Stability of local observables

Size: px
Start display at page:

Download "Stability of local observables"

Transcription

1 Stability of local observables in closed and open quantum systems Angelo Lucia Universidad Complutense de Madrid NSF/CBMS Conference Quantum Spin Systems UAB, June 20, 2014 A. Lucia (UCM) Stability of local observables Quantum Spin Systems 1 / 18

2 Many-body evolutions Fix a finite metric graph Λ sufficiently regular (e.g., Λ = Z D N, and N is called the system size). Algebra of observables: A Λ = x Λ B(H x), where H x C d. Local observables: A X A Λ, for X Λ independent of N. Definition (Many-body evolution) A continuous (semi)group of completely positive, unital maps γ t : A Λ A Λ Closed systems: γ t is a unitary evolution and d dt γ t(a) = i[h, γ t (A)] Open systems: γ t 1 and d dt γ t(a) = L(γ t (A)) In order for γ t to be c.p. and unital, L has to satisfy the Lindblad condition. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 2 / 18

3 Lindblad form Definition (Lindblad form) L(A) = i[h, A] + j K j AK j 1 2 {K j K j, A} where H is Hermitian. Remark γ t will not be an automorphism in general. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 3 / 18

4 Local evolutions Definition (Local evolution) γ t is said to be local if L can be written as a sum of local terms L = L x x Λ where the support of L x is finite: L x = L x 1, and L x : A Bx (r) A Bx (r) and is Lindlad. r is called the range of the interaction. Definition (Quasi-local evolution) γ t is said to be quasi-local if L can be written as a sum of local terms L = L x (r) x Λ r 0 where the support of L x (r) is B x (r) and L x (r) f (r). f (r) is the decay rate and is assumed to be faster than any polynomial. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 4 / 18

5 Expectation values of local observables Expectation values In closed systems, we are usually interested in the ground states of H At times, we are also interested in other eigenstates of H They are all steady states of γ t : ω γ t = ω In open systems, we are usually interested in the case where γ t has a unique steady state ρ and no periodic points: ρ γ t = ρ and moreover lim t γ t(a) = ρ (A)1 A. Lucia (UCM) Stability of local observables Quantum Spin Systems 5 / 18

6 General problem Given one such interesting state ρ, how sensitive is the expectation value of local observables ρ(a) with respect to changes in L? Can it tolerate local perturbations, i.e. replacing L by L = L + E, where E = x Λ E x where E x is small (but E is not)? ρ(a) ρ (A) k Y sup E x, x A A Y where k Y is a constant independent of the system size. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 6 / 18

7 Motivation 1 Quantum phase classification The physicists definition of quantum phase is given in terms of smoothness of expectation values of observables Local observables are what is reasonable to expect to be actually measurable in an experiment The mathematicians definition requires the states to be groundstates of the extremes of a smooth path of gapped local Hamiltonians 2 Noise modelling 3 Using engineered dissipation to prepare interesting quantum states as fixed points of open system dynamics (entangled states, magic states, quantum codes, etc.) A. Lucia (UCM) Stability of local observables Quantum Spin Systems 7 / 18

8 Closed systems Local observables are stable if H(s) = H + se is uniformly gapped: inf gap H(s) γ > 0 s [0,1] We reduce the problem to stability of the spectral gap (Frustration-free, pbc: [Michalakis, Pytel, 2011]) Open systems with unique fixed point Local observables are stable if γ t is fast mixing, i.e. if { } t ε = inf t > 0 sup γ t (A) ρ (A)1 ε A A scales sub-linearly with system size [Cubitt, L., Michalakis, Perez-Garcia, 2013] A. Lucia (UCM) Stability of local observables Quantum Spin Systems 8 / 18

9 Quasi-adiabatic evolution [Hastings 2004] Let H(s) be a family of uniformly gapped local Hamiltonians. Let P(s) the projector on the groundstate space of H(s). Quasi-adiabatic evolution There exists a unitary U(s) such that P(s) = U(s)P(0)U(s) and U(s) has a quasi-local structure given by d ds U s = id(s)u(s), U(0) = 1 with D(s) being quasi-local Hermitian operator (i.e. a time-dependent Hamiltonian) Also called spectral flow, since it is not specific of the groundstate. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 9 / 18

10 L.R. bounds for quasi-adiabatic evolution Let α s (A) = U(s) AU(s) the dual of the spectral flow. Lemma (Bachmann, Michalakis, Nachtergaele, Sims 2011) For A A X, B A Y vs µ dist(x,y ) [α s (A), B] 2 A B e By denoting 1/ε, where ε = sup x E x, we have H(s) = H + s E, s [0, ε] ε in such a way that v, µ are independent of ε. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 10 / 18

