Queueing Theory (Part 4)

Size: px
Start display at page:

Download "Queueing Theory (Part 4)"

Transcription

1 Queueing Theory (Part 4) Nonexponential Queueing Systems and Economic Analysis Queueing Theory-1

2 Queueing Models with Nonexponential Distributions M/G/1 Model Poisson input process, general service time distribution with mean 1/µ and variance σ 2 Assume ρ = λ/µ < 1 Results P 0 L L q W W q = 1"! 2 2 $ # + " = 2(1! ") = " + L = L q = W q q /! + 1/ µ 2 Notice for M/M/1: Mean service time = 1/µ Variance of service time, σ 2 = 1/µ 2 P 0 =1" # L q = $ 2 µ 2 + # 2 2 1" # ( ) = 2# 2 2( 1" #) = # 2 L = # + L q = # + # 2 1" # 1" # = # 1" # Queueing Theory-2

3 Queueing Models with Nonexponential Distributions M/D/1 Model Poisson input process, deterministic service time distribution with mean 1/µ and variance σ 2 =0 Assume ρ = λ/µ < 1 L q =! 2 " 2 + # 2 2(1! #) = 0 + # 2 2(1! #) = # 2 2(1! #) L = # + L q Queueing Theory-3

4 M/D/s: L versus ρ for several values of s L 100 Steady-state expected number of customers in the queueing system s 2 s 1 s 4 s 3 s 10 s 7 s 5 s 25 s 20 s 15 FIGURE 17.8 Values of L for the M/D/s model (Sec. 17.7) Utilization factor s Queueing Theory-4

5 Queueing Models with Nonexponential Distributions M/E k /1 Model Erlang: Sum of exponentials ( ) k f T (t) = µk ( k "1)! t k"1 e "kµt Think it would be useful? for t # 0 Mean Standard Deviation Variance Yes, because service time may be made up of several tasks each of which has an iid, independent identical exponential distribution, and T = T 1 + T 2 + T T K If T i ~ expon(µ) and independent, then T~Erlang(k,µ) Can readily apply the formulae for M/G/1 where! 2 =1/ kµ 2 Also, Erlang k is between exponential and deterministic, and is a 2-parameter family so can get a better fit to more situations As k goes to infinity M/E k /1 approaches M/D/1 When k=1, get exponential 1 µ 1 µ 1 µ 2 Erlang k as k -->, approach deterministic 1 µ 1 kµ 1 kµ 2 1 µ " 0 " 0 Queueing Theory-5

6 M/E k /2: L versus ρ for several values of k L 100 Steady-state expected number of customers in the queueing system k 1 k 2 k 8 FIGURE Values of L for the M/E k /2 model (Sec. 17.7) Utilization factor s Queueing Theory-6

7 Application of Queueing Theory We can use the results for the queueing models when making decisions on design and/or operations Some decisions that we can address Number of servers Efficiency of the servers Number of queues Amount of waiting space in the queue Queueing disciplines Queueing Theory-7

8 Number of Servers Suppose we want to find the number of servers that minimizes the expected total cost, E[TC] Expected Total Cost = Expected Service Cost + Expected Waiting Cost (E[TC]= E[SC] + E[WC]) How do these costs change as the number of servers change? Expected cost E[TC] E[SC] increases with number of servers E[WC] decreases with number of servers Number of servers Minimum E[TC] is not necessarily where E[SC] and E[WC] intersect Queueing Theory-8

9 Repair Person Example SimInc has 10 machines that break down frequently and 8 operators The time between breakdowns ~ Exponential, mean 20 days The time to repair a machine ~ Exponential, mean 2 days Currently SimInc employs 1 repair person and is considering hiring a second Costs: Each repair person costs $280/day Lost profit due to less than 8 operating machines: $400/day for each machine that is down Objective: Minimize total cost Should SimInc hire the additional repair person? Queueing Theory-9

10 Repair Person Example Problem Parameters What type of problem is this? M/M/1? M/M/s? M/M/s/K? M/M/s//N finite calling population? (close, but not exactly have to draw the rate diagram finite number of machines (10), but maximum of 8 operating at a time) M/G/1? M/E k /1? M/D/1? What are the values of λ and µ? Time between breakdowns ~expon. mean = 20 days λ = 1 customer / 20 days for each machine operating Compare 1 and 2 servers time to repair ~expon. mean = 2 days µ = 1 customer / 2 days Queueing Theory-10

