Dynamical Decoupling and Quantum Error Correction Codes

Size: px
Start display at page:

Download "Dynamical Decoupling and Quantum Error Correction Codes"

Transcription

1 Dynamical Decoupling and Quantum Error Correction Codes Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 1

2 Dynamical Decoupling and Quantum Error Correction Codes (SXDD) Gerardo A. Paz-Silva and Daniel Lidar Center for Quantum Information Science & Technology University of Southern California GAPS and DAL paper in preparation 2

3 Motivation qmac H S 3

4 Motivation H B qmac H S 4

5 Motivation H B qmac H S 5

6 Motivation H B QEC + FT qmac H S 6

7 Motivation H B Dynamical Decoupling QEC + FT qmac H S 7

8 Motivation H B Dynamical Decoupling H SB QEC + FT qmac H S H SB H SB H SB 8

9 H = I H B + U τ min = e i(h τ min) η 0 = τ min [[n,k,d]] QEC code

10 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 [[n,k,d]] QEC code

11 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 [[n,k,d]] QEC code

12 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 DD DD DD DD DD Ng,Lidar,Preskill PRA 84, (2011) Enhanced fidelity of physical gates via appended DD sequences [[n,k,d]] QEC code

13 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 DD DD DD DD DD Ng,Lidar,Preskill PRA 84, (2011) Enhanced fidelity of physical gates via appended DD sequences Order of decoupling N cannot be arbitrarily large. [[n,k,d]] QEC code

14 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 DD DD DD DD DD Ng,Lidar,Preskill PRA 84, (2011) Enhanced fidelity of physical gates via appended DD sequences Order of decoupling N cannot be arbitrarily large. Unless has restricted locality Local-bath assumption [[n,k,d]] QEC code

15 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 DD DD DD DD DD [[n,k,d]] QEC code Ng,Lidar,Preskill PRA 84, (2011) Enhanced fidelity of physical gates via appended DD sequences Order of decoupling N cannot be arbitrarily large. Unless has restricted locality Local-bath assumption < FT

16 H = I H B + U τ min = e i(h τ min) η 0 = τ min U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 η DD < η 0 DD DD DD DD DD [[n,k,d]] QEC code n Ng,Lidar,Preskillhas qubit Pauli basis as restricted decoupling locality group Local-bath No local assumption bath assumption Length Enhanced of sequence fidelity of exponential physical gates in 2n via appended DD sequences Pulses Order look of decoupling like errors N to cannot the code be arbitrarily limits possible large. integration with other schemes Unless SB B SB has restricted locality Local-bath < FT assumption

17 H = I H B + U τ min = e i(h τ min) η 0 = τ min Desiderata for DD +QEC: U DD T = e i(h,eff T+,eff O T N+1 ) η DD (N) =,eff O T N+1 I. No extra locality assumptions II. Pulses in the code η DD < η 0 III. Shorter sequences than full decoupling approach. DD DD DD DD DD η DD < η 0 [[n,k,d]] QEC code n Ng,Lidar,Preskillhas qubit Pauli basis as restricted decoupling locality group Local-bath No local assumption bath assumption Length Enhanced of sequence fidelity of exponential physical gates in 2n via appended DD sequences Pulses Order look of decoupling like errors N to cannot the code be arbitrarily limits possible large. integration with other schemes Unless SB B SB has restricted locality Local-bath < FT assumption

18 The magic is in the decoupling group 18

19 The magic is in the decoupling group Too small No arbitrary order decoupling No general Hamiltonians Too large Overkill Shorter sequences are better 19

20 The magic is in the decoupling group Too small No arbitrary order decoupling No general Hamiltonians Too large Overkill Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {Ω i } i=1,,k (Ω i ) 2 = I Ω i Ω j = 1 f(i,j) Ω j Ω i ; f(i, j) = {0,1} Ω i Ω j Ω k 20

21 The magic is in the decoupling group Too small No arbitrary order decoupling No general Hamiltonians Too large Overkill Shorter sequences are better Mutually Orthogonal Operator (generator) Set = {Ω i } i=1,,k (Ω i ) 2 = I Ω i Ω j = 1 f(i,j) Ω j Ω i ; f(i, j) = {0,1} Ω i Ω j Ω k Concatenated Dynamical Decoupling (CDD) [Khodjasteh and Lidar, Phys. Rev. Lett. 95, (2005)] Nested Uhrig Dynamical Decoupling (NUDD) [Wang and Liu, Phys. Rev. A 83, (2011)] Pulses <MOOS> (2 K ) N pulses Pulses MOOS (N + 1) K pulses 21

