Multi Heterogeneous Queueing Server System. General Exam Oral Examination Fall 2012 prepared by Husnu Saner Narman

Size: px
Start display at page:

Download "Multi Heterogeneous Queueing Server System. General Exam Oral Examination Fall 2012 prepared by Husnu Saner Narman"

Transcription

1 Multi Heterogeneous Queueing Server System General Exam Oral Examination Fall 2012 prepared by Husnu Saner Narman

2 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 2

3 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 3

4 Queueing System Service rate λ μ Arrival rate 4

5 Queueing System Problems 3) If queue is finite, what is drop rate? 1) How much time does a customer wait? 1) Average waiting time 2) Average queue length 3) Drop rate 2) How many customers are In queue? served 5

6 Heterogeneous Multi Server Queueing System μ=1 μ=2 1) Average waiting time 2) Average queue length 3) Drop rate μ=3 served 6

7 Heterogeneous Multi Server Allocation Policies 1) SSF μ=1 μ=2 2) FSF 1) SSF = Slowest Server First 2) FSF = Fastest Server First 3) RCS = Randomly Chosen Server μ=3 7

8 Different class costumer Heterogeneous Multi Server Multi Class μ=1 μ=2 μ=3 1) Priority = Which type of customer is served first? 2) Flexibility = Which type of customer will be served by which server? 8

9 Heterogeneous Multi Server Queueing System Performance metrics: Average waiting time Average queue length Drop rate (for finite queue) Allocation Policies FSF, SSF, RCS... Priority in Multi Class Multi Server System Flexibility in Multi Class Multi Server System 9

10 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 10

11 Contribution of Works Upper and Lower bound average waiting time for Multi Heterogeneous Single Queue System Upper and Lower bound average queue length for Multi Heterogeneous Single Queue System Lower bound queue drop rate for Multi Heterogeneous Single Finite Queue System Developed performance approximations are better than homogeneous approximation 11

12 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 12

13 Multi Heterogeneous System First Model (M/Mi/c) μ 1 λ... μ 2 μ c 13

14 Assumption for First Model μ 1 μ 2... μ c Poisson distribution with rate λ, Exponential distribution with rate μ i, c number of servers, Slowest Server First (SSF) allocation Because of SSF, upper bound performance metrics 14

15 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 15

16 Notations λ μ i p i u E n u E T μ ti ρ Job arrival rate, Service rate of i th server, State probability of i th state, Upper bound average queue length of the system, Upper bound average waiting time of the system, Total service rates until i th server, or Utilization of the system, or ρ=λ /μ tc c μ ti = i=1 μ i 16

17 Probability of States λ p 0 =μ t1 p 1 p 1 = p 0 λ μt1 λ p 1 =μ t2 p 2 p 2 = p 0 λ 2 μ t1 μ t2 λ p c 1 =μ tc p c p c = p 0 λ c μ t1 μ t2...μ tc λ i λ p i 1 =μ tc p i p i = p 0 μ t1 μ t2...μ tc μ tc i=0 p i =1 and ρ<1 i c = i c μ tc λ i c j=1 μ tj where i>c 17

18 Probability of States p 0 = c 1 1+ ( j=1 1 λ j j μ ti) + ( λ c c (1 ρ) i=1 i=1 μ ti) ρ= λ μ tc <1 where ρ=μ tc / λ 18

19 Average Queue Length and Waiting Time General formula of average queue length for single server E n = i=1 ip i Modified formula of average queue length for multi servers E u n = (i c) p i i=c+1 E u n = p 0 i=c+1 (i c)λ i p i = λ because i c μ tj μ tc i c μ tc c j=1 i c j=1 μ tj 19

20 Average Queue Length and Waiting Time Upper bound average queue length c μ tc = i=1 μ i E n u = p 0 c μ tc c i=1 μ ti ρ c+1 (1 ρ) 2 ρ= λ μ tc <1 From Little's Law Upper bound average waiting time E u T = E u n λ =p 0 Arrival rate c μ tc c i=1 μ ti ρ c+1 (1 ρ) 2 1 λ 20

21 Result for First Model Arrival rate Number of servers Heterogeneity level of server rates Gini Index: μ 1 =1,μ 2 =2,μ 3 =3 (0,0) (1/3,1/6) (2/3,3/6) (3/3,6/6) (0,0) (1/ 3,1/ 6) (2/3,1/2) (1,1) 21

