of Symbols xvii BASIC LASER PHYSICS Chapter 1 An Introduction to Lasers 1.1 What Is a Laser? 2 1.2 Atomic Energy Levels and Spontaneous Emission

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission. Lecture 10 Stimulated Emission Devices Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston Understanding Nanoplasmonics Greg Sun University of Massachusetts Boston Nanoplasmonics Space 100pm 1nm 10nm 100nm 1μm 10μm 100μm 1ns 100ps 10ps Photonics 1ps 100fs 10fs 1fs Time Surface Plasmons Surface

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:10.1038/nature12036 We provide in the following additional experimental data and details on our demonstration of an electrically pumped exciton-polariton laser by supplementing optical and electrical

More information

Photonic Micro and Nanoresonators

Photonic Micro and Nanoresonators Photonic Micro and Nanoresonators Hauptseminar Nanooptics and Nanophotonics IHFG Stuttgart Overview 2 I. Motivation II. Cavity properties and species III. Physics in coupled systems Cavity QED Strong and

More information

Quantum Information Processing with Electrons?

Quantum Information Processing with Electrons? Quantum Information Processing with 10 10 Electrons? René Stock IQIS Seminar, October 2005 People: Barry Sanders Peter Marlin Jeremie Choquette Motivation Quantum information processing realiations Ions

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Nonlinear Electrodynamics and Optics of Graphene

Nonlinear Electrodynamics and Optics of Graphene Nonlinear Electrodynamics and Optics of Graphene S. A. Mikhailov and N. A. Savostianova University of Augsburg, Institute of Physics, Universitätsstr. 1, 86159 Augsburg, Germany E-mail: sergey.mikhailov@physik.uni-augsburg.de

More information

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes

Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Control of dispersion effects for resonant ultrashort pulses M. A. Bouchene, J. C. Delagnes Laboratoire «Collisions, Agrégats, Réactivité», Université Paul Sabatier, Toulouse, France Context: - Dispersion

More information

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dipole-coupling a single-electron double quantum dot to a microwave resonator Dipole-coupling a single-electron double quantum dot to a microwave resonator 200 µm J. Basset, D.-D. Jarausch, A. Stockklauser, T. Frey, C. Reichl, W. Wegscheider, T. Ihn, K. Ensslin and A. Wallraff Quantum

More information

B 2 P 2, which implies that g B should be

B 2 P 2, which implies that g B should be Enhanced Summary of G.P. Agrawal Nonlinear Fiber Optics (3rd ed) Chapter 9 on SBS Stimulated Brillouin scattering is a nonlinear three-wave interaction between a forward-going laser pump beam P, a forward-going

More information

Optics of complex micro structures

Optics of complex micro structures Optics of complex micro structures dielectric materials λ L disordered partially ordered ordered random multiple scattering liquid crystals quasi crystals (Fibonacci) photonic crystals Assembly of photonic

More information

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford Laser Physics SIMON HOOKER and COLIN WEBB Department of Physics, University of Oxford OXFORD UNIVERSITY PRESS Contents 1 Introduction 1.1 The laser 1.2 Electromagnetic radiation in a closed cavity 1.2.1

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Quantum Optics in Wavelength Scale Structures

Quantum Optics in Wavelength Scale Structures Quantum Optics in Wavelength Scale Structures SFB Summer School Blaubeuren July 2012 J. G. Rarity University of Bristol john.rarity@bristol.ac.uk Confining light: periodic dielectric structures Photonic

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2013 Lecture 02 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Lecture 2: outline 2 Introduction to Nanophotonics Theoretical

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure -

Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure - Surface Plasmon-polaritons on thin metal films - IMI (insulator-metal-insulator) structure - Dielectric 3 Metal 2 Dielectric 1 References Surface plasmons in thin films, E.N. Economou, Phy. Rev. Vol.182,