22 What we propose Stabilizer generators = {S i } i=1,,q MOOS = {S i } i=1,,q 22

23 What we propose Stabilizer generators = {S i } i=1,,q Logical operators (Pauli basis) = { X i (L), Z i (L) } i=1,,k MOOS = {S i } i=1,,q MOOS = {S i } i=1,,q { X i (L), Z i (L) } i=1,,k 23

24 What we propose Stabilizer generators = {S i } i=1,,q Logical operators (Pauli basis) = { X i (L), Z i (L) } i=1,,k MOOS = {S i } i=1,,q MOOS = {S i } i=1,,q { X i (L), Z i (L) } i=1,,k U DD T = e i(h,effo T +,eff O(T N+1 )) H,eff {S i } i=1,,q Contains no physical or logical errors! Only harmless terms! Even if is a logical error! 24

25 What do we gain? No extra locality assumptions: The DD group is powerful enough. CDD: NO higher order Magnus term is UNDECOUPLABLE and HARMFUL The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation)

26 What do we gain? No extra locality assumptions: The DD group is powerful enough. CDD: NO higher order Magnus term is UNDECOUPLABLE and HARMFUL The next level of concatenation can deal with it NUDD: (See proof in W.-J. Kuo, GAPS, G. Quiroz, D. Lidar in preparation) DD Pulses are bitwise / transversal in the code Pulses do not look like errors to the code Allows interaction with other protection schemes. 26

27 What else do we gain? Shorter sequences than full decoupling approach: For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators CDD (<Ωi >,N) 2 n+k g N < 2 2nN NUDD ({Ωi,N}) (N + 1) n+k g < (N + 1) 2n 27

28 What else do we gain? Shorter sequences than full decoupling approach: For stabilizer/subsystem codes: MOOS : n-k-g stabilizers + 2k logical operators CDD (<Ωi >,N) 2 n+k g N < 2 2nN NUDD ({Ωi,N}) (N + 1) n+k g < (N + 1) 2n e.g. [[ n 2, 1, n]] Bacon Shor code: Stabilizer generators: 2(n-1) Logical generators: 2 SXDD Full decoupling D(MOOS) 2 n 2 n 2 NUDD (N + 1) 2 n (N + 1) 2 n2 CDD 2 2 n N 2 2 n2 N

29 η DD < η 0? Recall our (effective) noise rates: η 0 = τ min η DD (N) =,eff O T N+1 Are an overestimation: bounds obtained without using the QEC code structure. (work in progress) 29

30 η DD < η 0? Recall our (effective) noise rates: η 0 = τ min η DD (N) =,eff O T N+1 Are an overestimation: bounds obtained without using the QEC code structure. (work in progress) How to compute,eff O T N+1?? NLP results (Eqs ) Recursive relations for,eff (q) and H,eff (q) at every degree of concatenation q. where R = 2 D(MOOS) and c ~1,eff (q) R q(q+3)/2 c + H B τ 0 q 1 T(q) = R q τ min 30

31 η DD < η 0 N=1 N=2 N=3 I H B = J 0 = J SB [[9,1,3]] BS code: τ min = 1 ; D MOOS = 4 + 2

32 η DD < η 0 N=1 N=2 N=3 I H B = J = J SB [[9,1,3]] BS code: τ min = 1 ; D MOOS = 4 + 2

33 η DD < η 0 N=1 N=2 N=3 I H B = J = J SB [[9,1,3]] BS code: τ min = 1 ; D MOOS = 4 + 2

34 Beyond H S = 0 DD-based methods for fidelity enhanced gates can be directly ported: Dynamically protected gates: works for both CDD and NUDD Append SXDD sequence to a gate. [NLP, PRA 84, (2011)] (Concatenated) Dynamically corrected gates: based on CDD Eulerian cycle on the Caley graph of DD group [Khodjasteh and Viola, PRL 102, (2009)] [Khodjasteh, Lidar, Viola, PRL 104, (2010)]

35 Conclusions We have shown how to integrate dynamical decoupling and quantum error correction codes in a natural way. No extra locality conditions Pulses in the code. Shorter sequences than full decoupling approach. Improve effective error rates AND deal where Hamiltonians QEC fails. The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly 35

