A note on adiabatic theorem for Markov chains

Size: px
Start display at page:

Download "A note on adiabatic theorem for Markov chains"

Transcription

1 Yevgeniy Kovchegov Abstract We state and prove a version of an adiabatic theorem for Markov chains using well known facts about mixing times. We extend the result to the case of continuous time Markov chains with bounded generators. 1 Introduction he adiabatic theorem was first stated by Max Born and Vladimir Fock in It asserts that a physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian s spectrum (see Wikipedia page on adiabatic theorem. In this work, we state and prove the corresponding theorem for Markov chains using some of the machinery of mixing times and relaxation times of Markov chains that was developed so successfully in the last thirty years (see Aldous (1983, Aldous and Fill, Burton and Kovchegov (2009, Levin et al (2008 and references therein. Stated in terms of Markov chains, the adiabatic theorem is intuitively simple and accessible. It is important to point out that despite clear similarities and relation between the two, the quantum adiabatic theorem and the adiabatic theorem of this paper are different. First we state a version of the adiabatic theorem. Given two Hamiltonians, H initial and H final, acting on a quantum system. Let H(s = (1 sh initial +sh final. Suppose the system evolves according to H(t/ from time t = 0 to time (the so called adiabatic evolution. he adiabatic theorem of quantum mechanics states that for large enough, the final state of the system will be close to the ground state of H final. hey are close in l 2 norm whenever C, where β is the least spectral gap of H(s β 3 over all s [0, 1], and C depends linearly on a square of the distance between H initial and H final. See Messiah (1958. here are many versions of the adiabatic theorem. Now, let us list the main concepts involved in the theory of mixing and relaxation times that we will need in the following sections. We refer the readers to Levin et al (2008 and Aldous and Fill for details. Department of Mathematics, Oregon State University, Corvallis, OR , USA kovchegy@math.oregonstate.edu 1

2 Definition 1. If µ and are two probability distributions over Ω, then the total variation distance is µ V = 1 2 x Ω µ(x (x = sup µ(a (A A Ω Observe that the total variation distance measures the coincidence between the distributions on a scale from zero to one. Definition 2. Suppose P is an irreducible and aperiodic finite Markov chain with stationary distribution π, i.e. πp = π. Given an > 0, the mixing time t mix ( is defined as t mix ( = inf { t : P t π V, for all probability distributions } Now, suppose P = condition ( p(x, y x,y is reversible, i.e. P satisfies the detailed balance π(xp(x, y = π(yp(y, x for all x, y in the sample space Ω It is easy to check that if P is reversible, then P is self-adjoint with respect to an inner product induced by π, and as such will have all real eigenvalues. he difference β = 1 λ (2 between the largest eigenvalue (i.e. λ 1 = 1 and the second largest (in absolute value eigenvalue λ (2 is called the spectral gap of P. he relaxation time is defined as τ rlx = 1 β One can show the following relationship between mixing and relaxation times. heorem 1. Suppose P is a reversible, irreducible and aperiodic Markov chain with state space Ω and stationary distribution π. hen (τ rlx 1 log(2 1 t mix ( τ rlx log( min x Ω π(x 1 2 Adiabatic theorem for Markov chains Given two transition probability operators, P initial and P final, with a finite state space Ω. Suppose P final is irreducible and aperiodic and π f is the unique stationary distribution for P final. Let P s = (1 sp initial + sp final Definition 3. Given > 0, a time is called the adiabatic time if it is the least such that max P 1 P 2 P 1 P 1 π f V, where the maximum is taken over all probability distributions over Ω. 2

3 heorem 2. Let t mix denote the mixing time for P final. hen the adiabatic time ( tmix (/2 2 = O Proof. Observe that P 1 P 2 where N = P 1 P 2 P N inequality, max P 1 P 2 P 1 where 0 S N 1! N! N. P 1 P 1 =! N! N NP N final + E, and E is the rest of the terms. P 1 π f V max P N final π f V Hence, by the triangle! N! N + S N, Let = Kt mix (/2 and N = (K 1t mix (/2, so that max P N final π f V /2. Observe that er N log xdx ( N log! N! N = ep j=n+1 log j ( N log 1 and therefore, expressing and N via t mix (/2, and simplifying, we obtain ( K 1 e K 1 t mix (/2 = e N log N ( N! N! N 1 So (! 0 S N 1 N! N K 1 e K 1 t mix (/2 and we need to find the least K such that ( K 1 1 e K 1 t mix (/2 /2 Now, since log(1 + x = x x2 2 + O(x3, the least such K is approximated as follows K hus for = Kt mix (/2 t mix(/2 2, max P 1 P 2 t mix (/2 2 log (1 /2 t mix(/2 P 1 P 1 π f V 3