More information

Laser Cooling and Trapping of Atoms

Laser Cooling and Trapping of Atoms Chapter 2 Laser Cooling and Trapping of Atoms Since its conception in 1975 [71, 72] laser cooling has revolutionized the field of atomic physics research, an achievement that has been recognized by the

More information

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses Ido Schwartz, Dan Cogan, Emma Schmidgall, Liron Gantz, Yaroslav Don and David Gershoni The Physics

More information

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris Exploring the quantum dynamics of atoms and photons in cavities Serge Haroche, ENS and Collège de France, Paris Experiments in which single atoms and photons are manipulated in high Q cavities are modern

More information

10.5 Circuit quantum electrodynamics

10.5 Circuit quantum electrodynamics AS-Chap. 10-1 10.5 Circuit quantum electrodynamics AS-Chap. 10-2 Analogy to quantum optics Superconducting quantum circuits (SQC) Nonlinear circuits Qubits, multilevel systems Linear circuits Waveguides,

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions

SYRTE - IACI. AtoM Interferometry dual Gravi- GradiOmeter AMIGGO. from capability demonstrations in laboratory to space missions SYRTE - IACI AtoM Interferometry dual Gravi- GradiOmeter AMIGGO from capability demonstrations in laboratory to space missions A. Trimeche, R. Caldani, M. Langlois, S. Merlet, C. Garrido Alzar and F. Pereira

More information

A tutorial on meta-materials and THz technology

A tutorial on meta-materials and THz technology p.1/49 A tutorial on meta-materials and THz technology Thomas Feurer thomas.feurer@iap.unibe.ch Institute of Applied Physics Sidlerstr. 5, 3012 Bern Switzerland p.2/49 Outline Meta-materials Super-lenses

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C 2752 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C2: LASER SCIENCE AND QUANTUM INFORMATION PROCESSING TRINITY TERM 2013 Friday,

More information

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF

Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Introduction to Classical and Quantum FEL Theory R. Bonifacio University of Milano and INFN LNF Natal 2016 1 1 OUTLINE Classical SASE and spiking Semi-classical FEL theory: quantum purification Fully quantum

More information

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik Laserphysik Prof. Yong Lei & Dr. Yang Xu Fachgebiet Angewandte Nanophysik, Institut für Physik Contact: yong.lei@tu-ilmenau.de; yang.xu@tu-ilmenau.de Office: Heisenbergbau V 202, Unterpörlitzer Straße

More information

Chapter 2 Optical Transitions

Chapter 2 Optical Transitions Chapter 2 Optical Transitions 2.1 Introduction Among energy states, the state with the lowest energy is most stable. Therefore, the electrons in semiconductors tend to stay in low energy states. If they

More information

Experimental Demonstration of Spinor Slow Light

Experimental Demonstration of Spinor Slow Light Experimental Demonstration of Spinor Slow Light Ite A. Yu Department of Physics Frontier Research Center on Fundamental & Applied Sciences of Matters National Tsing Hua University Taiwan Motivation Quantum

More information

Diode Lasers and Photonic Integrated Circuits

Diode Lasers and Photonic Integrated Circuits Diode Lasers and Photonic Integrated Circuits L. A. COLDREN S. W. CORZINE University of California Santa Barbara, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS, INC. NEW YORK / CHICHESTER

More information

Supplementary Figure 1: Reflectivity under continuous wave excitation.

Supplementary Figure 1: Reflectivity under continuous wave excitation. SUPPLEMENTARY FIGURE 1 Supplementary Figure 1: Reflectivity under continuous wave excitation. Reflectivity spectra and relative fitting measured for a bias where the QD exciton transition is detuned from

More information

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor

Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Electromagnetically Induced Transparency (EIT) via Spin Coherences in Semiconductor Hailin Wang Oregon Center for Optics, University of Oregon, USA Students: Shannon O Leary Susanta Sarkar Yumin Shen Phedon

More information

Distributed feedback semiconductor lasers

Distributed feedback semiconductor lasers Distributed feedback semiconductor lasers John Carroll, James Whiteaway & Dick Plumb The Institution of Electrical Engineers SPIE Optical Engineering Press 1 Preface Acknowledgments Principal abbreviations