36 Conclusions We have shown how to integrate dynamical decoupling and quantum error correction codes in a natural way. No extra locality conditions Pulses in the code. Shorter sequences than full decoupling approach. Improve effective error rates AND deal where Hamiltonians QEC fails. The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly What we would like to do now: Detailed calculation of the effective error rate considering correctable errors, etc. in a DD + QEC scenario (at least for one encoded qubit) 36

37 Conclusions We have shown how to integrate dynamical decoupling and quantum error correction codes in a natural way. No extra locality conditions Pulses in the code. Shorter sequences than full decoupling approach. Improve effective error rates AND deal where Hamiltonians QEC fails. The pulses of the DD are bitwise and therefore EXPERIMENTALLY/fault-tolerance friendly What we would like to do now: Detailed calculation of the effective error rate considering correctable errors, etc. in a DD + QEC scenario (at least for one encoded qubit) THANKS! QUESTIONS? 37

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control Isaac Newton Institute for Mathematical Sciences Principles & Applications of Control to Quantum Systems 4-8 August 2014 A General Transfer-Function Approach to Noise Filtering in Open-Loop Quantum Control

More information

high thresholds in two dimensions

high thresholds in two dimensions Fault-tolerant quantum computation - high thresholds in two dimensions Robert Raussendorf, University of British Columbia QEC11, University of Southern California December 5, 2011 Outline Motivation Topological

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

ROBUST DYNAMICAL DECOUPLING: FEEDBACK-FREE ERROR CORRECTION*

ROBUST DYNAMICAL DECOUPLING: FEEDBACK-FREE ERROR CORRECTION* \fr International Journal of Quantum Information»»»», ui M C *'f Vol. 3, Supplement (2005) 41-52 _,, _,, m ' ^^ \ i wfr www.worlasctentifig.com World Scientific Publishing Company ROBUST DYNAMICAL DECOUPLING:

More information

Error Classification and Reduction in Solid State Qubits

Error Classification and Reduction in Solid State Qubits Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 5-15 Error Classification and Reduction in Solid State Qubits Karthik R. Chinni Southern Illinois University Carbondale,

More information

Quantum Error-Correcting Codes by Concatenation

Quantum Error-Correcting Codes by Concatenation Second International Conference on Quantum Error Correction University of Southern California, Los Angeles, USA December 5 9, 2011 Quantum Error-Correcting Codes by Concatenation Markus Grassl joint work

More information

A Framework for Non-Additive Quantum Codes

A Framework for Non-Additive Quantum Codes First International Conference on Quantum Error Correction University of Southern California, Los Angeles, USA December, 17-20, 2007 A Framework for Non-Additive Quantum Codes Markus Grassl joint work

More information

Supported by NSF and ARL

Supported by NSF and ARL Ultrafast Coherent Electron Spin Flip in a 2D Electron Gas Carey Phelps 1, Timothy Sweeney 1, Ronald T. Cox 2, Hailin Wang 1 1 Department of Physics, University of Oregon, Eugene, OR 97403 2 Nanophysics

More information

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3,

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3, 1 Ph 219c/CS 219c Exercises Due: Thursday 9 March 2017.1 A cleaning lemma for CSS codes In class we proved the cleaning lemma for stabilizer codes, which says the following: For an [[n, k]] stabilizer

More information

D.5 Quantum error correction

D.5 Quantum error correction D. QUANTUM ALGORITHMS 157 Figure III.34: E ects of decoherence on a qubit. On the left is a qubit yi that is mostly isoloated from its environment i. Ontheright,aweakinteraction between the qubit and the

More information

Surface Code Threshold in the Presence of Correlated Errors

Surface Code Threshold in the Presence of Correlated Errors Surface Code Threshold in the Presence of Correlated Errors USP-São Carlos - 2013 E. Novais, P. Jouzdani, and E. Mucciolo CCNH Universidade Federal do ABC Department of Physics University of Central Florida

More information

Pulse techniques for decoupling qubits

Pulse techniques for decoupling qubits Pulse techniques for decoupling qubits from noise: experimental tests Steve Lyon, Princeton EE Alexei Tyryshkin, Shyam Shankar, Forrest Bradbury, Jianhua He, John Morton Bang-bang decoupling 31 P nuclear