4 Observe that heorem 2 is independent of the distance. We can use l 2 norm in the definitions of adiabatic and mixing times, and arrive to the same result. A Markov chain P final over finite sample space Ω, if it is reversible, will have a spectral gap. Here we apply heorem 1 to the result in heorem 2. Corollary. Suppose P initial and P final are Markov chains with state space Ω. If P final is reversible, irreducible and aperiodic with its spectral gap β > 0, then [ ] = O log2 2 min x Ω π f (x β 2 3 Continuous time Markov processes In the case of continuous time Markov chains, an equivalent result is produced via the method of uniformization and order statistics. Suppose Q is a bounded Markov generator for a continuous time Markov chain P (t, and λ max i Ω j:j i q(i, j is the upper bound on the departure rates over all states. he method of uniformization provides an expression for the transition probabilities P (t as follows: (λt n P (t = e λt Pλ n n!, where P λ = I + 1 λ Q he expression is obtained via conditioning on the number of arrivals in a Poisson process with rate λ. he definition of a Mixing time is similar in the case of continuous time processes. Definition 4. Suppose P (t is an irreducible and finite continuous time Markov chain with stationary distribution π. Given an > 0, the mixing time t mix ( is defined as t mix ( = inf {t : P (t π V, for all probability distributions } Suppose Q initial and Q final are two bounded generators for continuous time Markov processes over a finite state space Ω, and π f is the only stationary distribution for Q final. Let Q[s] = (1 sq initial + sq final be a time non-homogeneous generator. Given > 0, let P (t 1, t 2 (0 t 1 t 2 denote a matrix of transition probabilities of a Markov process generated by Q [ ] t over [t 1, t 2 ] time interval. Observe that the continuous time Markov adiabatic evolution is governed by [ ] d t t dt = tq, t [0, ] while the quantum adiabatic evolution is described via the corresponding Schrödinger s equation dvt dt = iv t H ( t. 4

5 Definition 5. Given > 0, a time is called the adiabatic time if it is the least such that max P (0, π f V, where the maximum is taken over all probability distributions over Ω. We will state and prove the following adiabatic theorem. heorem 3. Let t mix denote the mixing time for Q final. ake λ such that λ max q initial (i, j and λ max q final (i, j, i Ω i Ω j:j i where q initial (i, j and q final (i, j are the rates in Q initial and Q final respectively. hen the adiabatic time λt mix(/2 2 + θ, where θ = t mix (/2 + /(4λ. ] Proof. Observe that λ max i Ω j:j i q t(i, j, where q t (i, j are the rates in Q [ t (0 t. ake = K j:j i ( ( t mix(/2, N = (K t mix(/2, 2K 2K and let P final (t = e tq final denote the transition probability matrix associated with the generator Q final. Now, we let P 0 = I + 1 λ Q initial and P 1 = I + 1 λ Q final. hen P 0 and P 1 are discrete Markov chains and ( (λ( N n P (0, = N P (N, = N e λ( N I n, n! where N = P (0, N and n! I n = ( N n... N<x 1 <x 2 < <x n< [( 1 x 1 P 0 + x ] [( 1 P x n P 0 + x ] n P 1 dx 1... dx n i.e. the order statistics of n arrivals within the [N, ] time interval. We used the fact that, when conditioned on the number of arrivals, the arrival times of a Poisson process are distributed as an order statistics of uniform random variables. Hence ( P (0, = N (λ( N n e λ( N ( N n n n! P 1 n = e λ(1 1 2K 1 t mix (/2 N ( N λ n (t mix (/2 n = e λt mix (/2 2K 1 N P final (t mix (/2 + E, n! P n 1... N + E x 1... x n dx 1... dx n + E 5