11 Repair Person Example Rate Diagrams Draw the rate diagram for the single-server and two-server case 8λ 8λ 8λ 7λ 6λ 3λ 2λ λ Single server µ µ µ µ µ µ µ µ 10 Two servers Expected service cost (per day) = E[SC] = 1 server: 280 $/day 2 servers: 2(280) $/day = 560 $/day Expected waiting cost (per day) = E[WC] = ( ) = 400 n # " P 3 + 2P 4 +!+ 8P 10 µ 2µ 2µ 2µ 2µ 2µ 2µ 2µ 10 $ ( )P n = $ g( n)p n where g n n= 3 ( ) = % 0 if n = 0,1,2 & ' 400 n # 2 ( ) if n = 3,4, 10 Queueing Theory-11

12 Repair Person Example Steady-State Probabilities Write the coefficients for the balance equations for each case Single server 2 servers C 0 =1 # C 1 = 8 " & % ( $ µ ' # C 2 = 8 2 "& % ( $ µ ' # "& C 3 = 8 3 % ( $ µ ' # C 4 = 8 3 ) 7 " & % ( $ µ ' # C 5 = 8 3 ) 7 ) 6 " & % ( $ µ ' = 8 2 ) 8! # "& % ( 5! $ µ ' How to find E[WC] for s=1? s=2? E WC 10 [ ] = 400 n " 2 5 C 6 = 8 2 " 8! $ #' & ) 4! % µ ( C 7 = 8 2 " 8! $ #' & ) 3! % µ ( C 8 = 8 2 " 8! $ #' & ) 2! % µ ( C 9 = 8 2 " 8! $ #' & ) 1! % µ ( C 10 = 8 2 " 8! $ #' & ) 0! % µ ( #( )P n = # g( n)p n where g n n= 3 10 n= ( ) = C 0 =1 # C 1 = 8 " & % ( $ µ ' C 2 = 82 2 # "& % ( $ µ ' # C 3 = 83 "& 2 2 % ( $ µ ' C 4 = 83 ) 7# "& 2 3 % ( $ µ ' C 5 = 82 2 ) 8! # "& 4 % ( 5! $ µ '! $ 0 if n = 0,1,2 % & 400 n " 2 ( ) if n = 3,4, Queueing Theory-12

13 Repair Person Example E[WC] Calculations s=1 s=2 N=n g(n) P n g(n) P n P n g(n) P n E[WC] $281/day $48/day Queueing Theory-13

14 Repair Person Example Results We get the following results s E[SC]: E[WC]: E[TC]: 1 $280/day $281/day $561/day 2 $560/day $48/day $608/day * min! 3 $840/day $0/day $840/day What should SimInc do? Stay with 1 server Could consider other possibilities to reduce E[TC]; - instead of another server, decrease service time by considering faster equipment or an apprentice - consider a different maintenance policy to decrease arrival rate Queueing Theory-14

15 Supercomputer Example Emerald University has plans to lease a supercomputer They have two options Supercomputer Mean number of jobs per day Cost per day MBI 30 jobs/day $5,000/day CRAB 25 jobs/day $3,750/day µ MBI = 30 jobs/ day µ CRAB = 25 jobs/ day Students and faculty jobs are submitted on average of 20 jobs/day, (λ = 20 jobs /day) distributed Poisson i.e. Time between submissions ~ 1/20 = 0.05 day = 1.2 hours Which computer should Emerald University lease? Queueing Theory-15

16 E[TC] = E[SC] + E[WC] Supercomputer Example Expected service cost:!# 5000 $/day for MBI E [ SC] = " $# 3750 $/day for CRAB Consider two forms for waiting costs (ω = waiting time in days): If waiting cost is linear: h(ω)=cω then E[h(ω)] = ce[ω] = cw $/job and then E[WC] = cwλ = cl $/job job/day $/day If waiting cost is not linear: h(ω) = 500 ω ω 2 then E[h(ω)] is more difficult to express Queueing Theory-16

17 Supercomputer Example Waiting Cost Function Assume the waiting cost is not linear: h(ω) = 500 ω ω 2 (ω = waiting time in days) What distribution do the waiting times follow? for M/M/1 f w (") = µ ( 1# $ )e #µ( 1#$ )" What is the expected waiting cost, E[WC]? % E h " ( )" d" & ( )µ 1# $ [ ( )] = 500" + 400" 2 0 ' 58 $/job for MBI = ( ) 132 $/job for CRAB #µ 1#$ ( )e ' 1160 $/day for MBI E[WC] = E[h(")]* = ( ) 2640 $/day for CRAB $/day $/job jobs/day Queueing Theory-17