More information

Techniques for fault-tolerant quantum error correction

Techniques for fault-tolerant quantum error correction Techniques for fault-tolerant quantum error correction Ben Reichardt UC Berkeley Quantum fault-tolerance problem C 0/1 Fault-tolerant, larger High tolerable noise Low overhead 1 Encoding for fault tolerance

More information

Thermalization time bounds for Pauli stabilizer Hamiltonians

Thermalization time bounds for Pauli stabilizer Hamiltonians Thermalization time bounds for Pauli stabilizer Hamiltonians Kristan Temme California Institute of Technology arxiv:1412.2858 QEC 2014, Zurich t mix apple O(N 2 e 2 ) Overview Motivation & previous results

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Performance Requirements of a Quantum Computer Using Surface Code Error Correction

Performance Requirements of a Quantum Computer Using Surface Code Error Correction Performance Requirements of a Quantum Computer Using Surface Code Error Correction Cody Jones, Stanford University Rodney Van Meter, Austin Fowler, Peter McMahon, James Whitfield, Man-Hong Yung, Thaddeus

More information

arxiv:quant-ph/ v3 10 Oct 2006

arxiv:quant-ph/ v3 10 Oct 2006 Error Correcting Codes For Adiabatic Quantum Computation Stephen P. Jordan, 1, Edward Farhi, 1 and Peter W. Shor 1 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts

More information

A scheme for protecting one-qubit information against erasure. error. Abstract

A scheme for protecting one-qubit information against erasure. error. Abstract A scheme for protecting one-qubit information against erasure error Chui-Ping Yang 1, Shih-I Chu 1, and Siyuan Han 1 Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific

More information

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0

P 3/2 P 1/2 F = -1.5 F S 1/2. n=3. n=3. n=0. optical dipole force is state dependent. n=0 (two-qubit gate): tools: optical dipole force P 3/2 P 1/2 F = -1.5 F n=3 n=3 n=0 S 1/2 n=0 optical dipole force is state dependent tools: optical dipole force (e.g two qubits) ω 2 k1 d ω 1 optical dipole

More information

Quantum computers still work with 25% of their qubits missing

Quantum computers still work with 25% of their qubits missing Quantum computers still work with 25% of their qubits missing Sean Barrett Tom Stace (UQ) Phys. Rev. Lett. 102, 200501(2009) Phys. Rev. A 81, 022317 (2010) Phys. Rev. Lett. 105, 200502 (2010) Outline Loss/leakage

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Robust Quantum Error-Correction. via Convex Optimization

Robust Quantum Error-Correction. via Convex Optimization Robust Quantum Error-Correction via Convex Optimization Robert Kosut SC Solutions Systems & Control Division Sunnyvale, CA Alireza Shabani EE Dept. USC Los Angeles, CA Daniel Lidar EE, Chem., & Phys. Depts.

More information

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code Non-Zero Syndromes and Syndrome Measurement Order for the [[,,]] Quantum Error Correction Code Yaakov S. Weinstein Quantum Information Science Group, Mitre, Forrestal Rd. Princeton, NJ, USA The[[,,]] quantum

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk Quantum Error Correction Codes-From Qubit to Qudit Xiaoyi Tang, Paul McGuirk Outline Introduction to quantum error correction codes (QECC) Qudits and Qudit Gates Generalizing QECC to Qudit computing Need

More information

Electrical quantum engineering with superconducting circuits

Electrical quantum engineering with superconducting circuits 1.0 10 0.8 01 switching probability 0.6 0.4 0.2 00 P. Bertet & R. Heeres SPEC, CEA Saclay (France), Quantronics group 11 0.0 0 100 200 300 400 swap duration (ns) Electrical quantum engineering with superconducting

More information

Quantum error correction in the presence of spontaneous emission

Quantum error correction in the presence of spontaneous emission PHYSICAL REVIEW A VOLUME 55, NUMBER 1 JANUARY 1997 Quantum error correction in the presence of spontaneous emission M. B. Plenio, V. Vedral, and P. L. Knight Blackett Laboratory, Imperial College London,

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

Parity-Protected Josephson Qubits

Parity-Protected Josephson Qubits Parity-Protected Josephson Qubits Matthew Bell 1,2, Wenyuan Zhang 1, Lev Ioffe 1,3, and Michael Gershenson 1 1 Department of Physics and Astronomy, Rutgers University, New Jersey 2 Department of Electrical