11 Local perturbations pertub locally Remember that α s was generated by D(s) = x D x(s) For Y Λ, let αs Y be the evolution generated by D Y (s) = x Y D x(s) Lemma Let A A X. Let X r = {x dist(x, X ) r} Then α s (A) α Xr (A) A e vs g(r) with g(r) a fast decaying function. Remark α Xr s (A) is supported on X r. s A. Lucia (UCM) Stability of local observables Quantum Spin Systems 11 / 18

12 Stability Theorem For all A A X it holds that A P(0) A P(s) δ(s) kx A where δ(s) grows polynomially in s and A P(s) = tr AP(s) Proof. By using the spectral flow we obtain A P(s) = tr AP(s) = tr AU(s)P(0)U(s) = tr U(s) AU(s)P(0) = tr α s (A)P(0) = α s (A) P(0) and therefore A P(0) A P(s) αs (A) A α s (A) α Xr (A) + s αs Xr (A) A A. Lucia (UCM) Stability of local observables Quantum Spin Systems 12 / 18

13 Proof. αs A P(0) A P(s) (A) α Xr (A) + s αs Xr (A) A We can make the first term arbitrarily small by Lieb-Robison bounds, choosing r O(s) Then αs Xr (A) A s 0 x X r [D Xr (τ), A] dτ s 0 [D x (τ), A] dτ δ(s) k X A A. Lucia (UCM) Stability of local observables Quantum Spin Systems 13 / 18

14 Open system case In the closed system case, we used two important facts related to the spectral flow: 1 α s connects P(0) to P(s) in finite time 2 α s can be localized by L.R. : finite times finite volumes For open systems, spectral flow is not available. (Unless somebody has an idea to prove me wrong...) But if we have a unique fixed point, then η t (A) = γ t(a) ρ (A)1 A 0 A. Lucia (UCM) Stability of local observables Quantum Spin Systems 14 / 18

15 Let γ t and γ t be the original and the perturbed evolutions, respectively. We can apply Duhamel formula: γ t (A) γ t(a) t γ t s(a)eγ s (A) ds x 0 t 0 E x γ s (A) ds where we have assumed γ t 1. Let us focus on one fixed x Λ. A. Lucia (UCM) Stability of local observables Quantum Spin Systems 15 / 18

16 We can split the integral at a time t 0 = t 0 (x) to be determined later: 1 short times: dissipative version of Lieb-Robinson bounds t 0 with d = dist(x, supp A) 0 E x γ s (A) ds E x A 1 µv eµ(d vt 0) 2 long times: We use the fact E x (1) = L x (1) L x(1) = 0 t t 0 E x γ s (A) ds = t t 0 E x E x [γ s (A) ρ (A)1] ds t γ s (A) ρ (A)1 ds E x η s (A) ds t 0 t 0 A. Lucia (UCM) Stability of local observables Quantum Spin Systems 16 / 18

17 By taking t 0 (x) = 2d(x)/v where d(x) = dist(x, supp A) we have that γ t (A) γ t(a) c A (sup E x ) e µd(x) + x x Λ 2d(x)/v η s (A) ds Theorem Let A A Y. If x η s (A) ds is summable over Λ and is independent of system size, then γt (A) γ t(a) ky A sup E x x A. Lucia (UCM) Stability of local observables Quantum Spin Systems 17 / 18

18 Rapid mixing Remember that t ε = inf{t > 0 sup η t (A) ε} A Theorem If t ε O(log m Λ + log 1 ε ) for some m > 0, then for each A A Y it holds that η t (A) c A e γt A. Lucia (UCM) Stability of local observables Quantum Spin Systems 18 / 18

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Propagation bounds for quantum dynamics and applications 1

Propagation bounds for quantum dynamics and applications 1 1 Quantum Systems, Chennai, August 14-18, 2010 Propagation bounds for quantum dynamics and applications 1 Bruno Nachtergaele (UC Davis) based on joint work with Eman Hamza, Spyridon Michalakis, Yoshiko

More information

arxiv: v2 [quant-ph] 14 Oct 2013

arxiv: v2 [quant-ph] 14 Oct 2013 Stability of local quantum dissipative systems Toby S. Cubitt 1,2, Angelo Lucia 1, Spyridon Michalakis 3, and David Perez-Garcia 1 arxiv:1303.4744v2 [quant-ph] 14 Oct 2013 1 Departamento de Análisis Matemático,