18 Supercomputer Example Results Next incorporate the leasing cost to determine the expected total cost, E[TC] E[ TC] = E[ SC] + E[ WC] E[ TC] = Which computer should the university lease? MBI " 5000 $/day $/day = 6160 $/day for MBI * # $ 3750 $/day $/day = 6390 $/day for CRAB Queueing Theory-18

IOE 202: lectures 11 and 12 outline

IOE 202: lectures 11 and 12 outline IOE 202: lectures 11 and 12 outline Announcements Last time... Queueing models intro Performance characteristics of a queueing system Steady state analysis of an M/M/1 queueing system Other queueing systems,

More information

QUEUING SYSTEM. Yetunde Folajimi, PhD

QUEUING SYSTEM. Yetunde Folajimi, PhD QUEUING SYSTEM Yetunde Folajimi, PhD Part 2 Queuing Models Queueing models are constructed so that queue lengths and waiting times can be predicted They help us to understand and quantify the effect of

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 24 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/6/16 2 / 24 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1

Waiting Line Models: Queuing Theory Basics. Metodos Cuantitativos M. En C. Eduardo Bustos Farias 1 Waiting Line Models: Queuing Theory Basics Cuantitativos M. En C. Eduardo Bustos Farias 1 Agenda Queuing system structure Performance measures Components of queuing systems Arrival process Service process

More information

Computer Networks More general queuing systems

Computer Networks More general queuing systems Computer Networks More general queuing systems Saad Mneimneh Computer Science Hunter College of CUNY New York M/G/ Introduction We now consider a queuing system where the customer service times have a

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Queuing Theory. Using the Math. Management Science

Queuing Theory. Using the Math. Management Science Queuing Theory Using the Math 1 Markov Processes (Chains) A process consisting of a countable sequence of stages, that can be judged at each stage to fall into future states independent of how the process

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall

Queuing Analysis. Chapter Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall Queuing Analysis Chapter 13 13-1 Chapter Topics Elements of Waiting Line Analysis The Single-Server Waiting Line System Undefined and Constant Service Times Finite Queue Length Finite Calling Problem The

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Queu(e)ing theory Queu(e)ing theory is the branch of mathematics devoted to how objects (packets in a network, people in a bank, processes in a CPU etc etc) join and leave

More information

Queueing Theory. VK Room: M Last updated: October 17, 2013.

Queueing Theory. VK Room: M Last updated: October 17, 2013. Queueing Theory VK Room: M1.30 knightva@cf.ac.uk www.vincent-knight.com Last updated: October 17, 2013. 1 / 63 Overview Description of Queueing Processes The Single Server Markovian Queue Multi Server

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 26 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/25/17 2 / 26 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

QUEUING MODELS AND MARKOV PROCESSES

QUEUING MODELS AND MARKOV PROCESSES QUEUING MODELS AND MARKOV ROCESSES Queues form when customer demand for a service cannot be met immediately. They occur because of fluctuations in demand levels so that models of queuing are intrinsically

More information

Quiz Queue II. III. ( ) ( ) =1.3333

Quiz Queue II. III. ( ) ( ) =1.3333 Quiz Queue UMJ, a mail-order company, receives calls to place orders at an average of 7.5 minutes intervals. UMJ hires one operator and can handle each call in about every 5 minutes on average. The inter-arrival

More information

4.7 Finite Population Source Model

4.7 Finite Population Source Model Characteristics 1. Arrival Process R independent Source All sources are identical Interarrival time is exponential with rate for each source No arrivals if all sources are in the system. OR372-Dr.Khalid

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Lent Term 2010/11 R. J. Gibbens Problem sheet William Gates Building 15 JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH , YEAR APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS)

YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS MATH , YEAR APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS) YORK UNIVERSITY FACULTY OF ARTS DEPARTMENT OF MATHEMATICS AND STATISTICS Instructor : Dr. Igor Poliakov MATH 4570 6.0, YEAR 2006-07 APPLIED OPTIMIZATION (TEST #4 ) (SOLUTIONS) March 29, 2007 Name (print)

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

Chapter 5: Special Types of Queuing Models

Chapter 5: Special Types of Queuing Models Chapter 5: Special Types of Queuing Models Some General Queueing Models Discouraged Arrivals Impatient Arrivals Bulk Service and Bulk Arrivals OR37-Dr.Khalid Al-Nowibet 1 5.1 General Queueing Models 1.