6 where E is the rest of the terms. hus, the total variation distance, max aking K λt mix(/2 P (0, π f V e λt mix (/2 2K 1 /2 + S N + 1/2, we bound the error term S N = E π f V 1 e λ(1 1 2K 1 t mix (/2 λ n (t mix (/2 n n! = 1 e λt mix (/2 2K 1 /2 as < 2 log ( ( 1 2. herefore λtmix (/2 + 1/2 (t mix (/2 + /(2λ. In the end, we would like to mention a possible application. he Glauber dynamics of a finite Ising model is a continuous time Markov process. Its mixing time can be estimated using path coupling. he adiabatic transformation of the Markov generator corresponds to an adiabatic transformation of the Hamiltonian. he above result can be applied to obtain the adiabatic time for the transformation. he result can be adjusted when the adiabatic evolution of the generator is nonlinear. 3.1 Application: adiabatic Glauber dynamics of a one dimensional Ising model In the original, non-adiabatic case, the Glauber dynamics is used to generate distribution π(x = 1 Z(β e H(x over all spin configurations x { 1, +1} S, where S denotes all the sites of a graph, H(x = β u v x(ux(v, β is the reciprocal of the temperature, and Z(β is the normalization constant. Consider a non-linear adiabatic Glauber dynamics of an Ising model on S = Z/nZ. here, for time s [0, 1], the Hamiltonian H s = (1 ψ(sh initial + ϕ(sh final, where ψ(s and ϕ(s are continuous functions on [0, 1] such that ψ(0 = ϕ(0 = 0 and ψ(1 = ϕ(1 = 1. Each site j Z/nZ has an independent exponential clock with parameter one associated with it. When it rings, the spin x(j is reselected using the following probability P (x(j = +1 = e Hs(x + e Hs(x + e Hs(x +, where x + (i = x (i = x(i for i j, x + (j = +1 and x (j = 1. Here H s is the Hamitonian at the transition time s. he time non-homogeneous generator associated with the above dynamics is denoted by Q[s]. 6

7 We will compare the above adiabatic Glauber dynamics with the ordinary Glauber dynamics used for generating Ising models, where at each site j S, its spin is reset after waiting for an exponential interarrival time with parameter one, and the probabilities are determined by the local Hamiltonians. Let Q initial and Q final be the time homogenious generators of ordinary Glauber dynamics associated with the respective Hamiltonians, H initial and H final. Let us consider the case when H initial (x = 0, H final (x = β j Z/nZ x(jx(j+1 and ϕ(s = 1 4β log p(s 1 p(s, e 2β where p(s = (1 s s. hen e 2β +e 2β e 2βϕ(s e 2βϕ(s +e 2βϕ(s Q[s] = (1 sq initial + sq final So the question of how slow the nonlinear adiabatic transition H t/ = (1 ψ(t/ H initial + ϕ(t/ H final = p(s, and therefore has to happen in order to obtain the distribution that is close to that of Ising model with Hamiltonian H final at the end of the adiabatic evolution is addressed in heorem 3. In particular, for β < 1 2, the adiabatic time ( [ ] n log n + log(2/ 2 O 1 tanh(2β as t mix (/2 log n+log(2/ 1 tanh(2β by heorem 15.1 in Levin et al (2008. he above example connects an adiabatic evolution of a physical system to that of Markov operators, and invites to further study the latter. Acknowledgment he author would like to thank the anonymous referee for pointing at the errors in an earlier draft, and suggesting an improvement. References Aldous, D., Random Walks on Finite Groups and Rapidly Mixing Markov Chains. Seminaire de Probabilites XVII, Lecture Notes in Math., 986, Aldous,D., Fill, J.A. Reversible Markov Chains and Random Walks on Graphs. On the web: Burton, R.M., Kovchegov, Y., Mixing times via super-fast coupling. In press. 7

8 Levin, D.A., Peres, Y., Wilmer, E.L., Markov Chains and Mixing imes. Amer. Math. Soc., Providance, RI. Messiah, A., Quantum mechanics. John Wiley and Sons, NY 8

A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University

A note on adiabatic theorem for Markov chains and adiabatic quantum computation. Yevgeniy Kovchegov Oregon State University A note on adiabatic theorem for Markov chains and adiabatic quantum computation Yevgeniy Kovchegov Oregon State University Introduction Max Born and Vladimir Fock in 1928: a physical system remains in

More information

Adiabatic times for Markov chains and applications

Adiabatic times for Markov chains and applications Adiabatic times for Markov chains and applications Kyle Bradford and Yevgeniy Kovchegov Department of Mathematics Oregon State University Corvallis, OR 97331-4605, USA bradfork, kovchegy @math.oregonstate.edu

More information

On Markov Chain Monte Carlo

On Markov Chain Monte Carlo MCMC 0 On Markov Chain Monte Carlo Yevgeniy Kovchegov Oregon State University MCMC 1 Metropolis-Hastings algorithm. Goal: simulating an Ω-valued random variable distributed according to a given probability

More information

Glauber Dynamics for Ising Model I AMS Short Course

Glauber Dynamics for Ising Model I AMS Short Course Glauber Dynamics for Ising Model I AMS Short Course January 2010 Ising model Let G n = (V n, E n ) be a graph with N = V n < vertices. The nearest-neighbor Ising model on G n is the probability distribution

More information

Assignment 3 with Reference Solutions

Assignment 3 with Reference Solutions Assignment 3 with Reference Solutions Exercise 3.: Poisson Process Given are k independent sources s i of jobs as shown in the figure below. The interarrival time between jobs for each source is exponentially