22 Waiting Time for First Model Increase Better performance FSF heterogeneity allocation than homogeneous decreases better service rates performance 22

23 Error Comparison Error Rate Formula Which M/M/c or developed formula is better error= x simulation x calculation x simulation 23

24 Error Figures of Different Allocations for First Model Hom. Prop. approx. better with high low heterogeneity and servers 24

25 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 25

26 Multi Heterogeneous System Second Model (M/Mi/3/N) μ 1 N λ μ 2 μ 3 26

27 Assumption for Second Model μ 1 μ 2 μ 3 Poisson distribution with rate λ, Exponential distribution with rate μ i, 3 number of servers, Fastest Server First (FSF) allocation Because of FSF, lower bound performance metrics 27

28 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 28

29 Notations λ μ 1, μ 2, μ 3 π i, j, k π n,3 μ t Job arrival rate, Service rate of 1 st, 2 nd, and 3 rd servers, State probability of servers, idle:0, busy:1 State probability of n th state when servers are busy Total service rates Server state transition diagram Jobs state transition diagram 29

30 Probability of States λ π 0,3 +μ t π 0,3 =λ π 0,1,1 +λ π 1,0,1 +λ π 1,1,0 +μ t π 1,3 λ π n,3 =μ t π n+1,3 where 0 n< N π n,3 =π 0,3 ( μ λ ) n or π n,3 =π N,3 ( λ where 0 n N t μ ) n N t 30

31 Probability of States All derived formulas are invalid 31

32 Different Approach Hard to develop approximations after correction Similar methodology with first model Only Job states (no server states) Can be expendable n number of servers 32

33 Notations λ μ 1, μ 2, μ 3 p i E n l E T l P B l γ u ρ μ t1 =μ 1 Job arrival rate, Service rate of 1 st, 2 nd, and 3 rd servers, State probability of jobs in queue Lower bound average queue length of the system, Lower bound average waiting time of the system, Lower bound queue drop rate Upper bound throughput of queue Utilization of the system, or μ t2 =μ 1 +μ 2 μ t3 =μ 1 +μ 2 +μ 3 ρ=λ /μ t3 33

34 Probability of States λ p 0 =μ t1 p 1 p 1 = p 0 λ μt1 λ p 1 =μ t2 p 2 p 2 = p λ 2 0 μ t1 μ t2 λ p i 1 =μ t3 p i p i = p λ i 0 μ t1 μ t2 μ = p μ 2 t3 ρ i i 2 0 μ t1 μ t2 N +3 t3 p i =1 ={ and ρ>0 i= μ λ + λ 2 p t1 μ t1 μ + μ 2 t3 t2 μ t1 μ ( ρ3 ρ N +4 t2 1 ρ ) μ λ t1 + λ 2 μ t1 μ t2 + μ 2 t3 μ t1 μ t2 ( N +1) where 3 i N +3 ρ 1 ρ=1} ρ=λ/μ t3 34

35 Queue Drop Rate and Throughput Lower bound because of FSF allocation μ 2 P l t3 ρ N +3 B = p N +3 = p 0 μ t1 μ t2 p i = p 0 μ t3 ρ i μ t1 μ t2 Upper bound because of FSF allocation γ u =λ(1 P B l ) Arrival rate Not blocking probability 35

36 Average Queue Length and Waiting Time General formula of average queue length for single server N E n = i=1 ip i Modified formula of average queue length for multi servers N +3 E l n = (i 3) p i i=4 E n l = p 0 2 μ t3 μ t1 μ t2 i=4 N+3 (i 3)ρ i because p i = p 0 μ t3 ρ i μ t1 μ t2 36

37 Average Queue Length and Waiting Time Lower bound average queue length E n l ={p 0 2 μ t3 μ t1 μ ρ 4 ( 1 ( N +1)ρN + N ρ N +1 ) ρ 1 t2 (1 ρ) 2 2 μ p t3 N ( N +1) 0 μ t1 μ t2 ρ=1} 2 From Little's Law Lower bound average waiting time E l T = E l l n γ = E n u λ(1 P l B ) Throughput or effective arrival rate 37

38 Result for Second Model Arrival rates Average queue length Average queue delay Drop Probability Throughput Buffer Size 38

39 Queue length and Waiting time (Delay) Queue length comparison between analytical and simulation Waiting time comparison between analytical and simulation Good approximation 39

40 Drop rate and Throughput Drop rate comparison between analytical and simulation Throughput comparison between analytical and simulation Very good approximation 40