More information

System with a Server Subject to Breakdowns

System with a Server Subject to Breakdowns Applied Mathematical Sciences Vol. 7 213 no. 11 539 55 On Two Modifications of E 2 /E 2 /1/m Queueing System with a Server Subject to Breakdowns Michal Dorda VSB - Technical University of Ostrava Faculty

More information

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1

Queueing systems. Renato Lo Cigno. Simulation and Performance Evaluation Queueing systems - Renato Lo Cigno 1 Queueing systems Renato Lo Cigno Simulation and Performance Evaluation 2014-15 Queueing systems - Renato Lo Cigno 1 Queues A Birth-Death process is well modeled by a queue Indeed queues can be used to

More information

I, A BRIEF REVIEW ON INFINITE QUEUE MODEL M.

I, A BRIEF REVIEW ON INFINITE QUEUE MODEL M. A BRIEF REVIEW ON INFINITE QUEUE MODEL M. Vasuki*, A. Dinesh Kumar** & G. Vijayaprabha** * Assistant Professor, Department of Mathematics, Srinivasan College of Arts and Science, Perambalur, Tamilnadu

More information

Classification of Queuing Models

Classification of Queuing Models Classification of Queuing Models Generally Queuing models may be completely specified in the following symbol form:(a/b/c):(d/e)where a = Probability law for the arrival(or inter arrival)time, b = Probability

More information

ISyE 2030 Practice Test 2

ISyE 2030 Practice Test 2 1 NAME ISyE 2030 Practice Test 2 Summer 2005 This test is open notes, open books. You have exactly 75 minutes. 1. Short-Answer Questions (a) TRUE or FALSE? If arrivals occur according to a Poisson process

More information

Advanced Computer Networks Lecture 3. Models of Queuing

Advanced Computer Networks Lecture 3. Models of Queuing Advanced Computer Networks Lecture 3. Models of Queuing Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/13 Terminology of

More information

Link Models for Circuit Switching

Link Models for Circuit Switching Link Models for Circuit Switching The basis of traffic engineering for telecommunication networks is the Erlang loss function. It basically allows us to determine the amount of telephone traffic that can

More information

Photo: US National Archives

Photo: US National Archives ESD.86. Markov Processes and their Application to Queueing II Richard C. Larson March 7, 2007 Photo: US National Archives Outline Little s Law, one more time PASTA treat Markov Birth and Death Queueing

More information

Data analysis and stochastic modeling

Data analysis and stochastic modeling Data analysis and stochastic modeling Lecture 7 An introduction to queueing theory Guillaume Gravier guillaume.gravier@irisa.fr with a lot of help from Paul Jensen s course http://www.me.utexas.edu/ jensen/ormm/instruction/powerpoint/or_models_09/14_queuing.ppt

More information

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory

CDA5530: Performance Models of Computers and Networks. Chapter 4: Elementary Queuing Theory CDA5530: Performance Models of Computers and Networks Chapter 4: Elementary Queuing Theory Definition Queuing system: a buffer (waiting room), service facility (one or more servers) a scheduling policy

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Basic Queueing Theory

Basic Queueing Theory After The Race The Boston Marathon is a local institution with over a century of history and tradition. The race is run on Patriot s Day, starting on the Hopkinton green and ending at the Prudential Center

More information

Figure 10.1: Recording when the event E occurs

Figure 10.1: Recording when the event E occurs 10 Poisson Processes Let T R be an interval. A family of random variables {X(t) ; t T} is called a continuous time stochastic process. We often consider T = [0, 1] and T = [0, ). As X(t) is a random variable

More information

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions

Queueing Theory II. Summary. ! M/M/1 Output process. ! Networks of Queue! Method of Stages. ! General Distributions Queueing Theory II Summary! M/M/1 Output process! Networks of Queue! Method of Stages " Erlang Distribution " Hyperexponential Distribution! General Distributions " Embedded Markov Chains M/M/1 Output

More information

Systems Simulation Chapter 6: Queuing Models

Systems Simulation Chapter 6: Queuing Models Systems Simulation Chapter 6: Queuing Models Fatih Cavdur fatihcavdur@uludag.edu.tr April 2, 2014 Introduction Introduction Simulation is often used in the analysis of queuing models. A simple but typical

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings

More information

Introduction to Markov Chains, Queuing Theory, and Network Performance

Introduction to Markov Chains, Queuing Theory, and Network Performance Introduction to Markov Chains, Queuing Theory, and Network Performance Marceau Coupechoux Telecom ParisTech, departement Informatique et Réseaux marceau.coupechoux@telecom-paristech.fr IT.2403 Modélisation

More information

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines.

