Retrial queue for cloud systems with separated processing and storage units

Size: px
Start display at page:

Download "Retrial queue for cloud systems with separated processing and storage units"

Transcription

1 Retrial queue for cloud systems with separated processing and storage units Tuan Phung-Duc Department of Mathematical and Computing Sciences Tokyo Institute of Technology Ookayama, Meguro-ku, Tokyo, Japan Abstract This paper considers a retrial queueing model for cloud computing systems where the processing unit (server and the storage unit (buffer are separated Jobs that cannot occupy the server upon arrival are stored in the buffer from which they are sent to the server after some random time After completing a service the server stays idle for a while waiting for either a new job or a job from the buffer After the idle period, the server starts searching for a job from the buffer We assume that the search time cannot be disregarded ring which the server cannot serve a job We model this system using a retrial queue with search for customers from the orbit and obtain an explicit solution in terms of partial generating functions We present a recursive scheme for computing the stationary probability of all the states Keywords: retrial queue, search time, two-way communication, cloud systems 1 Introction Retrial queueing systems are ubiquitous in our daily life The are characterized by the fact that a customer who cannot receive service immediately upon arrival joins a virtual orbit and repeats its attempt after some random time Almost all the papers in the retrial queueing literature assume that the server only waits for either a new customer or a repeated one from the orbit [9] However, there are some situations in which the server has some initiative searching for blocked customers We assume that after a service the server stays idle for a while and starts searching for blocked customers In the idle time, if either a new customer or a repeated customer comes, it receives the service immediately After the idle time, the server performs a search whose ration follows the exponential distribution During the searching time, the server cannot serve a customer, ie, customers that arrive ring the searching time of the server join the orbit After the searching time the server gets a customer from the orbit if any, otherwise it stays idle again The model is motivated from cloud computing systems where the processing unit and the storage unit are separated The processing unit has the capacity to

2 2 Phung-Duc serve only one job at a time Jobs that arrive when the server is busy are stored in a buffer from which they are sent to the server On completing a service the server stays idle for a while and then picks a job from the buffer which takes some time We refer this time to as a search time This system can be modeled using a retrial queue with search for customers for which we obtain an explicit solution Analytical solutions for some Markovian retrial queues could be found in [11, 12, 14] Some closely related works are as follows Artalejo et al [3] consider a retrial queue with search for customers from orbit In particular, after completing a service, the server either immediately picks a customer from the orbit if any with probability p or stays idle with probability 1 p This is similar to our model in the sense that the server picks a customer from the orbit However there is no idle time and searching time (the searching time is zero in this model [3] Dudin et al [8] consider the same model as in [3] with BMAP input and search for customers However, the search mechanism is started just after the service completion Some other extensions are found in [6, 7] Artalejo and Phung-Duc [4, 5] consider a model with two-way communication where after the idle time the server initiates an outgoing call whose ration is exponentially distributed This can be considered as the searching time in our model However, after an outgoing call, the server stays idle, ie, no customer from the orbit is picked up In all the works above, the idle time and the searching time are separately considered This paper is the first which proposes a search mechanism which is initiated after some idle time of the server Other related works are e to Artalejo and Gomez-Corrall [1] and Artalejo and Atencia [2] where the retrial rate is a linear function of the number of customers in the orbit The rest of the paper is organized as follows Section 2 describes the queueing model in details while Section 3 is devoted to the analysis of the model In section 4, we present a special case where the searching time is negligible Concluding remarks are presented in section 5 2 Model Incoming jobs arrive at the server according to a Poisson process with rate Service time of incoming customers follows the exponential distribution with mean 1/ After the completion of a service the server stays idle for an exponentially distributed time with mean 1/α During this idle time, an arriving customer (either a new customer or a repeated one is immediately served After the idle time, the server starts searching for a customer in the orbit The searching time follows the exponential distribution with mean 1/ Arriving customers who see the server busy (serving a customer or searching join the orbit from which each customer retries to enter the server after some exponentially distributed time with mean 1/ To the best of our knowledge, this model has not been analyzed in the literature

3 Cloud systems with separated processing and storage units 3 3 Analysis Let C(t denote the state of the server at time t 0 0, the server is idle, C(t = 1, the server is serving a job, 2, the server is searching for a customer Let N(t denote the number of customers in the orbit at time t 0 We then have the fact that {X(t = (C(t, N(t, t 0} forms a Markov chain on the state space S = {0, 1, 2} {0, 1, 2, } See Figure 1 for the transitions among states We assume that the system is stable, ie, the stationary distribution exists The necessary and sufficient condition for the stability is < which will be obtained later in the analysis Fig 1 Transitions among states Letting π i,j = lim t P(C(t = i, N(t = j, the balance equations for states (i, j are given as follows ( + απ 0,0 = π 1,0 + π 2,0, (1 ( + α + jπ 0,j = π 1,j, j 1, (2 ( + π 1,j = (j + 1π 0,j+1 + π 2,j+1 + π 1,j 1 + π 0,j, j 0, ( + π 2,j = απ 0,j + π 2,j 1, j 0, (3 where π i, 1 = 0 (i = 1, 2 Let Π i (z denote the generating function of π i,j, ie Π i (z = j=0 π i,jz j (i = 0, 1, 2 Transforming the above balance equations to