More information

FRG Workshop in Cambridge MA, May

FRG Workshop in Cambridge MA, May FRG Workshop in Cambridge MA, May 18-19 2011 Programme Wednesday May 18 09:00 09:10 (welcoming) 09:10 09:50 Bachmann 09:55 10:35 Sims 10:55 11:35 Borovyk 11:40 12:20 Bravyi 14:10 14:50 Datta 14:55 15:35

More information

A classification of gapped Hamiltonians in d = 1

A classification of gapped Hamiltonians in d = 1 A classification of gapped Hamiltonians in d = 1 Sven Bachmann Mathematisches Institut Ludwig-Maximilians-Universität München Joint work with Yoshiko Ogata NSF-CBMS school on quantum spin systems Sven

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Adiabatic evolution and dephasing

Adiabatic evolution and dephasing Adiabatic evolution and dephasing Gian Michele Graf ETH Zurich January 26, 2011 Fast and slow, adiabatic and geometric effects in nonequilibrium dynamics Institut Henri Poincaré Outline The Landau-Zener

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 Davis, January 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard Werner

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 FRG2011, Harvard, May 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard

More information

Classical and quantum simulation of dissipative quantum many-body systems

Classical and quantum simulation of dissipative quantum many-body systems 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 Classical and quantum simulation of dissipative quantum many-body systems

More information

Preparing Projected Entangled Pair States on a Quantum Computer

Preparing Projected Entangled Pair States on a Quantum Computer Preparing Projected Entangled Pair States on a Quantum Computer Martin Schwarz, Kristan Temme, Frank Verstraete University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria Toby Cubitt,

More information

The Quantum Hall Conductance: A rigorous proof of quantization

The Quantum Hall Conductance: A rigorous proof of quantization Motivation The Quantum Hall Conductance: A rigorous proof of quantization Spyridon Michalakis Joint work with M. Hastings - Microsoft Research Station Q August 17th, 2010 Spyridon Michalakis (T-4/CNLS

More information

1 Math 241A-B Homework Problem List for F2015 and W2016

1 Math 241A-B Homework Problem List for F2015 and W2016 1 Math 241A-B Homework Problem List for F2015 W2016 1.1 Homework 1. Due Wednesday, October 7, 2015 Notation 1.1 Let U be any set, g be a positive function on U, Y be a normed space. For any f : U Y let

More information

Research Statement. Dr. Anna Vershynina. August 2017

Research Statement. Dr. Anna Vershynina. August 2017 annavershynina@gmail.com August 2017 My research interests lie in functional analysis and mathematical quantum physics. In particular, quantum spin systems, open quantum systems and quantum information

More information

Fermionic Projectors and Hadamard States

Fermionic Projectors and Hadamard States Fermionic Projectors and Hadamard States Simone Murro Fakultät für Mathematik Universität Regensburg Foundations and Constructive Aspects of QFT Göttingen, 16th of January 2016 To the memory of Rudolf

More information

ATELIER INFORMATION QUANTIQUE ET MÉCANIQUE STATISTIQUE QUANTIQUE WORKSHOP QUANTUM INFORMATION AND QUANTUM STATISTICAL MECHANICS

ATELIER INFORMATION QUANTIQUE ET MÉCANIQUE STATISTIQUE QUANTIQUE WORKSHOP QUANTUM INFORMATION AND QUANTUM STATISTICAL MECHANICS HORAIRE / PROGRAM ATELIER INFORMATION QUANTIQUE ET MÉCANIQUE STATISTIQUE QUANTIQUE 15 au 19 octobre 2018 WORKSHOP QUANTUM INFORMATION AND QUANTUM STATISTICAL MECHANICS October 15 19, 2018 CONFÉRENCES :

More information

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations:

DISSIPATIVE TRANSPORT APERIODIC SOLIDS KUBO S FORMULA. and. Jean BELLISSARD 1 2. Collaborations: Vienna February 1st 2005 1 DISSIPATIVE TRANSPORT and KUBO S FORMULA in APERIODIC SOLIDS Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, & Institut Universitaire de France Collaborations:

More information

arxiv: v1 [math-ph] 24 Nov 2009

arxiv: v1 [math-ph] 24 Nov 2009 Quantization of Hall Conductance For Interacting Electrons Without Averaging Assumptions Matthew B. Hastings Microsoft Research Station Q, CNSI Building, University of California, Santa Barbara, CA, 9316,

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Entanglement Dynamics for the Quantum Disordered XY Chain

Entanglement Dynamics for the Quantum Disordered XY Chain Entanglement Dynamics for the Quantum Disordered XY Chain Houssam Abdul-Rahman Joint with: B. Nachtergaele, R. Sims, G. Stolz AMS Southeastern Sectional Meeting University of Georgia March 6, 2016 Houssam

More information

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space.