Chapter 10. Queuing Systems. D (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. Chapter 10 Queuing Systems D. 10. 1. (Queuing Theory) Queuing theory is the branch of operations research concerned with waiting lines. D. 10.. (Queuing System) A ueuing system consists of 1. a user source.

More information

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models.

Queuing Theory. The present section focuses on the standard vocabulary of Waiting Line Models. Queuing Theory Introduction Waiting lines are the most frequently encountered problems in everyday life. For example, queue at a cafeteria, library, bank, etc. Common to all of these cases are the arrivals

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements

Queueing Systems: Lecture 3. Amedeo R. Odoni October 18, Announcements Queueing Systems: Lecture 3 Amedeo R. Odoni October 18, 006 Announcements PS #3 due tomorrow by 3 PM Office hours Odoni: Wed, 10/18, :30-4:30; next week: Tue, 10/4 Quiz #1: October 5, open book, in class;

More information

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013

Networking = Plumbing. Queueing Analysis: I. Last Lecture. Lecture Outline. Jeremiah Deng. 29 July 2013 Networking = Plumbing TELE302 Lecture 7 Queueing Analysis: I Jeremiah Deng University of Otago 29 July 2013 Jeremiah Deng (University of Otago) TELE302 Lecture 7 29 July 2013 1 / 33 Lecture Outline Jeremiah

More information

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP

Glossary availability cellular manufacturing closed queueing network coefficient of variation (CV) conditional probability CONWIP Glossary availability The long-run average fraction of time that the processor is available for processing jobs, denoted by a (p. 113). cellular manufacturing The concept of organizing the factory into

More information

Introduction to Queuing Theory. Mathematical Modelling

Introduction to Queuing Theory. Mathematical Modelling Queuing Theory, COMPSCI 742 S2C, 2014 p. 1/23 Introduction to Queuing Theory and Mathematical Modelling Computer Science 742 S2C, 2014 Nevil Brownlee, with acknowledgements to Peter Fenwick, Ulrich Speidel

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: 30-1 Overview Queueing Notation

More information

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours)

1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) 1.225 Transportation Flow Systems Quiz (December 17, 2001; Duration: 3 hours) Student Name: Alias: Instructions: 1. This exam is open-book 2. No cooperation is permitted 3. Please write down your name

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Quote of the Day A person with one watch knows what time it is. A person with two

More information

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis.

Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. Service Engineering Class 11 Non-Parametric Models of a Service System; GI/GI/1, GI/GI/n: Exact & Approximate Analysis. G/G/1 Queue: Virtual Waiting Time (Unfinished Work). GI/GI/1: Lindley s Equations

More information

λ λ λ In-class problems

λ λ λ In-class problems In-class problems 1. Customers arrive at a single-service facility at a Poisson rate of 40 per hour. When two or fewer customers are present, a single attendant operates the facility, and the service time

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Buzen s algorithm. Cyclic network Extension of Jackson networks

Buzen s algorithm. Cyclic network Extension of Jackson networks Outline Buzen s algorithm Mean value analysis for Jackson networks Cyclic network Extension of Jackson networks BCMP network 1 Marginal Distributions based on Buzen s algorithm With Buzen s algorithm,

More information

Slides 9: Queuing Models

Slides 9: Queuing Models Slides 9: Queuing Models Purpose Simulation is often used in the analysis of queuing models. A simple but typical queuing model is: Queuing models provide the analyst with a powerful tool for designing

More information

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011

Queuing Theory. Richard Lockhart. Simon Fraser University. STAT 870 Summer 2011 Queuing Theory Richard Lockhart Simon Fraser University STAT 870 Summer 2011 Richard Lockhart (Simon Fraser University) Queuing Theory STAT 870 Summer 2011 1 / 15 Purposes of Today s Lecture Describe general

More information

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if

Queuing Theory. 3. Birth-Death Process. Law of Motion Flow balance equations Steady-state probabilities: , if 1 Queuing Theory 3. Birth-Death Process Law of Motion Flow balance equations Steady-state probabilities: c j = λ 0λ 1...λ j 1 µ 1 µ 2...µ j π 0 = 1 1+ j=1 c j, if j=1 c j is finite. π j = c j π 0 Example