4 4 Phung-Duc generating functions we obtain, ( + απ 0 (z + zπ 0(z = Π 1 (z + π 2,0, (4 ( + Π 1 (z = Π 0(z + z (Π 2(z π 2,0 + zπ 1 (z + Π 0 (z, (5 ( + Π 2 (z = απ 0 (z + zπ 2 (z (6 Summing the above equations and arranging the result yields (Π 1 (z + Π 2 (z = Π 0(z + (Π 2 (z π 2,0 (7 z This equation represents the balance between the flows coming into and out the orbit From (4 and (6, we obtain Π 1 (z = ( + απ 0(z + zπ 0(z π 2,0, (8 Π 2 (z = απ 0(z + z (9 Substituting these two expressions into the orbit balance equation (7 and arranging the result yields where A(z = Π 0(z = A(zΠ 0 (z + B(z, (10 (+α We decompose A(z as follows where a, b and c are given by + α( /z + z ( 1 z, B(z = A(z = a z + b c 1 z + 1 z, + π 2,0 z a = α ( +, b = 2 ( + α + 2 α, c = ( + ( + 2 ( We first solve the non-homogeneous differential equation which is transformed to Π 0(z = A(zΠ 0 (z, Π 0(z Π 0 (z = a z + b 1 z + c 1 z +

5 Cloud systems with separated processing and storage units 5 The solution of this differential equation is given by ( Π 0 (z = Cz a ν1 b ( ν c(+ 2, z + z where C is a constant number As usual, we find the solution for our original differential equation (10 in the following form ( Π 0 (z = C(zz a ν1 b ( ν c(+ 2, z + z where C(z is an unknown function Substituting this into the original differential equation (10 yields or equivalently ( C (zz a ν1 b ( ν c(+ 2 = π 2,0 z + z z, C (z = π ( bν 1 2,0 ν1 ( c(+ν 2 z (a+1 z + z Therefore, we have C(z = C 0 π 2,0 1 z ( bν 1 u (a+1 ν1 ( c(+ν 2, u + u where C 0 is a constant number Because Π 0 (z is analytic at z = 0 and a < 0, we must have C(0 = 0 implying that C 0 = π 2,0 1 The final solution for Π 0 (z is given by Π 0 (z = π ( 2,0 ν1 za z z 0 0 ( bν 1 u (a+1 ν1 ( c(+ν 2 u + u u (a+1 ( ν1 u From (7, (9 and (10, we obtain Π 1 (1 + Π 2 (1 = b ( We also have the normalization condition: c(+ + z bν 1 ( + u c(+ (11 ( A(1 + α Π 0 (1 (12 Π 0 (1 + Π 1 (1 + Π 2 (1 = 1 (13

6 6 Phung-Duc From (12 and (13, we obtain Π 0 (1 = (1 α +, where the expression of A(1 in terms of given parameters is used It follows from (8 and (9 that Π 2 (1 = α(1 α +, Π 1 (1 = Therefore, from the expression for Π 0 (z, we obtain the expression for π 2,0 as follows (1 ν π 2,0 = 1 ( + ( bν 1 1 ( c(+ν 0 u (a+1 2 (14 ν1 u + u From this expression, we obtain the fact that the stability condition for the model is < 31 Recursive formulae Now, we are going to derive a recursive scheme for the stationary distribution From the orbit balance equation, we obtain (π 1,j + π 2,j = (j + 1π 0,j+1 + π 2,j+1 From this equation and (3 with j := j + 1, we obtain, ( π 1,j + 2 π 2,j = (j αν 2 π 0,j Therefore, we have the following recursive scheme for the stationary distribution π 0,j = [( + π 1,j 1 + π 2,j 1 ] j( + + α, j 1, π 1,j = ( + α + jπ 0,j, j 1, π 2,j = απ 0,j + π 2,j 1 +, j 1, where π 0,0, π 1,0 and π 2,0 are given in advance In particular, π 2,0 is obtained by (14 and π 0,0 is obtained from (3 with j = 0 while π 1,0 is obtained by summing up (1 and (3 with j = 0, ie, π 1,0 = (π 0,0 + π 2,0 / It should be noted that the second and the third equations follow from (2 and (3, respectively Remark 1 This recursive formulae allow to calculate any probability π i,j Furthermore, the recursive scheme can be implemented in both numerical and symbolic manners

7 Cloud systems with separated processing and storage units 7 Remark 2 Taking the derivatives at z = 1 for the differential equation (10 we can obtain Π (n 0 (1 for any n Since Π 1 (z and Π 2 (z are expressed in terms of Π 0 (z, we can also calculate Π (n 1 (1 and Π (n 2 (1 for any n 4 Limiting case We investigate the case where meaning that a call in the orbit is picked to the server after an exponentially distributed idle time with mean 1/α This is equivalent to the linear retrial rate policy presented in [1] In particular, we observe that when, a = α, b = 2, c = 0 Furthermore, lim Π 2(z = 0, meaning that the searching states do not exist We have π 2,0 lim = lim = ( u (a+1 ( ν1 u Thus, it follows from (11 that Π 0 (z = ( 0 u (a+1 u b ( (1 ν1 z α ν1 z Substituting (10 into (8, we obtain 5 Concluding remarks (1 b ( + u ( z 0 u α 1 u 1 0 u α 1 ( u Π 1 (z = ( + α + za(zπ 0(z c(+ In this paper, we present a new queueing model for cloud computing systems where the processing unit and the storage unit are separated The model is explicitly analyzed in terms of generating functions Furthermore, we have presented a simple recursive scheme allowing to calculate the stationary distribution We also consider one special case of our model which has appeared in the literature For future work, we would like to extend our model to a multiserver setting which may call for a level-dependent QBD formulation [13] It might be also interesting to consider the corresponding model with constant retrial rate as in [15]