More information

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration

Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Asilomar, CA, June 6 th, 2007 Single Electron Spin in Interacting Nuclear Spin Bath Coherence Loss and Restoration Wang Yao Department of Physics, University of Texas, Austin Collaborated with: L. J. Sham

More information

More advanced codes 0 1 ( , 1 1 (

More advanced codes 0 1 ( , 1 1 ( p. 1/24 More advanced codes The Shor code was the first general-purpose quantum error-correcting code, but since then many others have been discovered. An important example, discovered independently of

More information

Lectures on Fault-Tolerant Quantum Computation

Lectures on Fault-Tolerant Quantum Computation Lectures on Fault-Tolerant Quantum Computation B.M. Terhal, IBM Research I. Descriptions of Noise and Quantum States II. Quantum Coding and Error-Correction III. Fault-Tolerant Error-Correction. Surface

More information

Quantum Control of Qubits

Quantum Control of Qubits Quantum Control of Qubits K. Birgitta Whaley University of California, Berkeley J. Zhang J. Vala S. Sastry M. Mottonen R. desousa Quantum Circuit model input 1> 6> = 1> 0> H S T H S H x x 7 k = 0 e 3 π

More information

Driving Qubit Transitions in J-C Hamiltonian

Driving Qubit Transitions in J-C Hamiltonian Qubit Control Driving Qubit Transitions in J-C Hamiltonian Hamiltonian for microwave drive Unitary transform with and Results in dispersive approximation up to 2 nd order in g Drive induces Rabi oscillations

More information

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State based on High-threshold universal quantum computation on the surface code -Austin G. Fowler, Ashley M. Stephens, and Peter

More information

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES ADIABATIC PREPARATION OF ENCODED QUANTUM STATES Fernando Pastawski & Beni Yoshida USC Los Angeles, June 11, 2014 QUANTUM NOISE Storing single observable not enough. Decoherence deteriorates quantum observables.

More information

arxiv:quant-ph/ v3 19 May 1997

arxiv:quant-ph/ v3 19 May 1997 Correcting the effects of spontaneous emission on cold-trapped ions C. D Helon and G.J. Milburn Department of Physics University of Queensland St Lucia 407 Australia arxiv:quant-ph/9610031 v3 19 May 1997

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction Quantum Error Correction and Fault Tolerance Daniel Gottesman Perimeter Institute The Classical and Quantum Worlds Quantum Errors A general quantum error is a superoperator: ρ ΣA k ρ A k (Σ A k A k = I)

More information

Quantum Memory Hierarchies

Quantum Memory Hierarchies Quantum Memory Hierarchies Efficient Designs that Match Available Parallelism in Quantum Processors Darshan D. Thaker Tzvetan S. Metodi UC Davis Andrew W. Cross Issac L. Chuang MIT Frederic T. Chong UC

More information

sparse codes from quantum circuits

sparse codes from quantum circuits sparse codes from quantum circuits arxiv:1411.3334 Dave Bacon Steve Flammia Aram Harrow Jonathan Shi Coogee 23 Jan 2015 QECC [n,k,d] code: encode k logical qubits in n physical qubits and correct errors

More information

Experimental Realization of Brüschweiler s exponentially fast search algorithm in a 3-qubit homo-nuclear system

Experimental Realization of Brüschweiler s exponentially fast search algorithm in a 3-qubit homo-nuclear system Experimental Realization of Brüschweiler s exponentially fast search algorithm in a 3-qubit homo-nuclear system Li Xiao 1,2,G.L.Long 1,2,3,4, Hai-Yang Yan 1,2, Yang Sun 5,1,2 1 Department of Physics, Tsinghua

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

A Tutorial on Quantum Error Correction

A Tutorial on Quantum Error Correction Proceedings of the International School of Physics Enrico Fermi, course CLXII, Quantum Computers, Algorithms and Chaos, G. Casati, D. L. Shepelyansky and P. Zoller, eds., pp. 1 32 (IOS Press, Amsterdam

More information

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem Dave Bacon Department of Computer Science & Engineering, University of Washington In the last few lectures, we