More information

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL

SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL SUB-NATURAL-WIDTH N-RESONANCES OBSERVED IN LARGE FREQUENCY INTERVAL A. KRASTEVA 1, S. GATEVA 1, A. SARGSYAN 2, D. SARKISYAN 2 AND S. CARTALEVA 1 1 Institute of Electronics, Bulgarian Academy of Sciences,

More information

Main Notation Used in This Book

Main Notation Used in This Book Main Notation Used in This Book z Direction normal to the surface x,y Directions in the plane of the surface Used to describe a component parallel to the interface plane xoz Plane of incidence j Label

More information

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission

Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Journal of the Korean Physical Society, Vol. 42, No., February 2003, pp. 768 773 Photonic Crystal Nanocavities for Efficient Light Confinement and Emission Axel Scherer, T. Yoshie, M. Lončar, J. Vučković

More information

Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas

Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas , pp. 84-94 Narrow and contrast resonance of increased absorption in Λ-system observed in Rb cell with buffer gas A. Sargsyan 1, A. Papoyan 1, A. Sarkisyan 1, Yu. Malakyan 1, G. Grigoryan 1, D. Sarkisyan

More information

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots

Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum dots The 3 rd GCOE Symposium 2/17-19, 19, 2011 Tohoku University, Sendai, Japan Single Semiconductor Nanostructures for Quantum Photonics Applications: A solid-state cavity-qed system with semiconductor quantum

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model

Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Today: general condition for threshold operation physics of atomic, vibrational, rotational gain media intro to the Lorentz model Laser operation Simplified energy conversion processes in a laser medium:

More information

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41

Γ43 γ. Pump Γ31 Γ32 Γ42 Γ41 Supplementary Figure γ 4 Δ+δe Γ34 Γ43 γ 3 Δ Ω3,4 Pump Ω3,4, Ω3 Γ3 Γ3 Γ4 Γ4 Γ Γ Supplementary Figure Schematic picture of theoretical model: The picture shows a schematic representation of the theoretical

More information

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers

Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Trapping and Interfacing Cold Neutral Atoms Using Optical Nanofibers Colloquium of the Research Training Group 1729, Leibniz University Hannover, Germany, November 8, 2012 Arno Rauschenbeutel Vienna Center

More information

Lasers and Electro-optics

Lasers and Electro-optics Lasers and Electro-optics Second Edition CHRISTOPHER C. DAVIS University of Maryland III ^0 CAMBRIDGE UNIVERSITY PRESS Preface to the Second Edition page xv 1 Electromagnetic waves, light, and lasers 1

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Optics, Optoelectronics and Photonics

Optics, Optoelectronics and Photonics Optics, Optoelectronics and Photonics Engineering Principles and Applications Alan Billings Emeritus Professor, University of Western Australia New York London Toronto Sydney Tokyo Singapore v Contents

More information

OPTI 511L Fall Objectives:

OPTI 511L Fall Objectives: RJ Jones OPTI 511L Fall 2017 Optical Sciences Experiment: Saturated Absorption Spectroscopy (2 weeks) In this experiment we explore the use of a single mode tunable external cavity diode laser (ECDL) to

More information

Chapter-4 Stimulated emission devices LASERS

Chapter-4 Stimulated emission devices LASERS Semiconductor Laser Diodes Chapter-4 Stimulated emission devices LASERS The Road Ahead Lasers Basic Principles Applications Gas Lasers Semiconductor Lasers Semiconductor Lasers in Optical Networks Improvement

More information

MODERN OPTICS. P47 Optics: Unit 9

MODERN OPTICS. P47 Optics: Unit 9 MODERN OPTICS P47 Optics: Unit 9 Course Outline Unit 1: Electromagnetic Waves Unit 2: Interaction with Matter Unit 3: Geometric Optics Unit 4: Superposition of Waves Unit 5: Polarization Unit 6: Interference