2) Let X be a compact space. Prove that the space C(X) of continuous real-valued functions is a complete metric space. University of Bergen General Functional Analysis Problems with solutions 6 ) Prove that is unique in any normed space. Solution of ) Let us suppose that there are 2 zeros and 2. Then = + 2 = 2 + = 2. 2)

More information

13 The martingale problem

13 The martingale problem 19-3-2012 Notations Ω complete metric space of all continuous functions from [0, + ) to R d endowed with the distance d(ω 1, ω 2 ) = k=1 ω 1 ω 2 C([0,k];H) 2 k (1 + ω 1 ω 2 C([0,k];H) ), ω 1, ω 2 Ω. F

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

A geometric analysis of the Markovian evolution of open quantum systems

A geometric analysis of the Markovian evolution of open quantum systems A geometric analysis of the Markovian evolution of open quantum systems University of Zaragoza, BIFI, Spain Joint work with J. F. Cariñena, J. Clemente-Gallardo, G. Marmo Martes Cuantico, June 13th, 2017

More information

A Lieb-Robinson Bound for the Toda System

A Lieb-Robinson Bound for the Toda System 1 FRG Workshop May 18, 2011 A Lieb-Robinson Bound for the Toda System Umar Islambekov The University of Arizona joint work with Robert Sims 2 Outline: 1. Motivation 2. Toda Lattice 3. Lieb-Robinson bounds

More information

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems

Basic Concepts of Adaptive Finite Element Methods for Elliptic Boundary Value Problems Basic Concepts of Adaptive Finite lement Methods for lliptic Boundary Value Problems Ronald H.W. Hoppe 1,2 1 Department of Mathematics, University of Houston 2 Institute of Mathematics, University of Augsburg

More information

Hadamard States via Fermionic Projectors in a Time-Dependent External Potentials 1

Hadamard States via Fermionic Projectors in a Time-Dependent External Potentials 1 Hadamard States via Fermionic Projectors in a Time-Dependent External Potentials 1 Simone Murro Fakultät für Mathematik Universität Regensburg New Trends in Algebraic Quantum Field Theory Frascati, 13th

More information

Entanglement spectrum and Matrix Product States

Entanglement spectrum and Matrix Product States Entanglement spectrum and Matrix Product States Frank Verstraete J. Haegeman, D. Draxler, B. Pirvu, V. Stojevic, V. Zauner, I. Pizorn I. Cirac (MPQ), T. Osborne (Hannover), N. Schuch (Aachen) Outline Valence

More information

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0) Phys46.nb 89 on the same quantum state. i.e., if we have initial condition ψ(t ) χ n (t ) (5.41) then at later time ψ(t) e i ϕ(t) χ n (t) (5.4) This phase ϕ contains two parts ϕ(t) - E n(t) t + ϕ B (t)

More information

Remarks on decay of small solutions to systems of Klein-Gordon equations with dissipative nonlinearities

Remarks on decay of small solutions to systems of Klein-Gordon equations with dissipative nonlinearities Remarks on decay of small solutions to systems of Klein-Gordon equations with dissipative nonlinearities Donghyun Kim (joint work with H. Sunagawa) Department of Mathematics, Graduate School of Science

More information

Quantum Mechanics C (130C) Winter 2014 Assignment 7

Quantum Mechanics C (130C) Winter 2014 Assignment 7 University of California at San Diego Department of Physics Prof. John McGreevy Quantum Mechanics C (130C) Winter 014 Assignment 7 Posted March 3, 014 Due 11am Thursday March 13, 014 This is the last problem

More information

Exponential Decay of Correlations Implies Area Law

Exponential Decay of Correlations Implies Area Law Exponential Decay of Correlations Implies Area Law Fernando G.S.L. Brandão ETH Michał Horodecki Gdansk University Arxiv:1206.2947 QIP 2013, Beijing Condensed (matter) version of the talk y - Finite correlation

More information

The Phase Space in Quantum Field Theory

The Phase Space in Quantum Field Theory The Phase Space in Quantum Field Theory How Small? How Large? Martin Porrmann II. Institut für Theoretische Physik Universität Hamburg Seminar Quantum Field Theory and Mathematical Physics April 13, 2005