41 Drop Rate and Queue Length λ = 32, μ 1 = 1, μ 2 = 5, μ 3 = 20, N= 20, μ 1 = 1, μ 2 = 5, μ 3 = 20, Effect of buffer size to drop rate Effect of utilization to queue length After N=30, buffer size has no effect 41

42 Content Motivation Contribution Multi Heterogeneous System First Model Analysis of First Model Multi Heterogeneous System Second Model Analysis of Second Model Conclusion References 42

43 Conclusion Approximation formulas developed Queue length Waiting time Drop and Throughput for finite queue Verified by simulation Tested by different allocations, FSF, SSF, RCS 43

44 Future Work Different allocation can be used LUF : Low utilization first Allocation policies behaviors in in finite queue Developing Probabilistic allocation approximation Considering multi class system with different class and flexibility level 44

45 Questions 45

46 References [1] T. Heath, B. Diniz, E. V. Carrera, W. M. Jr., and R. Bianchini, Energy conservation in heterogeneous server clusters, in Principles and Practice of Parallel Programming, Chicago, Illinois, June 2005, pp [2] S. Gurumurthi and S. Benjaafar, Modeling and analysis of flexible queueing systems, Naval Research Logistics, vol. 51, pp , June [3] F. S. Q. Alves, H. C. Yehia, L. A. C. Pedrosa, F. R. B. Cruz, and L. Kerbache, Upper bounds on performance measures of heterogeneous M/M/c queues, Mathematical Problems in Engineering, vol. 2011, p. 18, May [4] C. Misra and P. K. Swain, Performance analysis of finite buffer queueing system with multiple heterogeneous servers, in 6 th international conference on Distributed Computing and Internet Technology, ser. ICDCIT 10, Bhubaneswar, India, Feb 2010, pp [5] G. Appenzeller, I. Keslassy, and N. McKeown, Sizing router buffers, Computer Communication Review, vol. 34, pp , Oct

47 Probability of States of First Model 47

48 Probability of States of Second Model if if 48

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers

A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers UNIVERSITY OF OKLAHOMA GENERAL EXAM REPORT A Study on Performance Analysis of Queuing System with Multiple Heterogeneous Servers Prepared by HUSNU SANER NARMAN husnu@ou.edu based on the papers 1) F. S.

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Control of Fork-Join Networks in Heavy-Traffic

Control of Fork-Join Networks in Heavy-Traffic in Heavy-Traffic Asaf Zviran Based on MSc work under the guidance of Rami Atar (Technion) and Avishai Mandelbaum (Technion) Industrial Engineering and Management Technion June 2010 Introduction Network

More information

Advanced Computer Networks Lecture 3. Models of Queuing

Advanced Computer Networks Lecture 3. Models of Queuing Advanced Computer Networks Lecture 3. Models of Queuing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/13 Terminology of

More information

Dynamic Control of Parallel-Server Systems

Dynamic Control of Parallel-Server Systems Dynamic Control of Parallel-Server Systems Jim Dai Georgia Institute of Technology Tolga Tezcan University of Illinois at Urbana-Champaign May 13, 2009 Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Elementary queueing system

Elementary queueing system Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue M/M/1 with preemptive-resume priority M/M/1 with non-preemptive priority 1 History of queueing theory An old

More information

COMP9334: Capacity Planning of Computer Systems and Networks

COMP9334: Capacity Planning of Computer Systems and Networks COMP9334: Capacity Planning of Computer Systems and Networks Week 2: Operational analysis Lecturer: Prof. Sanjay Jha NETWORKS RESEARCH GROUP, CSE, UNSW Operational analysis Operational: Collect performance

More information

CS418 Operating Systems

CS418 Operating Systems CS418 Operating Systems Lecture 14 Queuing Analysis Textbook: Operating Systems by William Stallings 1 1. Why Queuing Analysis? If the system environment changes (like the number of users is doubled),

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements Queueing Systems: Lecture 3 Amedeo R. Odoni October 18, 006 Announcements PS #3 due tomorrow by 3 PM Office hours Odoni: Wed, 10/18, :30-4:30; next week: Tue, 10/4 Quiz #1: October 5, open book, in class;

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

NATCOR: Stochastic Modelling

NATCOR: Stochastic Modelling NATCOR: Stochastic Modelling Queueing Theory II Chris Kirkbride Management Science 2017 Overview of Today s Sessions I Introduction to Queueing Modelling II Multiclass Queueing Models III Queueing Control