8 8 Phung-Duc References 1 Artalejo and Gomez-Corral (1997 Steady state solution of a single-server queue with linear repeated request Journal of Applied Probability, 34, Artalejo and Atencia (2004 On the single server retrial queue with batch arrivals Sankhya, 66, Artalejo, JR, Joshua, VC, Krishnamoorthy (2002, A, in: JR Artalejo, A Krishnamoorthy (Eds, An M/G/1 retrial queue with orbital search by the server Advances in Stochastic Modelling, Notable Publications Inc, NJ, pp Artalejo, JR, and Phung-Duc, T (2012 Markovian retrial queues with two way communication Journal of Instrial and Management Optimization, Vol 8, No 4, Artalejo, JR, and Phung-Duc, T (2013 Single server retrial queues with two way communication Applied Mathematical Modelling, 37(4, Chakravarthy, S R, Krishnamoorthy, A, Joshua, V C (2006 Analysis of a multi-server retrial queue with search of customers from the orbit Performance Evaluation, 63(8, Deepak, T G, Dudin, A N, Joshua, V C, and Krishnamoorthy, A (2013 On an M X /G/1 retrial system with two types of search of customers from the orbit Stochastic Analysis and Applications, 31(1, Dudin, A N, Krishnamoorthy, A, Joshua, V C, Tsarenkov, G V (2004 Analysis of the BMAP/G/1 retrial system with search of customers from the orbit European Journal of Operational Research, 157(1, Falin, G and Templeton, J G (1997 Retrial Queues Chapman and Hall 10 Krishnamoorthy, A, Deepak, T G, Joshua, V C (2005 An M/G/1 retrial queue with nonpersistent customers and orbital search Stochastic Analysis and Applications, 23(5, Phung-Duc, T, Masuyama, H, Kasahara, S, Takahashi, Y (2009 M/M/3/3 and M/M/4/4 retrial queues Journal of Instrial and Management Optimization, 5(3, Phung-Duc, T, Masuyama, H, Kasahara, S, Takahashi, Y (2010 Statedependent M/M/c/c+ r retrial queues with Bernoulli abandonment Journal of Instrial and Management Optimization, 6(3, Phung-Duc, T, Masuyama, H, Kasahara, S, and Takahashi, Y (2010 A simple algorithm for the rate matrices of level-dependent QBD processes In Proceedings of the 5th international conference on queueing theory and network applications ACM Phung-Duc, T (2012 An explicit solution for a tandem queue with retrials and losses Operational Research, 12(2, Phung-Duc, T, Rogiest, W, Takahashi, Y and Bruneel, H (2014 Retrial queues with balanced call blending: analysis of single-server and multiserver model, Annals of Operations Research, DOI:101007/s Acknowledgements Tuan Phung-Duc was supported in part by Japan Society for the Promotion of Science, JSPS Grant-in-Aid for Young Scientists (B, Grant Number The author would like to thank the anonymous referees for constructive comments which improve the presentation of the paper

Citation Operational Research (2012), 12(2):

Citation Operational Research (2012), 12(2): TitleAn explicit solution for a tandem q Author(s) Phung-Duc, Tuan Citation Operational Research (2012), 12(2): Issue Date 2012-08 URL http://hdl.handle.net/2433/158216 RightThe final publication is available

More information

MARKOVIAN RETRIAL QUEUES WITH TWO WAY COMMUNICATION. Jesus R. Artalejo. Tuan Phung-Duc

MARKOVIAN RETRIAL QUEUES WITH TWO WAY COMMUNICATION. Jesus R. Artalejo. Tuan Phung-Duc Manuscript submitted to AIMS Journals Volume X, Number 0X, XX 200X Website: http://aimsciencesorg pp X XX MARKOVIAN RETRIAL QUEUES WITH TWO WAY COMMUNICATION Jesus R Artalejo Department of Statistics and

More information

M/M/3/3 AND M/M/4/4 RETRIAL QUEUES. Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi

M/M/3/3 AND M/M/4/4 RETRIAL QUEUES. Tuan Phung-Duc, Hiroyuki Masuyama, Shoji Kasahara and Yutaka Takahashi JOURNAL OF INDUSTRIAL AND doi:10.3934/imo.2009.5.431 MANAGEMENT OPTIMIZATION Volume 5, Number 3, August 2009 pp. 431 451 M/M/3/3 AND M/M/4/4 RETRIAL QUEUES Tuan Phung-Duc, Hiroyuki Masuyama, Shoi Kasahara

More information

Inventory Ordering Control for a Retrial Service Facility System Semi- MDP

Inventory Ordering Control for a Retrial Service Facility System Semi- MDP International Journal of Engineering Science Invention (IJESI) ISS (Online): 239 6734, ISS (Print): 239 6726 Volume 7 Issue 6 Ver I June 208 PP 4-20 Inventory Ordering Control for a Retrial Service Facility