More information

Limitations on transversal gates

Limitations on transversal gates Limitations on transversal gates Michael Newman 1 and Yaoyun Shi 1,2 University of Michigan 1, Alibaba Group 2 February 6, 2018 Quantum fault-tolerance Quantum fault-tolerance Quantum fault-tolerance Quantum

More information

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin Département de Physique, Université de Sherbrooke, Sherbrooke, Québec,

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

arxiv:quant-ph/ v1 27 Feb 1996

arxiv:quant-ph/ v1 27 Feb 1996 1 PEFECT QUANTUM EO COECTION CODE aymond Laflamme 1, Cesar Miquel 1,2, Juan Pablo Paz 1,2 and Wojciech Hubert Zurek 1 1 Theoretical Astrophysics, T-6, MS B288 Los Alamos National Laboratory, Los Alamos,

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot

Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot Long-time electron spin storage via dynamical suppression of hyperfine-induced decoherence in a quantum dot Wenxian Zhang,,2 N. P. Konstantinidis,, * V. V. Dobrovitski, B. N. Harmon, Lea F. Santos, 3 and

More information

Understanding spin-qubit decoherence: From models to reality

Understanding spin-qubit decoherence: From models to reality Understanding spin-qubit decoherence: From models to reality Bill Coish IQC, University of Waterloo, Canada and (starting in Sept.) McGill University, Montreal, QC, Canada Collaborators: Basel: Jan Fischer,

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Quantum Computer Architecture

Quantum Computer Architecture Quantum Computer Architecture Scalable and Reliable Quantum Computers Greg Byrd (ECE) CSC 801 - Feb 13, 2018 Overview 1 Sources 2 Key Concepts Quantum Computer 3 Outline 4 Ion Trap Operation The ion can

More information

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel Introduction to Topological Error Correction and Computation James R. Wootton Universität Basel Overview Part 1: Topological Quantum Computation Abelian and non-abelian anyons Quantum gates with Abelian

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Encoding One Logical Qubit Into Six Physical Qubits Bilal Shaw 1,4,5, Mark M. Wilde 1,5, Ognyan Oreshkov 2,5, Isaac Kremsky 2,5, and Daniel A. Lidar 1,2,3,5 1 Department of Electrical Engineering, 2 Department

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Quantum computer: basics, gates, algorithms

Quantum computer: basics, gates, algorithms Quantum computer: basics, gates, algorithms single qubit gate various two qubit gates baby-steps shown so far with ion quantum processors and how to reach a scalable device in future Ulm, Germany: 40 Ca

More information

THE ABC OF COLOR CODES

THE ABC OF COLOR CODES THE ABC OF COLOR CODES Aleksander Kubica ariv:1410.0069, 1503.02065 work in progress w/ F. Brandao, K. Svore, N. Delfosse 1 WHY DO WE CARE ABOUT QUANTUM CODES? Goal: store information and perform computation.

More information

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Ben W. Reichardt UC Berkeley NSF, ARO [quant-ph/0411036] stabilizer operations, Q: Do form a universal set? prepare

More information

arxiv: v3 [quant-ph] 10 Oct 2012

arxiv: v3 [quant-ph] 10 Oct 2012 Automated Synthesis of Dynamically Corrected Quantum Gates arxiv:125.217v3 [quant-ph] 1 Oct 212 Kaveh Khodjasteh, 1 Hendrik Bluhm, 2 and Lorenza Viola 1, 1 Department of Physics and Astronomy, Dartmouth

More information

Transversality versus Universality for Additive Quantum Codes

Transversality versus Universality for Additive Quantum Codes 1 Transversality versus Universality for Additive Quantum Codes Bei Zeng, Andrew Cross, and Isaac L. Chuang arxiv:0706.1382v3 [quant-ph] 11 Sep 2007 Abstract Certain quantum codes allow logic operations

More information

SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, (2017) ARXIV:

SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, (2017) ARXIV: SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, 042306 (2017) ARXIV:1612.02689 BIG PICTURE better compiling Can Randomisation help? if then do X, but if then do Y

More information

Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arxiv:

Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arxiv: '!" '!"!!!* % $!!!* "#$%!"#$#%&'()*+,&-.&"#/-0#.$)(&'#%-1#.&& & 2-$"&+3+.&)4#5.$&#6&2"-$+&%')*+&!! &7+$2++.&'"#$#%&).,&"+),+/& "#$% &!&!!!%!$ % $ &+!! ) '!# )!+' ( %+!&!" (!& *+!" )+!% (+!$!* % $!!!%!$