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01 ENGI 940 Lecture Notes - ODEs Page.0. Ordinary Differential Equations An equation involving a function of one independent variable and the derivative(s) of that function is an ordinary differential equation

More information

On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces

On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 9 (06), 5536 5543 Research Article On the split equality common fixed point problem for quasi-nonexpansive multi-valued mappings in Banach spaces

More information

Twisting versus bending in quantum waveguides

Twisting versus bending in quantum waveguides Twisting versus bending in quantum waveguides David KREJČIŘÍK Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic http://gemma.ujf.cas.cz/ david/ Based on: [Chenaud, Duclos, Freitas, D.K.]

More information

On semilinear elliptic equations with measure data

On semilinear elliptic equations with measure data On semilinear elliptic equations with measure data Andrzej Rozkosz (joint work with T. Klimsiak) Nicolaus Copernicus University (Toruń, Poland) Controlled Deterministic and Stochastic Systems Iasi, July

More information

Myopic Models of Population Dynamics on Infinite Networks

Myopic Models of Population Dynamics on Infinite Networks Myopic Models of Population Dynamics on Infinite Networks Robert Carlson Department of Mathematics University of Colorado at Colorado Springs rcarlson@uccs.edu June 30, 2014 Outline Reaction-diffusion

More information

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing

Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing Strong Converse and Stein s Lemma in the Quantum Hypothesis Testing arxiv:uant-ph/9906090 v 24 Jun 999 Tomohiro Ogawa and Hiroshi Nagaoka Abstract The hypothesis testing problem of two uantum states is

More information

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012

Spin-Boson Model. A simple Open Quantum System. M. Miller F. Tschirsich. Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Spin-Boson Model A simple Open Quantum System M. Miller F. Tschirsich Quantum Mechanics on Macroscopic Scales Theory of Condensed Matter July 2012 Outline 1 Bloch-Equations 2 Classical Dissipations 3 Spin-Boson

More information

CQC. Composing Quantum Channels

CQC. Composing Quantum Channels CQC Composing Quantum Channels Michael Wolf echnical University of Munich (UM) Matthias Christandl EH Zurich (EH) David Perez-Garcia Universidad Complutense de Madrid (UCM) Presenter: David Reeb, postdoc

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

A note on adiabatic theorem for Markov chains

A note on adiabatic theorem for Markov chains Yevgeniy Kovchegov Abstract We state and prove a version of an adiabatic theorem for Markov chains using well known facts about mixing times. We extend the result to the case of continuous time Markov

More information

THE NONCOMMUTATIVE TORUS

THE NONCOMMUTATIVE TORUS THE NONCOMMUTATIVE TORUS The noncommutative torus as a twisted convolution An ordinary two-torus T 2 with coordinate functions given by where x 1, x 2 [0, 1]. U 1 = e 2πix 1, U 2 = e 2πix 2, (1) By Fourier

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS

LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS LOCAL RECOVERY MAPS AS DUCT TAPE FOR MANY BODY SYSTEMS Michael J. Kastoryano November 14 2016, QuSoft Amsterdam CONTENTS Local recovery maps Exact recovery and approximate recovery Local recovery for many

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

arxiv: v2 [math-ph] 31 Jan 2010

arxiv: v2 [math-ph] 31 Jan 2010 Quasi-adiabatic Continuation for Disordered Systems: Applications to Correlations, Lieb-Schultz-Mattis, and Hall Conductance M. B. Hastings Microsoft Research Station Q, CNSI Building, University of California,

More information

Lecture 21 - Jordan Algebras and Projective Spaces

Lecture 21 - Jordan Algebras and Projective Spaces Lecture 1 - Jordan Algebras and Projective Spaces April 15, 013 References: Jordan Operator Algebras. H. Hanche-Olsen and E. Stormer The Octonions. J. Baez 1 Jordan Algebras 1.1 Definition and examples

More information

arxiv: v4 [quant-ph] 11 Mar 2011

arxiv: v4 [quant-ph] 11 Mar 2011 Making Almost Commuting Matrices Commute M. B. Hastings Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, CA 93106 arxiv:0808.2474v4 [quant-ph] 11 Mar 2011 Suppose two

More information

On positive maps in quantum information.