More information

4.7 Finite Population Source Model

4.7 Finite Population Source Model Characteristics 1. Arrival Process R independent Source All sources are identical Interarrival time is exponential with rate for each source No arrivals if all sources are in the system. OR372-Dr.Khalid

More information

Intro to Queueing Theory

Intro to Queueing Theory 1 Intro to Queueing Theory Little s Law M/G/1 queue Conservation Law 1/31/017 M/G/1 queue (Simon S. Lam) 1 Little s Law No assumptions applicable to any system whose arrivals and departures are observable

More information

Load Balancing in Distributed Service System: A Survey

Load Balancing in Distributed Service System: A Survey Load Balancing in Distributed Service System: A Survey Xingyu Zhou The Ohio State University zhou.2055@osu.edu November 21, 2016 Xingyu Zhou (OSU) Load Balancing November 21, 2016 1 / 29 Introduction and

More information

Discrete Event and Process Oriented Simulation (2)

Discrete Event and Process Oriented Simulation (2) B. Maddah ENMG 622 Simulation 11/04/08 Discrete Event and Process Oriented Simulation (2) Discrete event hand simulation of an (s, S) periodic review inventory system Consider a retailer who sells a commodity

More information

Homework 1 - SOLUTION

Homework 1 - SOLUTION Homework - SOLUTION Problem M/M/ Queue ) Use the fact above to express π k, k > 0, as a function of π 0. π k = ( ) k λ π 0 µ 2) Using λ < µ and the fact that all π k s sum to, compute π 0 (as a function

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

Kendall notation. PASTA theorem Basics of M/M/1 queue

Kendall notation. PASTA theorem Basics of M/M/1 queue Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue 1 History of queueing theory An old research area Started in 1909, by Agner Erlang (to model the Copenhagen

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1

Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1 Routing and Staffing in Large-Scale Service Systems: The Case of Homogeneous Impatient Customers and Heterogeneous Servers 1 Mor Armony 2 Avishai Mandelbaum 3 June 25, 2008 Abstract Motivated by call centers,

More information

EE 368. Weeks 3 (Notes)

EE 368. Weeks 3 (Notes) EE 368 Weeks 3 (Notes) 1 State of a Queuing System State: Set of parameters that describe the condition of the system at a point in time. Why do we need it? Average size of Queue Average waiting time How

More information

M/G/1 and Priority Queueing

M/G/1 and Priority Queueing M/G/1 and Priority Queueing Richard T. B. Ma School of Computing National University of Singapore CS 5229: Advanced Compute Networks Outline PASTA M/G/1 Workload and FIFO Delay Pollaczek Khinchine Formula

More information

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server S. Jehoashan Kingsly 1, S. Padmasekaran and K. Jeganathan 3 1 Department of Mathematics, Adhiyamaan

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Solutions to COMP9334 Week 8 Sample Problems

Solutions to COMP9334 Week 8 Sample Problems Solutions to COMP9334 Week 8 Sample Problems Problem 1: Customers arrive at a grocery store s checkout counter according to a Poisson process with rate 1 per minute. Each customer carries a number of items

More information

Buzen s algorithm. Cyclic network Extension of Jackson networks

Buzen s algorithm. Cyclic network Extension of Jackson networks Outline Buzen s algorithm Mean value analysis for Jackson networks Cyclic network Extension of Jackson networks BCMP network 1 Marginal Distributions based on Buzen s algorithm With Buzen s algorithm,

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved.

5/15/18. Operations Research: An Introduction Hamdy A. Taha. Copyright 2011, 2007 by Pearson Education, Inc. All rights reserved. The objective of queuing analysis is to offer a reasonably satisfactory service to waiting customers. Unlike the other tools of OR, queuing theory is not an optimization technique. Rather, it determines

More information

Robustness and performance of threshold-based resource allocation policies

Robustness and performance of threshold-based resource allocation policies Robustness and performance of threshold-based resource allocation policies Takayuki Osogami Mor Harchol-Balter Alan Scheller-Wolf Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue,

More information

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR

NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION MH4702/MAS446/MTH437 Probabilistic Methods in OR NANYANG TECHNOLOGICAL UNIVERSITY SEMESTER I EXAMINATION 2013-201 MH702/MAS6/MTH37 Probabilistic Methods in OR December 2013 TIME ALLOWED: 2 HOURS INSTRUCTIONS TO CANDIDATES 1. This examination paper contains

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

The Behavior of a Multichannel Queueing System under Three Queue Disciplines

The Behavior of a Multichannel Queueing System under Three Queue Disciplines The Behavior of a Multichannel Queueing System under Three Queue Disciplines John K Karlof John Jenkins November 11, 2002 Abstract In this paper we investigate a multichannel channel queueing system where

More information

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models.