More information

M/M/1 Retrial Queueing System with Negative. Arrival under Erlang-K Service by Matrix. Geometric Method

M/M/1 Retrial Queueing System with Negative. Arrival under Erlang-K Service by Matrix. Geometric Method Applied Mathematical Sciences, Vol. 4, 21, no. 48, 2355-2367 M/M/1 Retrial Queueing System with Negative Arrival under Erlang-K Service by Matrix Geometric Method G. Ayyappan Pondicherry Engineering College,

More information

ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS

ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS ON THE NON-EXISTENCE OF PRODUCT-FORM SOLUTIONS FOR QUEUEING NETWORKS WITH RETRIALS J.R. ARTALEJO, Department of Statistics and Operations Research, Faculty of Mathematics, Complutense University of Madrid,

More information

M/M/1 Retrial Queueing System with N-Policy. Multiple Vacation under Non-Pre-Emtive Priority. Service by Matrix Geometric Method

M/M/1 Retrial Queueing System with N-Policy. Multiple Vacation under Non-Pre-Emtive Priority. Service by Matrix Geometric Method Applied Mathematical Sciences, Vol. 4, 2010, no. 23, 1141 1154 M/M/1 Retrial Queueing System with N-Policy Multiple Vacation under Non-Pre-Emtive Priority Service by Matrix Geometric Method G. AYYAPPAN

More information

Preemptive Resume Priority Retrial Queue with. Two Classes of MAP Arrivals

Preemptive Resume Priority Retrial Queue with. Two Classes of MAP Arrivals Applied Mathematical Sciences, Vol. 7, 2013, no. 52, 2569-2589 HIKARI Ltd, www.m-hikari.com Preemptive Resume Priority Retrial Queue with Two Classes of MAP Arrivals M. Senthil Kumar 1, S. R. Chakravarthy

More information

Non-Persistent Retrial Queueing System with Two Types of Heterogeneous Service

Non-Persistent Retrial Queueing System with Two Types of Heterogeneous Service Global Journal of Theoretical and Applied Mathematics Sciences. ISSN 2248-9916 Volume 1, Number 2 (211), pp. 157-164 Research India Publications http://www.ripublication.com Non-Persistent Retrial Queueing

More information

An M/G/1 Retrial Queue with Non-Persistent Customers, a Second Optional Service and Different Vacation Policies

An M/G/1 Retrial Queue with Non-Persistent Customers, a Second Optional Service and Different Vacation Policies Applied Mathematical Sciences, Vol. 4, 21, no. 4, 1967-1974 An M/G/1 Retrial Queue with Non-Persistent Customers, a Second Optional Service and Different Vacation Policies Kasturi Ramanath and K. Kalidass

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Stability Condition of a Retrial Queueing System with Abandoned and Feedback Customers

Stability Condition of a Retrial Queueing System with Abandoned and Feedback Customers Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 10, Issue 2 December 2015), pp. 667 677 Applications and Applied Mathematics: An International Journal AAM) Stability Condition

More information

On Tandem Blocking Queues with a Common Retrial Queue

On Tandem Blocking Queues with a Common Retrial Queue On Tandem Blocking Queues with a Common Retrial Queue K. Avrachenkov U. Yechiali Abstract We consider systems of tandem blocking queues having a common retrial queue, for which explicit analytic results

More information

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server

Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server Two Heterogeneous Servers Queueing-Inventory System with Sharing Finite Buffer and a Flexible Server S. Jehoashan Kingsly 1, S. Padmasekaran and K. Jeganathan 3 1 Department of Mathematics, Adhiyamaan

More information

On Tandem Blocking Queues with a Common Retrial Queue

On Tandem Blocking Queues with a Common Retrial Queue On Tandem Blocking Queues with a Common Retrial Queue K. Avrachenkov U. Yechiali Abstract We consider systems of tandem blocking queues having a common retrial queue. The model represents dynamics of short

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

L. Lakatos, S. V. Serebriakova

L. Lakatos, S. V. Serebriakova L. Lakatos S. V. Serebriakova Eötvös Lorand University Budapest Hungary V. M. Glushkov Institute of Cybernetics of NAS of Ukraine Kyiv Ukraine e-mail: lakatos@inf.elte.hu svitlana.pustova @ gmail.com Abstract

More information

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers Int. J. Open Problems Compt. Math., Vol. 3, No. 2, June 21 ISSN 1998-6262; Copyright c ICSRS Publication, 21 www.i-csrs.org A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent

More information

Queueing Systems with Customer Abandonments and Retrials. Song Deng

Queueing Systems with Customer Abandonments and Retrials. Song Deng Queueing Systems with Customer Abandonments and Retrials by Song Deng A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering - Industrial

More information

Multi Stage Queuing Model in Level Dependent Quasi Birth Death Process

Multi Stage Queuing Model in Level Dependent Quasi Birth Death Process International Journal of Statistics and Systems ISSN 973-2675 Volume 12, Number 2 (217, pp. 293-31 Research India Publications http://www.ripublication.com Multi Stage Queuing Model in Level Dependent

More information

Multiserver Queueing Model subject to Single Exponential Vacation

Multiserver Queueing Model subject to Single Exponential Vacation Journal of Physics: Conference Series PAPER OPEN ACCESS Multiserver Queueing Model subject to Single Exponential Vacation To cite this article: K V Vijayashree B Janani 2018 J. Phys.: Conf. Ser. 1000 012129