More information

CPSC 531 Systems Modeling and Simulation FINAL EXAM

CPSC 531 Systems Modeling and Simulation FINAL EXAM CPSC 531 Systems Modeling and Simulation FINAL EXAM Department of Computer Science University of Calgary Professor: Carey Williamson December 21, 2017 This is a CLOSED BOOK exam. Textbooks, notes, laptops,

More information

Introduction to Queueing Theory

Introduction to Queueing Theory Introduction to Queueing Theory Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu Audio/Video recordings of this lecture are available at: http://www.cse.wustl.edu/~jain/cse567-11/

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

Suggested solutions for the exam in SF2863 Systems Engineering. December 19,

Suggested solutions for the exam in SF2863 Systems Engineering. December 19, Suggested solutions for the exam in SF863 Systems Engineering. December 19, 011 14.00 19.00 Examiner: Per Enqvist, phone: 790 6 98 1. We can think of the support center as a Jackson network. The reception

More information

Discrete Event and Process Oriented Simulation (2)

Discrete Event and Process Oriented Simulation (2) B. Maddah ENMG 622 Simulation 11/04/08 Discrete Event and Process Oriented Simulation (2) Discrete event hand simulation of an (s, S) periodic review inventory system Consider a retailer who sells a commodity

More information

Elementary queueing system

Elementary queueing system Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue M/M/1 with preemptive-resume priority M/M/1 with non-preemptive priority 1 History of queueing theory An old

More information

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0.

Since D has an exponential distribution, E[D] = 0.09 years. Since {A(t) : t 0} is a Poisson process with rate λ = 10, 000, A(0. IEOR 46: Introduction to Operations Research: Stochastic Models Chapters 5-6 in Ross, Thursday, April, 4:5-5:35pm SOLUTIONS to Second Midterm Exam, Spring 9, Open Book: but only the Ross textbook, the

More information

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 6 Queueing Models. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter 6 Queueing Models Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Purpose Simulation is often used in the analysis of queueing models. A simple but typical queueing model: Queueing

More information

Answers to selected exercises

Answers to selected exercises Answers to selected exercises A First Course in Stochastic Models, Henk C. Tijms 1.1 ( ) 1.2 (a) Let waiting time if passengers already arrived,. Then,, (b) { (c) Long-run fraction for is (d) Let waiting

More information

PBW 654 Applied Statistics - I Urban Operations Research

PBW 654 Applied Statistics - I Urban Operations Research PBW 654 Applied Statistics - I Urban Operations Research Lecture 2.I Queuing Systems An Introduction Operations Research Models Deterministic Models Linear Programming Integer Programming Network Optimization

More information

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011

Solutions to Homework Discrete Stochastic Processes MIT, Spring 2011 Exercise 6.5: Solutions to Homework 0 6.262 Discrete Stochastic Processes MIT, Spring 20 Consider the Markov process illustrated below. The transitions are labelled by the rate q ij at which those transitions

More information

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains

Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Chapter 3 Balance equations, birth-death processes, continuous Markov Chains Ioannis Glaropoulos November 4, 2012 1 Exercise 3.2 Consider a birth-death process with 3 states, where the transition rate

More information

Statistics 150: Spring 2007

Statistics 150: Spring 2007 Statistics 150: Spring 2007 April 23, 2008 0-1 1 Limiting Probabilities If the discrete-time Markov chain with transition probabilities p ij is irreducible and positive recurrent; then the limiting probabilities

More information

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours.

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours. UNIVERSITY OF YORK MSc Examinations 2004 MATHEMATICS Networks Time Allowed: 3 hours. Answer 4 questions. Standard calculators will be provided but should be unnecessary. 1 Turn over 2 continued on next

More information

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe

Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem. Wade Trappe Queuing Networks: Burke s Theorem, Kleinrock s Approximation, and Jackson s Theorem Wade Trappe Lecture Overview Network of Queues Introduction Queues in Tandem roduct Form Solutions Burke s Theorem What

More information

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking

Lecture 7: Simulation of Markov Processes. Pasi Lassila Department of Communications and Networking Lecture 7: Simulation of Markov Processes Pasi Lassila Department of Communications and Networking Contents Markov processes theory recap Elementary queuing models for data networks Simulation of Markov