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models. Queuing Theory Introduction Waiting lines are the most frequently encountered problems in everyday life. For example, queue at a cafeteria, library, bank, etc. Common to all of these cases are the arrivals

More information

6 Solving Queueing Models

6 Solving Queueing Models 6 Solving Queueing Models 6.1 Introduction In this note we look at the solution of systems of queues, starting with simple isolated queues. The benefits of using predefined, easily classified queues will

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

15 Closed production networks

15 Closed production networks 5 Closed production networks In the previous chapter we developed and analyzed stochastic models for production networks with a free inflow of jobs. In this chapter we will study production networks for

More information

How to deal with uncertainties and dynamicity?

How to deal with uncertainties and dynamicity? How to deal with uncertainties and dynamicity? http://graal.ens-lyon.fr/ lmarchal/scheduling/ 19 novembre 2012 1/ 37 Outline 1 Sensitivity and Robustness 2 Analyzing the sensitivity : the case of Backfilling

More information

Chapter 3: Markov Processes First hitting times

Chapter 3: Markov Processes First hitting times Chapter 3: Markov Processes First hitting times L. Breuer University of Kent, UK November 3, 2010 Example: M/M/c/c queue Arrivals: Poisson process with rate λ > 0 Example: M/M/c/c queue Arrivals: Poisson

More information

Multiserver Queueing Model subject to Single Exponential Vacation

Multiserver Queueing Model subject to Single Exponential Vacation Journal of Physics: Conference Series PAPER OPEN ACCESS Multiserver Queueing Model subject to Single Exponential Vacation To cite this article: K V Vijayashree B Janani 2018 J. Phys.: Conf. Ser. 1000 012129

More information

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks by Doo Il Choi, Charles Knessl and Charles Tier University of Illinois at Chicago 85 South

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

15 Closed production networks

15 Closed production networks 5 Closed production networks In the previous chapter we developed and analyzed stochastic models for production networks with a free inflow of jobs. In this chapter we will study production networks for

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

Retrial queue for cloud systems with separated processing and storage units

Retrial queue for cloud systems with separated processing and storage units Retrial queue for cloud systems with separated processing and storage units Tuan Phung-Duc Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ookayama, Meguro-ku, Tokyo, Japan

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology .203J/6.28J/3.665J/5.073J/6.76J/ESD.26J Quiz Solutions (a)(i) Without loss of generality we can pin down X at any fixed point. X 2 is still uniformly distributed over the square. Assuming that the police

More information

Power-Aware Linear Programming Based Scheduling for Heterogeneous Computer Clusters

Power-Aware Linear Programming Based Scheduling for Heterogeneous Computer Clusters Power-Aware Linear Programming Based Scheduling for Heterogeneous Computer Clusters Hadil Al-Daoud Department of Computing and Software McMaster University Email: aldaouhb@mcmasterca Issam Al-Azzoni INRIA

More information

The shortest queue problem

The shortest queue problem The shortest queue problem Ivo Adan March 19, 2002 1/40 queue 1 join the shortest queue queue 2 Where: Poisson arrivals with rate Exponential service times with mean 1/ 2/40 queue 1 queue 2 randomly assign

More information

Computer Networks More general queuing systems

Computer Networks More general queuing systems Computer Networks More general queuing systems Saad Mneimneh Computer Science Hunter College of CUNY New York M/G/ Introduction We now consider a queuing system where the customer service times have a

More information

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Xu Sun and Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 24 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/6/16 2 / 24 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Queueing Theory (Part 4)

Queueing Theory (Part 4) Queueing Theory (Part 4) Nonexponential Queueing Systems and Economic Analysis Queueing Theory-1 Queueing Models with Nonexponential Distributions M/G/1 Model Poisson input process, general service time

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals CHAPTER 4 Networks of queues. Open networks Suppose that we have a network of queues as given in Figure 4.. Arrivals Figure 4.. An open network can occur from outside of the network to any subset of nodes.

More information

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users?