More information

M/M/1 retrial queue with working vacations

M/M/1 retrial queue with working vacations Acta Informatica manuscript No. (will be inserted by the editor) M/M/1 retrial queue with working vacations Tien Van Do the date of receipt and acceptance should be inserted later Abstract In this paper

More information

An M/M/1 Queue in Random Environment with Disasters

An M/M/1 Queue in Random Environment with Disasters An M/M/1 Queue in Random Environment with Disasters Noam Paz 1 and Uri Yechiali 1,2 1 Department of Statistics and Operations Research School of Mathematical Sciences Tel Aviv University, Tel Aviv 69978,

More information

Queuing Analysis of Markovian Queue Having Two Heterogeneous Servers with Catastrophes using Matrix Geometric Technique

Queuing Analysis of Markovian Queue Having Two Heterogeneous Servers with Catastrophes using Matrix Geometric Technique International Journal of Statistics and Systems ISSN 0973-2675 Volume 12, Number 2 (2017), pp. 205-212 Research India Publications http://www.ripublication.com Queuing Analysis of Markovian Queue Having

More information

An M/M/1 Retrial Queue with Unreliable Server 1

An M/M/1 Retrial Queue with Unreliable Server 1 An M/M/1 Retrial Queue with Unreliable Server 1 Nathan P. Sherman 2 and Jeffrey P. Kharoufeh 3 Department of Operational Sciences Air Force Institute of Technology Abstract We analyze an unreliable M/M/1

More information

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY SECOND EDITION ACADEMIC PRESS An imprint of Elsevier Science Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo Contents

More information

A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations

A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations Applied Mathematical Sciences, Vol. 6, 212, no. 22, 171-187 A Batch Arrival Retrial Queue with Two Phases of Service, Feedback and K Optional Vacations D. Arivudainambi and P. Godhandaraman Department

More information

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 2, Issue 2 (December 207), pp. 658 670 Applications and Applied Mathematics: An International Journal (AAM) Stationary Analysis of

More information

A discrete-time Geo/G/1 retrial queue with starting failures and second optional service

A discrete-time Geo/G/1 retrial queue with starting failures and second optional service Computers and Mathematics with Applications 53 (2007) 115 127 www.elsevier.com/locate/camwa A discrete-time Geo/G/1 retrial queue with starting failures and second optional service Jinting Wang, Qing Zhao

More information

System with a Server Subject to Breakdowns

System with a Server Subject to Breakdowns Applied Mathematical Sciences Vol. 7 213 no. 11 539 55 On Two Modifications of E 2 /E 2 /1/m Queueing System with a Server Subject to Breakdowns Michal Dorda VSB - Technical University of Ostrava Faculty

More information

A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time

A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time A Study on M x /G/1 Queuing System with Essential, Optional Service, Modified Vacation and Setup time E. Ramesh Kumar 1, L. Poornima 2 1 Associate Professor, Department of Mathematics, CMS College of Science

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

EQUILIBRIUM CUSTOMER STRATEGIES AND SOCIAL-PROFIT MAXIMIZATION IN THE SINGLE SERVER CONSTANT RETRIAL QUEUE

EQUILIBRIUM CUSTOMER STRATEGIES AND SOCIAL-PROFIT MAXIMIZATION IN THE SINGLE SERVER CONSTANT RETRIAL QUEUE EQUILIBRIUM CUSTOMER STRATEGIES AND SOCIAL-PROFIT MAXIMIZATION IN THE SINGLE SERVER CONSTANT RETRIAL QUEUE ANTONIS ECONOMOU AND SPYRIDOULA KANTA Abstract. We consider the single server constant retrial

More information

A Discrete-Time Geo/G/1 Retrial Queue with General Retrial Times

A Discrete-Time Geo/G/1 Retrial Queue with General Retrial Times Queueing Systems 48, 5 21, 2004 2004 Kluwer Academic Publishers. Manufactured in The Netherlands. A Discrete-Time Geo/G/1 Retrial Queue with General Retrial Times IVAN ATENCIA iatencia@ctima.uma.es Departamento

More information

Flow Equivalence and Stochastic Equivalence in G-Networks

Flow Equivalence and Stochastic Equivalence in G-Networks Flow Equivalence and Stochastic Equivalence in G-Networks Jean-Michel Fourneau Laboratoire PRISM Univ. de Versailles Saint-Quentin 45 Avenue des Etats-Unis 78000 Versailles, France jmf@prism.uvsq.fr Erol

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

The discrete-time Geom/G/1 queue with multiple adaptive vacations and. setup/closedown times

The discrete-time Geom/G/1 queue with multiple adaptive vacations and. setup/closedown times ISSN 1750-9653, England, UK International Journal of Management Science and Engineering Management Vol. 2 (2007) No. 4, pp. 289-296 The discrete-time Geom/G/1 queue with multiple adaptive vacations and

More information

Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing

Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing Submitted to Management Science manuscript MS-251-27 Electronic Companion Fluid Models for Overloaded Multi-Class Many-Server Queueing Systems with FCFS Routing Rishi Talreja, Ward Whitt Department of