More information

International Journal of Pure and Applied Mathematics Volume 28 No ,

International Journal of Pure and Applied Mathematics Volume 28 No , International Journal of Pure and Applied Mathematics Volume 28 No. 1 2006, 101-115 OPTIMAL PERFORMANCE ANALYSIS OF AN M/M/1/N QUEUE SYSTEM WITH BALKING, RENEGING AND SERVER VACATION Dequan Yue 1, Yan

More information

An M/M/1/N Queuing system with Encouraged Arrivals

An M/M/1/N Queuing system with Encouraged Arrivals Global Journal of Pure and Applied Mathematics. ISS 0973-1768 Volume 13, umber 7 (2017), pp. 3443-3453 Research India Publications http://www.ripublication.com An M/M/1/ Queuing system with Encouraged

More information

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system.

Chapter 8 Queuing Theory Roanna Gee. W = average number of time a customer spends in the system. 8. Preliminaries L, L Q, W, W Q L = average number of customers in the system. L Q = average number of customers waiting in queue. W = average number of time a customer spends in the system. W Q = average

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Introduction to Queueing Theory with Applications to Air Transportation Systems

Introduction to Queueing Theory with Applications to Air Transportation Systems Introduction to Queueing Theory with Applications to Air Transportation Systems John Shortle George Mason University February 28, 2018 Outline Why stochastic models matter M/M/1 queue Little s law Priority

More information

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days?

Q = (c) Assuming that Ricoh has been working continuously for 7 days, what is the probability that it will remain working at least 8 more days? IEOR 4106: Introduction to Operations Research: Stochastic Models Spring 2005, Professor Whitt, Second Midterm Exam Chapters 5-6 in Ross, Thursday, March 31, 11:00am-1:00pm Open Book: but only the Ross

More information

Classical Queueing Models.

Classical Queueing Models. Sergey Zeltyn January 2005 STAT 99. Service Engineering. The Wharton School. University of Pennsylvania. Based on: Classical Queueing Models. Mandelbaum A. Service Engineering course, Technion. http://iew3.technion.ac.il/serveng2005w

More information

Kendall notation. PASTA theorem Basics of M/M/1 queue

Kendall notation. PASTA theorem Basics of M/M/1 queue Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue 1 History of queueing theory An old research area Started in 1909, by Agner Erlang (to model the Copenhagen

More information

Waiting Time Analysis of A Single Server Queue in an Out- Patient Clinic

Waiting Time Analysis of A Single Server Queue in an Out- Patient Clinic IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 11, Issue 3 Ver. V (May - Jun. 2015), PP 54-58 www.iosrjournals.org Waiting Time Analysis of A Single Server Queue in

More information

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory

Contents Preface The Exponential Distribution and the Poisson Process Introduction to Renewal Theory Contents Preface... v 1 The Exponential Distribution and the Poisson Process... 1 1.1 Introduction... 1 1.2 The Density, the Distribution, the Tail, and the Hazard Functions... 2 1.2.1 The Hazard Function

More information

GI/M/1 and GI/M/m queuing systems

GI/M/1 and GI/M/m queuing systems GI/M/1 and GI/M/m queuing systems Dmitri A. Moltchanov moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ OUTLINE: GI/M/1 queuing system; Methods of analysis; Imbedded Markov chain approach; Waiting

More information

Section 3.3: Discrete-Event Simulation Examples

Section 3.3: Discrete-Event Simulation Examples Section 33: Discrete-Event Simulation Examples Discrete-Event Simulation: A First Course c 2006 Pearson Ed, Inc 0-13-142917-5 Discrete-Event Simulation: A First Course Section 33: Discrete-Event Simulation

More information

Probability and Statistics Concepts

Probability and Statistics Concepts University of Central Florida Computer Science Division COT 5611 - Operating Systems. Spring 014 - dcm Probability and Statistics Concepts Random Variable: a rule that assigns a numerical value to each

More information

λ 2 1 = 2 = 2 2 2P 1 =4P 2 P 0 + P 1 + P 2 =1 P 0 =, P 1 =, P 2 = ρ 1 = P 1 + P 2 =, ρ 2 = P 1 + P 2 =

λ 2 1 = 2 = 2 2 2P 1 =4P 2 P 0 + P 1 + P 2 =1 P 0 =, P 1 =, P 2 = ρ 1 = P 1 + P 2 =, ρ 2 = P 1 + P 2 = Urban Operations Research Compiled by James S. Kang Fall 001 Quiz Solutions 1//001 Problem 1 (Larson, 001) 1 (a) One is tempted to say yes by setting ρ = Nµ = =.But = is not the rate at which customers