Multiaccess Problem. How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? Multiaccess Problem How to let distributed users (efficiently) share a single broadcast channel? How to form a queue for distributed users? z The protocols we used to solve this multiaccess problem are

More information

Performance Analysis of Priority Queueing Schemes in Internet Routers

Performance Analysis of Priority Queueing Schemes in Internet Routers Conference on Information Sciences and Systems, The Johns Hopkins University, March 8, Performance Analysis of Priority Queueing Schemes in Internet Routers Ashvin Lakshmikantha Coordinated Science Lab

More information

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system.

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system. 8. Preliminaries L, L Q, W, W Q L = average number of customers in the system. L Q = average number of customers waiting in queue. W = average number of time a customer spends in the system. W Q = average

More information

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Yan Zhang 1 Dequan Yue 1 Wuyi Yue 2 1 College of Science, Yanshan University, Qinhuangdao 066004 PRChina 2 Department of Information

More information

Stochastic Models of Manufacturing Systems

Stochastic Models of Manufacturing Systems Stochastic Models of Manufacturing Systems Ivo Adan Systems 2/49 Continuous systems State changes continuously in time (e.g., in chemical applications) Discrete systems State is observed at fixed regular

More information

Review of Queuing Models

Review of Queuing Models Review of Queuing Models Recitation, Apr. 1st Guillaume Roels 15.763J Manufacturing System and Supply Chain Design http://michael.toren.net/slides/ipqueue/slide001.html 2005 Guillaume Roels Outline Overview,

More information

Queueing Networks G. Rubino INRIA / IRISA, Rennes, France

Queueing Networks G. Rubino INRIA / IRISA, Rennes, France Queueing Networks G. Rubino INRIA / IRISA, Rennes, France February 2006 Index 1. Open nets: Basic Jackson result 2 2. Open nets: Internet performance evaluation 18 3. Closed nets: Basic Gordon-Newell result

More information

Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue

Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue Sandwich shop : a queuing net work with finite disposable resources queue and infinite resources queue Final project for ISYE 680: Queuing systems and Applications Hongtan Sun May 5, 05 Introduction As

More information

Continuous Time Processes

Continuous Time Processes page 102 Chapter 7 Continuous Time Processes 7.1 Introduction In a continuous time stochastic process (with discrete state space), a change of state can occur at any time instant. The associated point

More information

Section 1.2: A Single Server Queue

Section 1.2: A Single Server Queue Section 12: A Single Server Queue Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 12: A Single Server Queue 1/ 30 Section

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Analysis of A Single Queue

Analysis of A Single Queue Analysis of A Single Queue Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings

More information

ADMISSION CONTROL IN THE PRESENCE OF PRIORITIES: A SAMPLE PATH APPROACH

ADMISSION CONTROL IN THE PRESENCE OF PRIORITIES: A SAMPLE PATH APPROACH Chapter 1 ADMISSION CONTROL IN THE PRESENCE OF PRIORITIES: A SAMPLE PATH APPROACH Feng Chen Department of Statistics and Operations Research University of North Carolina at Chapel Hill chenf@email.unc.edu

More information

Discrete-event simulations

Discrete-event simulations Discrete-event simulations Lecturer: Dmitri A. Moltchanov E-mail: moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Why do we need simulations? Step-by-step simulations; Classifications;

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 26 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/25/17 2 / 26 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers Int. J. Open Problems Compt. Math., Vol. 3, No. 2, June 21 ISSN 1998-6262; Copyright c ICSRS Publication, 21 www.i-csrs.org A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent

More information

State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems. J. G. Dai. Tolga Tezcan

State Space Collapse in Many-Server Diffusion Limits of Parallel Server Systems. J. G. Dai. Tolga Tezcan State Space Collapse in Many-Server Diffusion imits of Parallel Server Systems J. G. Dai H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia

More information

Manufacturing System Flow Analysis

Manufacturing System Flow Analysis Manufacturing System Flow Analysis Ronald G. Askin Systems & Industrial Engineering The University of Arizona Tucson, AZ 85721 ron@sie.arizona.edu October 12, 2005 How Many IEs Does It Take to Change a

More information

On the Latency and Energy Efficiency of Erasure-Coded Cloud Storage Systems

On the Latency and Energy Efficiency of Erasure-Coded Cloud Storage Systems 1 On the Latency and Energy Efficiency of Erasure-Coded Cloud Storage Systems Akshay Kumar, Ravi Tandon, T. Charles Clancy arxiv:1405.2833v2 [cs.dc] 22 May 2015 Abstract The increase in data storage and