More information

Threshold theorem for quantum supremacy arxiv:

Threshold theorem for quantum supremacy arxiv: 2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arxiv:1610.03632 Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA Threshold

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

Motion and motional qubit

Motion and motional qubit Quantized motion Motion and motional qubit... > > n=> > > motional qubit N ions 3 N oscillators Motional sidebands Excitation spectrum of the S / transition -level-atom harmonic trap coupled system & transitions

More information

arxiv: v2 [quant-ph] 14 May 2017

arxiv: v2 [quant-ph] 14 May 2017 A Low-Overhead Hybrid Approach for Universal Fault-Tolerant Quantum Computation Eesa Nikahd, Morteza Saheb Zamani, and Mehdi Sedighi Quantum Design Automation Lab Amirkabir University of Technology, Tehran,

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

スタビライザー形式と トポロジカル量子計算 藤井 啓祐 ψ pl eiθlpz ψ pl

スタビライザー形式と トポロジカル量子計算 藤井 啓祐 ψ pl eiθlpz ψ pl ψ p L e iθlp ψ p L 1990.-G. Wen Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces:topological order Phys. Rev. B 41

More information

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit

Optimal Controlled Phasegates for Trapped Neutral Atoms at the Quantum Speed Limit with Ultracold Trapped Atoms at the Quantum Speed Limit Michael Goerz May 31, 2011 with Ultracold Trapped Atoms Prologue: with Ultracold Trapped Atoms Classical Computing: 4-Bit Full Adder Inside the CPU:

More information

Transversal logical gates

Transversal logical gates Transversal logical gates SPT phases gapped boundaries eni Yoshida (Perimeter Institute) *SPT = symmetry protected topological Transversal logical gates SPT phases gapped boundaries *SPT = symmetry protected

More information

Pauli Exchange and Quantum Error Correction

Pauli Exchange and Quantum Error Correction Contemporary Mathematics Pauli Exchange and Quantum Error Correction Mary Beth Ruskai Abstract. In many physically realistic models of quantum computation, Pauli exchange interactions cause a special type

More information

ION TRAPS STATE OF THE ART QUANTUM GATES

ION TRAPS STATE OF THE ART QUANTUM GATES ION TRAPS STATE OF THE ART QUANTUM GATES Silvio Marx & Tristan Petit ION TRAPS STATE OF THE ART QUANTUM GATES I. Fault-tolerant computing & the Mølmer- Sørensen gate with ion traps II. Quantum Toffoli

More information

Stability of local observables

Stability of local observables Stability of local observables in closed and open quantum systems Angelo Lucia anlucia@ucm.es Universidad Complutense de Madrid NSF/CBMS Conference Quantum Spin Systems UAB, June 20, 2014 A. Lucia (UCM)

More information

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains .. Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains Vladimir M. Stojanović Condensed Matter Theory Group HARVARD UNIVERSITY September 16, 2014 V. M. Stojanović (Harvard)

More information

Quantum Error Correction Codes - From Qubit to Qudit

Quantum Error Correction Codes - From Qubit to Qudit Quantum Error Correction Codes - From Qubit to Qudit Xiaoyi Tang Paul McGuirk December 7, 005 1 Introduction Quantum computation (QC), with inherent parallelism from the superposition principle of quantum

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

arxiv: v2 [quant-ph] 15 Aug 2016

arxiv: v2 [quant-ph] 15 Aug 2016 The role of master clock stability in scalable quantum information processing arxiv:1602.04551v2 [quant-ph] 15 Aug 2016 Harrison Ball, 1 William D. Oliver, 2, 3 and Michael J. Biercuk 1 1 ARC Centre for

More information

Energetics and Error Rates of Self-Correcting Quantum Memories

Energetics and Error Rates of Self-Correcting Quantum Memories Energetics and Error Rates of Self-Correcting Quantum Memories John Schulman Quantum codes allow for the robust storage of quantum information despite interaction with the environment. In a quantum code,

More information

Fault-tolerant logical gates in quantum error-correcting codes

Fault-tolerant logical gates in quantum error-correcting codes Fault-tolerant logical gates in quantum error-correcting codes Fernando Pastawski and Beni Yoshida (Caltech) arxiv:1408.1720 Phys Rev A xxxxxxx Jan 2015 @ QIP (Sydney, Australia) Fault-tolerant logical