On positive maps in quantum information. On positive maps in quantum information. Wladyslaw Adam Majewski Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: fizwam@univ.gda.pl IFTiA Gdańsk University

More information

Nonlinear Dynamical Systems Lecture - 01

Nonlinear Dynamical Systems Lecture - 01 Nonlinear Dynamical Systems Lecture - 01 Alexandre Nolasco de Carvalho August 08, 2017 Presentation Course contents Aims and purpose of the course Bibliography Motivation To explain what is a dynamical

More information

Regularizations of Singular Integral Operators (joint work with C. Liaw)

Regularizations of Singular Integral Operators (joint work with C. Liaw) 1 Outline Regularizations of Singular Integral Operators (joint work with C. Liaw) Sergei Treil Department of Mathematics Brown University April 4, 2014 2 Outline 1 Examples of Calderón Zygmund operators

More information

The L p -dissipativity of first order partial differential operators

The L p -dissipativity of first order partial differential operators The L p -dissipativity of first order partial differential operators A. Cialdea V. Maz ya n Memory of Vladimir. Smirnov Abstract. We find necessary and sufficient conditions for the L p -dissipativity

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows Plenary talk on the conference Stochastic and Analytic Methods in Mathematical Physics, Yerevan, Armenia,

More information

PREPUBLICACIONES DEL DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID MA-UCM

PREPUBLICACIONES DEL DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID MA-UCM PREPUBLICACIONES DEL DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID MA-UCM 29-14 Asymptotic behaviour of a parabolic problem with terms concentrated in the boundary A. Jiménez-Casas

More information

Stabilization of persistently excited linear systems

Stabilization of persistently excited linear systems Stabilization of persistently excited linear systems Yacine Chitour Laboratoire des signaux et systèmes & Université Paris-Sud, Orsay Exposé LJLL Paris, 28/9/2012 Stabilization & intermittent control Consider

More information

arxiv: v1 [math-ph] 30 Aug 2010

arxiv: v1 [math-ph] 30 Aug 2010 Locality in Quantum Systems Matthew B. Hastings Microsoft Research, Station Q, Elings Hall, University of California, Santa Barbara, CA 93106, USA. arxiv:1008.5137v1 [math-ph] 30 Aug 2010 These lecture

More information

Power law violation of the area law in quantum spin chains

Power law violation of the area law in quantum spin chains Power law violation of the area law in quantum spin chains and Peter W. Shor Northeastern / M.I.T. QIP, Sydney, Jan. 2015 Quantifying entanglement: SVD (Schmidt Decomposition, aka SVD) Suppose ψ AB is

More information

Martingale Problems. Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi

Martingale Problems. Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi s Abhay G. Bhatt Theoretical Statistics and Mathematics Unit Indian Statistical Institute, Delhi Lectures on Probability and Stochastic Processes III Indian Statistical Institute, Kolkata 20 24 November

More information

MAKING BOHMIAN MECHANICS COMPATIBLE WITH RELATIVITY AND QUANTUM FIELD THEORY. Hrvoje Nikolić Rudjer Bošković Institute, Zagreb, Croatia

MAKING BOHMIAN MECHANICS COMPATIBLE WITH RELATIVITY AND QUANTUM FIELD THEORY. Hrvoje Nikolić Rudjer Bošković Institute, Zagreb, Croatia MAKING BOHMIAN MECHANICS COMPATIBLE WITH RELATIVITY AND QUANTUM FIELD THEORY Hrvoje Nikolić Rudjer Bošković Institute, Zagreb, Croatia Vallico Sotto, Italy, 28th August - 4th September 2010 1 Outline:

More information

A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University

A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University A note on adiabatic theorem for Markov chains and adiabatic quantum computation Yevgeniy Kovchegov Oregon State University Introduction Max Born and Vladimir Fock in 1928: a physical system remains in

More information

The effect of classical noise on a quantum two-level system

The effect of classical noise on a quantum two-level system The effect of classical noise on a quantum two-level system Jean-Philippe Aguilar, Nils Berglund Abstract We consider a quantum two-level system perturbed by classical noise. The noise is implemented as

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Quantum Fokker-Planck models: kinetic & operator theory approaches

Quantum Fokker-Planck models: kinetic & operator theory approaches TECHNISCHE UNIVERSITÄT WIEN Quantum Fokker-Planck models: kinetic & operator theory approaches Anton ARNOLD with F. Fagnola (Milan), L. Neumann (Vienna) TU Vienna Institute for Analysis and Scientific

More information

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization

Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Disordered Quantum Spin Chains or Scratching at the Surface of Many Body Localization Günter Stolz University of Alabama at Birmingham Arizona School of Analysis and Mathematical Physics Tucson, Arizona,