More information

Quiz Queue II. III. ( ) ( ) =1.3333

Quiz Queue II. III. ( ) ( ) =1.3333 Quiz Queue UMJ, a mail-order company, receives calls to place orders at an average of 7.5 minutes intervals. UMJ hires one operator and can handle each call in about every 5 minutes on average. The inter-arrival

More information

A cµ Rule for Two-Tiered Parallel Servers

A cµ Rule for Two-Tiered Parallel Servers 1 A cµ Rule for Two-Tiered Parallel Servers Soroush Saghafian, Michael H. Veatch. Abstract The cµ rule is known to be optimal in many queueing systems with memoryless service and inter-arrival times. We

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads Operations Research Letters 37 (2009) 312 316 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Instability of FIFO in a simple queueing

More information

Research Article Binomial Schedule for an M/G/1 Type Queueing System with an Unreliable Server under N-Policy

Research Article Binomial Schedule for an M/G/1 Type Queueing System with an Unreliable Server under N-Policy Advances in Decision Sciences, Article ID 819718, 6 pages http://dx.doi.org/10.1155/2014/819718 Research Article Binomial Schedule for an M/G/1 Type Queueing System with an Unreliable Server under N-Policy

More information

VARUN GUPTA. Takayuki Osogami (IBM Research-Tokyo) Carnegie Mellon Google Research University of Chicago Booth School of Business.

VARUN GUPTA. Takayuki Osogami (IBM Research-Tokyo) Carnegie Mellon Google Research University of Chicago Booth School of Business. VARUN GUPTA Carnegie Mellon Google Research University of Chicago Booth School of Business With: Taayui Osogami (IBM Research-Toyo) 1 2 Homogeneous servers 3 First-Come-First-Serve Buffer Homogeneous servers

More information

Tutorial: Optimal Control of Queueing Networks

Tutorial: Optimal Control of Queueing Networks Department of Mathematics Tutorial: Optimal Control of Queueing Networks Mike Veatch Presented at INFORMS Austin November 7, 2010 1 Overview Network models MDP formulations: features, efficient formulations

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

State-dependent and Energy-aware Control of Server Farm

State-dependent and Energy-aware Control of Server Farm State-dependent and Energy-aware Control of Server Farm Esa Hyytiä, Rhonda Righter and Samuli Aalto Aalto University, Finland UC Berkeley, USA First European Conference on Queueing Theory ECQT 2014 First

More information

11 The M/G/1 system with priorities

11 The M/G/1 system with priorities 11 The M/G/1 system with priorities In this chapter we analyse queueing models with different types of customers, where one or more types of customers have priority over other types. More precisely we

More information

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers

MSA 640 Homework #2 Due September 17, points total / 20 points per question Show all work leading to your answers Name MSA 640 Homework #2 Due September 17, 2010 100 points total / 20 points per question Show all work leading to your answers 1. The annual demand for a particular type of valve is 3,500 units. The cost

More information

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers

Blind Fair Routing in Large-Scale Service Systems with Heterogeneous Customers and Servers OPERATIONS RESEARCH Vol. 6, No., January February 23, pp. 228 243 ISSN 3-364X (print) ISSN 526-5463 (online) http://dx.doi.org/.287/opre.2.29 23 INFORMS Blind Fair Routing in Large-Scale Service Systems

More information

Stochastic Models of Manufacturing Systems

Stochastic Models of Manufacturing Systems Stochastic Models of Manufacturing Systems Ivo Adan Exponential closed networks 2/55 Workstations 1,..., M Workstation m has c m parallel identical machines N circulating jobs (N is the population size)

More information

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 6 Queueing Models Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing

More information

Basic Queueing Theory

Basic Queueing Theory After The Race The Boston Marathon is a local institution with over a century of history and tradition. The race is run on Patriot s Day, starting on the Hopkinton green and ending at the Prudential Center

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL

A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL A STAFFING ALGORITHM FOR CALL CENTERS WITH SKILL-BASED ROUTING: SUPPLEMENTARY MATERIAL by Rodney B. Wallace IBM and The George Washington University rodney.wallace@us.ibm.com Ward Whitt Columbia University

More information

A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations

A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations Applied Mathematical Sciences, Vol. 6, 212, no. 22, 171-187 A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations D. Arivudainambi and P. Godhandaraman Department

More information