More information

Magic States. Presented by Nathan Babcock

Magic States. Presented by Nathan Babcock Magic States Presented by Nathan Babcock Overview I will discuss the following points:. Quantum Error Correction. The Stabilizer Formalism. Clifford Group Quantum Computation 4. Magic States 5. Derivation

More information

Decodiy for surface. Quantum Error Correction. path integral. theory versus. Decoding for GKP code. experiment. Correcting

Decodiy for surface. Quantum Error Correction. path integral. theory versus. Decoding for GKP code. experiment. Correcting Quantum Error Correction 1 3X 1100 ( 230 ntro : theory versus experiment Quantum Error i Bosonic Codes # } \ Correcting Conditions stalilizer Codes ( including conthuoqsoyueagjask \ # Decoding Decoding

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Quantum search by local adiabatic evolution

Quantum search by local adiabatic evolution PHYSICAL REVIEW A, VOLUME 65, 042308 Quantum search by local adiabatic evolution Jérémie Roland 1 and Nicolas J. Cerf 1,2 1 Ecole Polytechnique, CP 165, Université Libre de Bruxelles, 1050 Brussels, Belgium

More information

SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING

SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING Quantum Information and Computation, Vol. 3, No. 34 (203 08 094 c Rinton Press SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING JOHN PRESKILL Institute for Quantum Information

More information

Universal quantum logic from Zeeman and anisotropic exchange interactions

Universal quantum logic from Zeeman and anisotropic exchange interactions Universal quantum logic from Zeeman and anisotropic exchange interactions Lian-Ao Wu and Daniel A. Lidar Chemical Physics Theory Group, Chemistry Department, University of Toronto, 80 St. George Street,

More information

arxiv: v2 [quant-ph] 21 Sep 2016

arxiv: v2 [quant-ph] 21 Sep 2016 Multiqubit Spectroscopy of Gaussian Quantum Noise Gerardo A. Paz-Silva, 1 Leigh M. Norris, and Lorenza Viola 1 Centre for Quantum Dynamics & Centre for Quantum Computation and Communication echnology,

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

The quantum speed limit

The quantum speed limit The quantum speed limit Vittorio Giovannetti a,sethlloyd a,b, and Lorenzo Maccone a a Research Laboratory of Electronics b Department of Mechanical Engineering Massachusetts Institute of Technology 77

More information

arxiv: Statistical mechanical models for quantum codes subject to correlated noise

arxiv: Statistical mechanical models for quantum codes subject to correlated noise Statistical mechanical models for quantum codes subject to correlated noise Christopher Chubb (EQUS USyd), Steve Flammia (EQUS USyd/YQI Yale) (me@)christopherchubb.com arxiv:1809.10704 Perimeter Institute

More information

Quantum to Classical Randomness Extractors

Quantum to Classical Randomness Extractors Quantum to Classical Randomness Extractors Mario Berta, Omar Fawzi, Stephanie Wehner - Full version preprint available at arxiv: 1111.2026v3 08/23/2012 - CRYPTO University of California, Santa Barbara

More information

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria Experimental state and process reconstruction Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria What do we want to do? Debug and characterize a quantum

More information

Measurement-based quantum error correction

Measurement-based quantum error correction Measurement-based quantum error correction Janna Hinchliff University of Bristol, Quantum Engineering Centre for Doctoral Training Introduction Measurement-based (or one-way) quantum error correction (MBQEC)

More information

Correcting noise in optical fibers via dynamic decoupling

Correcting noise in optical fibers via dynamic decoupling Introduction CPMG Our results Conclusions Correcting noise in optical fibers via dynamic decoupling Bhaskar Bardhan 1, Petr Anisimov 1, Manish Gupta 1, Katherine Brown 1, N. Cody Jones 2, Hwang Lee 1,

More information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan Coherence and optical electron spin rotation in a quantum dot Sophia Economou Collaborators: NRL L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan T. L. Reinecke, Naval Research Lab Outline

More information

GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON ENTANGLEMENT OF SUBGRAPHS

GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON ENTANGLEMENT OF SUBGRAPHS International Journal of Modern Physics B Vol. 26, No. 4 (2012) 1250024 (16 pages) c World Scientific Publishing Company DOI: 10.1142/S0217979212500245 GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON

More information