More information

11 The M/G/1 system with priorities

11 The M/G/1 system with priorities 11 The M/G/1 system with priorities In this chapter we analyse queueing models with different types of customers, where one or more types of customers have priority over other types. More precisely we

More information

Analysis of A Single Queue

Analysis of A Single Queue Analysis of A Single Queue Raj Jain Washington University in Saint Louis Jain@eecs.berkeley.edu or Jain@wustl.edu A Mini-Course offered at UC Berkeley, Sept-Oct 2012 These slides and audio/video recordings

More information

Queueing systems in a random environment with applications

Queueing systems in a random environment with applications Queueing systems in a random environment with applications Ruslan Krenzler, Hans Daduna Universität Hamburg OR 2013 3.-6. September 2013 Krenzler, Daduna (Uni HH) Queues in rnd. environment OR 2013 1 /

More information

Fair Operation of Multi-Server and Multi-Queue Systems

Fair Operation of Multi-Server and Multi-Queue Systems Fair Operation of Multi-Server and Multi-Queue Systems David Raz School of Computer Science Tel-Aviv University, Tel-Aviv, Israel davidraz@post.tau.ac.il Benjamin Avi-Itzhak RUTCOR, Rutgers University,

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Performability analysis of an unreliable M/M/1-type queue system

Performability analysis of an unreliable M/M/1-type queue system Performability analysis of an unreliable M/M/1-type queue system Ruslan Krenzler 1 Prof. Hans Daduna 1 1 Uni Hamburg 8. GI/ITG - Workshop des Fachausschusses Messung, Modellierung und Bewertung von Rechensystemen

More information

System occupancy of a two-class batch-service queue with class-dependent variable server capacity

System occupancy of a two-class batch-service queue with class-dependent variable server capacity System occupancy of a two-class batch-service queue with class-dependent variable server capacity Jens Baetens 1, Bart Steyaert 1, Dieter Claeys 1,2, and Herwig Bruneel 1 1 SMACS Research Group, Dept.

More information

Lecture 20: Reversible Processes and Queues

Lecture 20: Reversible Processes and Queues Lecture 20: Reversible Processes and Queues 1 Examples of reversible processes 11 Birth-death processes We define two non-negative sequences birth and death rates denoted by {λ n : n N 0 } and {µ n : n

More information

One billion+ terminals in voice network alone

One billion+ terminals in voice network alone Traffic Engineering Traffic Engineering One billion+ terminals in voice networ alone Plus data, video, fax, finance, etc. Imagine all users want service simultaneously its not even nearly possible (despite

More information

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012

SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 SOLUTIONS IEOR 3106: Second Midterm Exam, Chapters 5-6, November 8, 2012 This exam is closed book. YOU NEED TO SHOW YOUR WORK. Honor Code: Students are expected to behave honorably, following the accepted

More information

λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These

λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These Queuing theory models systems with servers and clients (presumably waiting in queues). Notation: there are many standard symbols like λ, µ, ρ, A n, W n, L(t), L, L Q, w, w Q etc. These represent the actual

More information

Computer Systems Modelling

Computer Systems Modelling Computer Systems Modelling Computer Laboratory Computer Science Tripos, Part II Michaelmas Term 2003 R. J. Gibbens Problem sheet William Gates Building JJ Thomson Avenue Cambridge CB3 0FD http://www.cl.cam.ac.uk/

More information

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns

A Heterogeneous Two-Server Queueing System with Balking and Server Breakdowns The Eighth International Symposium on Operations Research and Its Applications (ISORA 09) Zhangjiajie, China, September 20 22, 2009 Copyright 2009 ORSC & APORC, pp. 230 244 A Heterogeneous Two-Server Queueing

More information

P (L d k = n). P (L(t) = n),

P (L d k = n). P (L(t) = n), 4 M/G/1 queue In the M/G/1 queue customers arrive according to a Poisson process with rate λ and they are treated in order of arrival The service times are independent and identically distributed with

More information

Cover Page. The handle holds various files of this Leiden University dissertation

Cover Page. The handle  holds various files of this Leiden University dissertation Cover Page The handle http://hdl.handle.net/1887/39637 holds various files of this Leiden University dissertation Author: Smit, Laurens Title: Steady-state analysis of large scale systems : the successive

More information