More information

Continuous-Time Markov Chain

Continuous-Time Markov Chain Continuous-Time Markov Chain Consider the process {X(t),t 0} with state space {0, 1, 2,...}. The process {X(t),t 0} is a continuous-time Markov chain if for all s, t 0 and nonnegative integers i, j, x(u),

More information

The Transition Probability Function P ij (t)

The Transition Probability Function P ij (t) The Transition Probability Function P ij (t) Consider a continuous time Markov chain {X(t), t 0}. We are interested in the probability that in t time units the process will be in state j, given that it

More information

Two questions on linear QBD s (quasi-birth-and-death) processes

Two questions on linear QBD s (quasi-birth-and-death) processes Two questions on linear QBD s (quasi-birth-and-death) processes Florin Avram March 8, 2011 Contents 1 Quasi birth and death processes 1 2 The QBD of the linear retrial/overflow model 3 3 The factorial

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Investigating the mean response time in finite-source retrial queues using the algorithm by Gaver, Jacobs, and Latouche

Investigating the mean response time in finite-source retrial queues using the algorithm by Gaver, Jacobs, and Latouche Annales Mathematicae et Informaticae 36 (2009) pp. 43 60 http://ami.ektf.hu Investigating the mean response time in finite-source retrial queues using the algorithm by Gaver, Jacobs, and Latouche Patrick

More information

ANALYSIS OF A QUEUE IN THE BMAP/G/1/N SYSTEM

ANALYSIS OF A QUEUE IN THE BMAP/G/1/N SYSTEM ANALYSIS OF A QUEUE IN THE BMAP/G/1/N SYSTEM ALEXANDER N. DUDIN, ALEXEY A. SHABAN, VALENTINA I. KLIMENOK Laboratory of Applied Probabilistic Analysis Department of Applied Mathematics and Computer Science

More information

MULTISERVER QUEUEING SYSTEMS WITH RETRIALS AND LOSSES

MULTISERVER QUEUEING SYSTEMS WITH RETRIALS AND LOSSES ANZIAM J. 48(27), 297 314 MULTISERVER QUEUEING SYSTEMS WITH RETRIALS AND LOSSES VYACHESLAV M. ABRAMOV 1 (Received 8 June, 26; revised 3 November, 26) Abstract The interest in retrial queueing systems mainly

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads

Operations Research Letters. Instability of FIFO in a simple queueing system with arbitrarily low loads Operations Research Letters 37 (2009) 312 316 Contents lists available at ScienceDirect Operations Research Letters journal homepage: www.elsevier.com/locate/orl Instability of FIFO in a simple queueing

More information

STEADY-STATE BEHAVIOR OF AN M/M/1 QUEUE IN RANDOM ENVIRONMENT SUBJECT TO SYSTEM FAILURES AND REPAIRS. S. Sophia 1, B. Praba 2

STEADY-STATE BEHAVIOR OF AN M/M/1 QUEUE IN RANDOM ENVIRONMENT SUBJECT TO SYSTEM FAILURES AND REPAIRS. S. Sophia 1, B. Praba 2 International Journal of Pure and Applied Mathematics Volume 101 No. 2 2015, 267-279 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v101i2.11

More information

LINEAR RETRIAL INVENTORY SYSTEM WITH SECOND OPTIONAL SERVICE UNDER MIXED PRIORITY SERVICE

LINEAR RETRIAL INVENTORY SYSTEM WITH SECOND OPTIONAL SERVICE UNDER MIXED PRIORITY SERVICE TWMS J. App. Eng. Math. V.5, N.2, 2015, pp. 249-268. LINEAR RETRIAL INVENTORY SYSTEM WITH SECOND OPTIONAL SERVICE UNDER MIXED PRIORITY SERVICE K. JEGANATHAN Abstract. The present paper deals with a generalization

More information

A Heterogeneous two-server queueing system with reneging and no waiting line

A Heterogeneous two-server queueing system with reneging and no waiting line ProbStat Forum, Volume 11, April 2018, Pages 67 76 ISSN 0974-3235 ProbStat Forum is an e-journal. For details please visit www.probstat.org.in A Heterogeneous two-server queueing system with reneging and

More information

Stochastic inventory management at a service facility with a set of reorder levels

Stochastic inventory management at a service facility with a set of reorder levels Volume 23 (2), pp. 137 149 http://www.orssa.org.za ORiON ISSN 0529-191-X c 2007 Stochastic inventory management at a service facility with a set of reorder levels VSS Yadavalli B Sivakumar G Arivarignan

More information

RETRIAL QUEUES IN THE PERFORMANCE MODELING OF CELLULAR MOBILE NETWORKS USING MOSEL

RETRIAL QUEUES IN THE PERFORMANCE MODELING OF CELLULAR MOBILE NETWORKS USING MOSEL RETRIAL QUEUES IN THE PERFORMANCE MODELING OF CELLULAR MOBILE NETWORKS USING MOSEL JÁNOS ROSZIK, JÁNOS SZTRIK, CHE-SOONG KIM Department of Informatics Systems and Networks, University of Debrecen, P.O.

More information

Chapter 1. Introduction. 1.1 Stochastic process

Chapter 1. Introduction. 1.1 Stochastic process Chapter 1 Introduction Process is a phenomenon that takes place in time. In many practical situations, the result of a process at any time may not be certain. Such a process is called a stochastic process.