More information

arxiv: v1 [math.oc] 22 Sep 2016

arxiv: v1 [math.oc] 22 Sep 2016 EUIVALENCE BETWEEN MINIMAL TIME AND MINIMAL NORM CONTROL PROBLEMS FOR THE HEAT EUATION SHULIN IN AND GENGSHENG WANG arxiv:1609.06860v1 [math.oc] 22 Sep 2016 Abstract. This paper presents the equivalence

More information

Quantum Phase Transitions

Quantum Phase Transitions 1 Davis, September 19, 2011 Quantum Phase Transitions A VIGRE 1 Research Focus Group, Fall 2011 Spring 2012 Bruno Nachtergaele See the RFG webpage for more information: http://wwwmathucdavisedu/~bxn/rfg_quantum_

More information

A mathematical model for Mott s Variable Range Hopping

A mathematical model for Mott s Variable Range Hopping Santiago November 23-28, 2009 1 A mathematical model for Mott s Variable Range Hopping Jean BELLISSARD 1 2 Georgia Institute of Technology, Atlanta, http://www.math.gatech.edu/ jeanbel/ Collaborations:

More information

Quantum Many Body Systems and Tensor Networks

Quantum Many Body Systems and Tensor Networks Quantum Many Body Systems and Tensor Networks Aditya Jain International Institute of Information Technology, Hyderabad aditya.jain@research.iiit.ac.in July 30, 2015 Aditya Jain (IIIT-H) Quantum Hamiltonian

More information

1 Continuity Classes C m (Ω)

1 Continuity Classes C m (Ω) 0.1 Norms 0.1 Norms A norm on a linear space X is a function : X R with the properties: Positive Definite: x 0 x X (nonnegative) x = 0 x = 0 (strictly positive) λx = λ x x X, λ C(homogeneous) x + y x +

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

On the centralizer of a regular, semi-simple, stable conjugacy class. Benedict H. Gross

On the centralizer of a regular, semi-simple, stable conjugacy class. Benedict H. Gross On the centralizer of a regular, semi-simple, stable conjugacy class Benedict H. Gross Let k be a field, and let G be a semi-simple, simply-connected algebraic group, which is quasi-split over k. The theory

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Quantum Physics II (8.05) Fall 2002 Assignment 3

Quantum Physics II (8.05) Fall 2002 Assignment 3 Quantum Physics II (8.05) Fall 00 Assignment Readings The readings below will take you through the material for Problem Sets and 4. Cohen-Tannoudji Ch. II, III. Shankar Ch. 1 continues to be helpful. Sakurai

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cost{ e g + g e }  = q e r g E e = h" 0 The Two Level Atom h" e h" h" 0 E g = " h# 0 g H A = h" 0 { e e # g g } r " = q e r g { } + r $ E r cos"t{ e g + g e } The Two Level Atom E e = µ bb 0 h" h" " r B = B 0ˆ z r B = B " cos#t x

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

Physics 215 Quantum Mechanics 1 Assignment 1

Physics 215 Quantum Mechanics 1 Assignment 1 Physics 5 Quantum Mechanics Assignment Logan A. Morrison January 9, 06 Problem Prove via the dual correspondence definition that the hermitian conjugate of α β is β α. By definition, the hermitian conjugate

More information

Quantum Lattice Dynamics and Applications to Quantum Information and Computation 1

Quantum Lattice Dynamics and Applications to Quantum Information and Computation 1 1 ESI Vienna, July 21-31, 2008 Quantum Lattice Dynamics and Applications to Quantum Information and Computation 1 Bruno Nachtergaele (UC Davis) based on joint work with Eman Hamza, Spyridon Michalakis,

More information

Signatures of Trans-Planckian Dissipation in Inflationary Spectra

Signatures of Trans-Planckian Dissipation in Inflationary Spectra Signatures of Trans-Planckian Dissipation in Inflationary Spectra 3. Kosmologietag Bielefeld Julian Adamek ITPA University Würzburg 8. May 2008 Julian Adamek 1 / 18 Trans-Planckian Dissipation in Inflationary

More information

1 Background and Review Material

1 Background and Review Material 1 Background and Review Material 1.1 Vector Spaces Let V be a nonempty set and consider the following two operations on elements of V : (x,y) x + y maps V V V (addition) (1.1) (α, x) αx maps F V V (scalar

More information

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Nonlinear Control Lecture # 6 Passivity and Input-Output Stability Passivity: Memoryless Functions y y y u u u (a) (b) (c) Passive Passive Not passive y = h(t,u), h [0, ] Vector case: y = h(t,u), h T =