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Practical realization of Quantum Computation

Practical realization of Quantum Computation Practical realization of Quantum Computation Cavity QED http://www.quantumoptics.ethz.ch/ http://courses.washington.edu/ bbbteach/576/ http://www2.nict.go.jp/ http://www.wmi.badw.de/sfb631/tps/dipoletrap_and_cavity.jpg

More information

Les Houches 2009: Metastable Helium Atom Laser

Les Houches 2009: Metastable Helium Atom Laser Les Houches 2009: Metastable Helium Atom Laser Les Houches, Chamonix, February 2005 Australian Research Council Centre of Excellence for Quantum-Atom Optics UQ Brisbane SUT Melbourne ANU Canberra Snowy

More information

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert Schoelkopf

More information

Rydberg atoms: excitation, interactions, trapping

Rydberg atoms: excitation, interactions, trapping Rydberg atoms: excitation, interactions, trapping Mark Saffman I: Coherent excitation of Rydberg states II: Rydberg atom interactions III: Coherence properties of ground and Rydberg atom traps 1: Coherent

More information

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems Photonics group W. Claeys, S. Dilhair, S. Grauby, JM. Rampnoux, L. Patino Lopez,

More information

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state

Stimulated Emission. Electrons can absorb photons from medium. Accelerated electrons emit light to return their ground state Lecture 15 Stimulated Emission Devices- Lasers Stimulated emission and light amplification Einstein coefficients Optical fiber amplifiers Gas laser and He-Ne Laser The output spectrum of a gas laser Laser

More information

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows

Photonic crystals. Semi-conductor crystals for light. The smallest dielectric lossless structures to control whereto and how fast light flows Photonic crystals Semi-conductor crystals for light The smallest dielectric lossless structures to control whereto and how fast light flows Femius Koenderink Center for Nanophotonics AMOLF, Amsterdam f.koenderink@amolf.nl

More information

Energy transport in metal nanoparticle plasmon waveguides

Energy transport in metal nanoparticle plasmon waveguides Energy transport in metal nanoparticle plasmon waveguides Stefan A. Maier, Pieter G. Kik, and Harry A. Atwater California Institute of Technology Thomas J. Watson Laboratory of Applied Physics, Pasadena,

More information

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source

Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source 3rd International EUVL Symposium NOVEMBER 1-4, 2004 Miyazaki, Japan Visualization of Xe and Sn Atoms Generated from Laser-Produced Plasma for EUV Light Source H. Tanaka, A. Matsumoto, K. Akinaga, A. Takahashi

More information

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I

Light Source I. Takashi TANAKA (RIKEN SPring-8 Center) Cheiron 2012: Light Source I Light Source I Takashi TANAKA (RIKEN SPring-8 Center) Light Source I Light Source II CONTENTS Introduction Fundamentals of Light and SR Overview of SR Light Source Characteristics of SR (1) Characteristics

More information

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics Last Lecture Overview and Introduction 1. Basic optics and spectroscopy. Lasers 3. Ultrafast lasers and nonlinear optics 4. Time-resolved spectroscopy techniques Jigang Wang, Feb, 009 Today 1. Spectroscopy

More information

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Chapter 7 EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS Hot dense plasma lasing medium d θ λ λ Visible laser pump Ch07_00VG.ai The Processes of Absorption, Spontaneous Emission, and Stimulated Emission Absorption

More information

Introduction to Modern Quantum Optics

Introduction to Modern Quantum Optics Introduction to Modern Quantum Optics Jin-Sheng Peng Gao-Xiang Li Huazhong Normal University, China Vfe World Scientific» Singapore* * NewJerseyL Jersey* London* Hong Kong IX CONTENTS Preface PART I. Theory

More information

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm

Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals. 5 nm Metals Lecture 3: Optical Properties of Insulators, Semiconductors, and Metals 5 nm Course Info Next Week (Sept. 5 and 7) no classes First H/W is due Sept. 1 The Previous Lecture Origin frequency dependence

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information