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

On the Class of Quasi-Skip Free Processes: Stability & Explicit solutions when successively lumpable

On the Class of Quasi-Skip Free Processes: Stability & Explicit solutions when successively lumpable On the Class of Quasi-Skip Free Processes: Stability & Explicit solutions when successively lumpable DRAFT 2012-Nov-29 - comments welcome, do not cite or distribute without permission Michael N Katehakis

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY APPROXIMATE ANALYSIS OF AN UNRELIABLE M/M/2 RETRIAL QUEUE THESIS Brian P. Crawford, 1 Lt, USAF AFIT/GOR/ENS/07-05 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

A Retrial Queueing model with FDL at OBS core node

A Retrial Queueing model with FDL at OBS core node A Retrial Queueing model with FDL at OBS core node Chuong Dang Thanh a, Duc Pham Trung a, Thang Doan Van b a Faculty of Information Technology, College of Sciences, Hue University, Hue, Viet Nam. E-mail:

More information

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 230 244 A Heterogeneous Two-Server Queueing

More information

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 5. Continuous-Time Markov Chains. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 5. Continuous-Time Markov Chains Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Continuous-Time Markov Chains Consider a continuous-time stochastic process

More information

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks

A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks A Queueing System with Queue Length Dependent Service Times, with Applications to Cell Discarding in ATM Networks by Doo Il Choi, Charles Knessl and Charles Tier University of Illinois at Chicago 85 South

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

Introduction to Queuing Networks Solutions to Problem Sheet 3

Introduction to Queuing Networks Solutions to Problem Sheet 3 Introduction to Queuing Networks Solutions to Problem Sheet 3 1. (a) The state space is the whole numbers {, 1, 2,...}. The transition rates are q i,i+1 λ for all i and q i, for all i 1 since, when a bus

More information

THIELE CENTRE. The M/M/1 queue with inventory, lost sale and general lead times. Mohammad Saffari, Søren Asmussen and Rasoul Haji

THIELE CENTRE. The M/M/1 queue with inventory, lost sale and general lead times. Mohammad Saffari, Søren Asmussen and Rasoul Haji THIELE CENTRE for applied mathematics in natural science The M/M/1 queue with inventory, lost sale and general lead times Mohammad Saffari, Søren Asmussen and Rasoul Haji Research Report No. 11 September

More information

Little s result. T = average sojourn time (time spent) in the system N = average number of customers in the system. Little s result says that

Little s result. T = average sojourn time (time spent) in the system N = average number of customers in the system. Little s result says that J. Virtamo 38.143 Queueing Theory / Little s result 1 Little s result The result Little s result or Little s theorem is a very simple (but fundamental) relation between the arrival rate of customers, average

More information

Research Article Performance of an M/M/1 Retrial Queue with Working Vacation Interruption and Classical Retrial Policy

Research Article Performance of an M/M/1 Retrial Queue with Working Vacation Interruption and Classical Retrial Policy Advances in Operations Research Volume 216, Article ID 453831, 9 pages http://dx.doi.org/1.1155/216/453831 Research Article Performance of an M/M/1 Retrial Queue with Working Vacation Interruption and

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

Batch Arrival Queueing System. with Two Stages of Service

Batch Arrival Queueing System. with Two Stages of Service Int. Journal of Math. Analysis, Vol. 8, 2014, no. 6, 247-258 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.411 Batch Arrival Queueing System with Two Stages of Service S. Maragathasundari

More information

An Efficient Solution to a Retrial Queue for the Performability Evaluation of DHCP

An Efficient Solution to a Retrial Queue for the Performability Evaluation of DHCP An Efficient Solution to a Retrial Queue for the Performability Evaluation of DHCP Tien Van Do Department of Telecommunications, Budapest University of Technology and Economics, H-1117, Magyar tudósok

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

ring structure Abstract Optical Grid networks allow many computing sites to share their resources by connecting

ring structure Abstract Optical Grid networks allow many computing sites to share their resources by connecting Markovian approximations for a grid computing network with a ring structure J. F. Pérez and B. Van Houdt Performance Analysis of Telecommunication Systems Research Group, Department of Mathematics and

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle  holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/39637 holds various files of this Leiden University dissertation Author: Smit, Laurens Title: Steady-state analysis of large scale systems : the successive

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

Departure Processes of a Tandem Network

Departure Processes of a Tandem Network The 7th International Symposium on perations Research and Its Applications (ISRA 08) Lijiang, China, ctober 31 Novemver 3, 2008 Copyright 2008 RSC & APRC, pp. 98 103 Departure Processes of a Tandem Network

More information

M/G/1 and M/G/1/K systems

M/G/1 and M/G/1/K systems M/G/1 and M/G/1/K systems Dmitri A. Moltchanov dmitri.moltchanov@tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Description of M/G/1 system; Methods of analysis; Residual life approach; Imbedded

More information

Analysis of a Two-Phase Queueing System with Impatient Customers and Multiple Vacations

Analysis of a Two-Phase Queueing System with Impatient Customers and Multiple Vacations The Tenth International Symposium on Operations Research and Its Applications (ISORA 211) Dunhuang, China, August 28 31, 211 Copyright 211 ORSC & APORC, pp. 292 298 Analysis of a Two-Phase Queueing System