More information

Graph Convergence for H(, )-co-accretive Mapping with over-relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem

Graph Convergence for H(, )-co-accretive Mapping with over-relaxed Proximal Point Method for Solving a Generalized Variational Inclusion Problem Iranian Journal of Mathematical Sciences and Informatics Vol. 12, No. 1 (2017), pp 35-46 DOI: 10.7508/ijmsi.2017.01.004 Graph Convergence for H(, )-co-accretive Mapping with over-relaxed Proximal Point

More information

The Porous Medium Equation

The Porous Medium Equation The Porous Medium Equation Moritz Egert, Samuel Littig, Matthijs Pronk, Linwen Tan Coordinator: Jürgen Voigt 18 June 2010 1 / 11 Physical motivation Flow of an ideal gas through a homogeneous porous medium

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

CONTINUITY OF CP-SEMIGROUPS IN THE POINT-STRONG OPERATOR TOPOLOGY

CONTINUITY OF CP-SEMIGROUPS IN THE POINT-STRONG OPERATOR TOPOLOGY J. OPERATOR THEORY 64:1(21), 149 154 Copyright by THETA, 21 CONTINUITY OF CP-SEMIGROUPS IN THE POINT-STRONG OPERATOR TOPOLOGY DANIEL MARKIEWICZ and ORR MOSHE SHALIT Communicated by William Arveson ABSTRACT.

More information

ON THE CHERN CHARACTER OF A THETA-SUMMABLE FREDHOLM MODULE.

ON THE CHERN CHARACTER OF A THETA-SUMMABLE FREDHOLM MODULE. ON THE CHERN CHARACTER OF A THETA-SUMMABLE FREDHOLM MODULE. Ezra Getzler and András Szenes Department of Mathematics, Harvard University, Cambridge, Mass. 02138 USA In [3], Connes defines the notion of

More information

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory

Renormalization of microscopic Hamiltonians. Renormalization Group without Field Theory Renormalization of microscopic Hamiltonians Renormalization Group without Field Theory Alberto Parola Università dell Insubria (Como - Italy) Renormalization Group Universality Only dimensionality and

More information

Quantum Data Hiding Challenges and Opportuni6es

Quantum Data Hiding Challenges and Opportuni6es Quantum Data Hiding Challenges and Opportuni6es Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Based on joint work with M. Christandl, A. Harrow, M. Horodecki, J. Yard PI, 02/11/2011

More information

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches

Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Dynamical systems with Gaussian and Levy noise: analytical and stochastic approaches Noise is often considered as some disturbing component of the system. In particular physical situations, noise becomes

More information

ERRATA: Probabilistic Techniques in Analysis

ERRATA: Probabilistic Techniques in Analysis ERRATA: Probabilistic Techniques in Analysis ERRATA 1 Updated April 25, 26 Page 3, line 13. A 1,..., A n are independent if P(A i1 A ij ) = P(A 1 ) P(A ij ) for every subset {i 1,..., i j } of {1,...,

More information

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why?

Lecture 5. Ch. 5, Norms for vectors and matrices. Norms for vectors and matrices Why? KTH ROYAL INSTITUTE OF TECHNOLOGY Norms for vectors and matrices Why? Lecture 5 Ch. 5, Norms for vectors and matrices Emil Björnson/Magnus Jansson/Mats Bengtsson April 27, 2016 Problem: Measure size of

More information

A complete criterion for convex-gaussian states detection

A complete criterion for convex-gaussian states detection A complete criterion for convex-gaussian states detection Anna Vershynina Institute for Quantum Information, RWTH Aachen, Germany joint work with B. Terhal NSF/CBMS conference Quantum Spin Systems The

More information

Quantum control: Introduction and some mathematical results. Rui Vilela Mendes UTL and GFM 12/16/2004

Quantum control: Introduction and some mathematical results. Rui Vilela Mendes UTL and GFM 12/16/2004 Quantum control: Introduction and some mathematical results Rui Vilela Mendes UTL and GFM 12/16/2004 Introduction to quantum control Quantum control : A chemists dream Bond-selective chemistry with high-intensity

More information

Applications of Matrix Functions Part III: Quantum Chemistry

Applications of Matrix Functions Part III: Quantum Chemistry Applications of Matrix Functions Part III: Quantum Chemistry Emory University Department of Mathematics and Computer Science Atlanta, GA 30322, USA Prologue The main purpose of this lecture is to present

More information