More information

The Unreliable M/M/1 Retrial Queue in a Random Environment

The Unreliable M/M/1 Retrial Queue in a Random Environment The Unreliable M/M/1 Retrial Queue in a Random Environment James D. Cordeiro Department of Mathematics and Statistics Air Force Institute of Technology 2950 Hobson Way (AFIT/ENC) Wright Patterson AFB,

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

A Perishable Inventory System with Service Facilities and Negative Customers

A Perishable Inventory System with Service Facilities and Negative Customers AMO - Advanced Modeling and Optimization, Volume 7, Number 2, 2005 A Perishable Inventory System with Service Facilities and Negative Customers B. Sivakumar 1 and G. Arivarignan 2 Department of Applied

More information

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations

Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Analysis of an M/M/1/N Queue with Balking, Reneging and Server Vacations Yan Zhang 1 Dequan Yue 1 Wuyi Yue 2 1 College of Science, Yanshan University, Qinhuangdao 066004 PRChina 2 Department of Information

More information

A single server perishable inventory system with N additional options for service. Jeganathan Kathirvel

A single server perishable inventory system with N additional options for service. Jeganathan Kathirvel Journal of Mathematical Modeling Vol. 2, No. 2, 2015, pp. 187-216 JMM A single server perishable inventory system with N additional options for service Jeganathan Kathirvel Ramanujan Institute for Advanced

More information

Performance analysis of queueing systems with resequencing

Performance analysis of queueing systems with resequencing UNIVERSITÀ DEGLI STUDI DI SALERNO Dipartimento di Matematica Dottorato di Ricerca in Matematica XIV ciclo - Nuova serie Performance analysis of queueing systems with resequencing Candidato: Caraccio Ilaria

More information

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID:

Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam. Name: Student ID: Operations Research II, IEOR161 University of California, Berkeley Spring 2007 Final Exam 1 2 3 4 5 6 7 8 9 10 7 questions. 1. [5+5] Let X and Y be independent exponential random variables where X has

More information

Dynamic Control of Parallel-Server Systems

Dynamic Control of Parallel-Server Systems Dynamic Control of Parallel-Server Systems Jim Dai Georgia Institute of Technology Tolga Tezcan University of Illinois at Urbana-Champaign May 13, 2009 Jim Dai (Georgia Tech) Many-Server Asymptotic Optimality

More information

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis

TCOM 501: Networking Theory & Fundamentals. Lecture 6 February 19, 2003 Prof. Yannis A. Korilis TCOM 50: Networking Theory & Fundamentals Lecture 6 February 9, 003 Prof. Yannis A. Korilis 6- Topics Time-Reversal of Markov Chains Reversibility Truncating a Reversible Markov Chain Burke s Theorem Queues

More information

Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems

Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems Konstantin Avrachenkov, Evsey Morozov, Ruslana Nekrasova To cite this version: Konstantin Avrachenkov, Evsey Morozov,

More information

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems

Exercises Solutions. Automation IEA, LTH. Chapter 2 Manufacturing and process systems. Chapter 5 Discrete manufacturing problems Exercises Solutions Note, that we have not formulated the answers for all the review questions. You will find the answers for many questions by reading and reflecting about the text in the book. Chapter

More information

Discrete-time Retrial Queue with Bernoulli Vacation, Preemptive Resume and Feedback Customers

Discrete-time Retrial Queue with Bernoulli Vacation, Preemptive Resume and Feedback Customers Journal of Industrial Engineering and Management JIEM, 2015 8(4): 1236-1250 Online ISSN: 2013-0953 Print ISSN: 2013-8423 http://dx.doi.org/10.3926/jiem.1487 Discrete-time Retrial Queue with Bernoulli Vacation,

More information

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1

Irreducibility. Irreducible. every state can be reached from every other state For any i,j, exist an m 0, such that. Absorbing state: p jj =1 Irreducibility Irreducible every state can be reached from every other state For any i,j, exist an m 0, such that i,j are communicate, if the above condition is valid Irreducible: all states are communicate

More information

Asymptotic study of a busy period in a retrial queue

Asymptotic study of a busy period in a retrial queue PUB. IRMA, LILLE 2011 Vol. 71, N o VI Asymptotic study of a busy period in a retrial queue Y. Taleb a, F. Achemine a, D. Hamadouche a, A. Aissani b djhamad@mail.ummto.dz, taleb.youcef@yahoo.fr, achemine_f2001@yahoo.fr,

More information

Readings: Finish Section 5.2

Readings: Finish Section 5.2 LECTURE 19 Readings: Finish Section 5.2 Lecture outline Markov Processes I Checkout counter example. Markov process: definition. -step transition probabilities. Classification of states. Example: Checkout

More information

Modelling Complex Queuing Situations with Markov Processes

Modelling Complex Queuing Situations with Markov Processes Modelling Complex Queuing Situations with Markov Processes Jason Randal Thorne, School of IT, Charles Sturt Uni, NSW 2795, Australia Abstract This article comments upon some new developments in the field

More information

Finite source retrial queues with two phase service. Jinting Wang* and Fang Wang

Finite source retrial queues with two phase service. Jinting Wang* and Fang Wang Int. J. Operational Research, Vol. 3, No. 4, 27 42 Finite source retrial queues with two phase service Jinting Wang* and Fang Wang Department of Mathematics, Beijing Jiaotong University, Beijing, 44, China

More information