More information

Path Coupling and Aggregate Path Coupling

Path Coupling and Aggregate Path Coupling Path Coupling and Aggregate Path Coupling 0 Path Coupling and Aggregate Path Coupling Yevgeniy Kovchegov Oregon State University (joint work with Peter T. Otto from Willamette University) Path Coupling

More information

The cutoff phenomenon for random walk on random directed graphs

The cutoff phenomenon for random walk on random directed graphs The cutoff phenomenon for random walk on random directed graphs Justin Salez Joint work with C. Bordenave and P. Caputo Outline of the talk Outline of the talk 1. The cutoff phenomenon for Markov chains

More information

Modern Discrete Probability Spectral Techniques

Modern Discrete Probability Spectral Techniques Modern Discrete Probability VI - Spectral Techniques Background Sébastien Roch UW Madison Mathematics December 22, 2014 1 Review 2 3 4 Mixing time I Theorem (Convergence to stationarity) Consider a finite

More information

XVI International Congress on Mathematical Physics

XVI International Congress on Mathematical Physics Aug 2009 XVI International Congress on Mathematical Physics Underlying geometry: finite graph G=(V,E ). Set of possible configurations: V (assignments of +/- spins to the vertices). Probability of a configuration

More information

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39

Quantum algorithms based on quantum walks. Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre / 39 Quantum algorithms based on quantum walks Jérémie Roland Université Libre de Bruxelles Quantum Information & Communication Jérémie Roland (ULB - QuIC) Quantum walks Grenoble, Novembre 2012 1 / 39 Outline

More information

Mixing times via super-fast coupling

Mixing times via super-fast coupling s via super-fast coupling Yevgeniy Kovchegov Department of Mathematics Oregon State University Outline 1 About 2 Definition Coupling Result. About Outline 1 About 2 Definition Coupling Result. About Coauthor

More information

MARKOV CHAINS AND MIXING TIMES

MARKOV CHAINS AND MIXING TIMES MARKOV CHAINS AND MIXING TIMES BEAU DABBS Abstract. This paper introduces the idea of a Markov chain, a random process which is independent of all states but its current one. We analyse some basic properties

More information

CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS. Contents

CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS. Contents CONVERGENCE THEOREM FOR FINITE MARKOV CHAINS ARI FREEDMAN Abstract. In this expository paper, I will give an overview of the necessary conditions for convergence in Markov chains on finite state spaces.

More information

FAST INITIAL CONDITIONS FOR GLAUBER DYNAMICS

FAST INITIAL CONDITIONS FOR GLAUBER DYNAMICS FAST INITIAL CONDITIONS FOR GLAUBER DYNAMICS EYAL LUBETZKY AND ALLAN SLY Abstract. In the study of Markov chain mixing times, analysis has centered on the performance from a worst-case starting state.

More information

MARKOV CHAINS AND HIDDEN MARKOV MODELS

MARKOV CHAINS AND HIDDEN MARKOV MODELS MARKOV CHAINS AND HIDDEN MARKOV MODELS MERYL SEAH Abstract. This is an expository paper outlining the basics of Markov chains. We start the paper by explaining what a finite Markov chain is. Then we describe

More information

Lecture 5: Random Walks and Markov Chain

Lecture 5: Random Walks and Markov Chain Spectral Graph Theory and Applications WS 20/202 Lecture 5: Random Walks and Markov Chain Lecturer: Thomas Sauerwald & He Sun Introduction to Markov Chains Definition 5.. A sequence of random variables

More information

Edge Flip Chain for Unbiased Dyadic Tilings

Edge Flip Chain for Unbiased Dyadic Tilings Sarah Cannon, Georgia Tech,, David A. Levin, U. Oregon Alexandre Stauffer, U. Bath, March 30, 2018 Dyadic Tilings A dyadic tiling is a tiling on [0,1] 2 by n = 2 k dyadic rectangles, rectangles which are

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0) Phys46.nb 89 on the same quantum state. i.e., if we have initial condition ψ(t ) χ n (t ) (5.41) then at later time ψ(t) e i ϕ(t) χ n (t) (5.4) This phase ϕ contains two parts ϕ(t) - E n(t) t + ϕ B (t)

More information

Solutions to Tutorial 11 (Week 12)

Solutions to Tutorial 11 (Week 12) THE UIVERSITY OF SYDEY SCHOOL OF MATHEMATICS AD STATISTICS Solutions to Tutorial 11 (Week 12) MATH3969: Measure Theory and Fourier Analysis (Advanced) Semester 2, 2017 Web Page: http://sydney.edu.au/science/maths/u/ug/sm/math3969/

More information

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING

INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING INTRODUCTION TO MARKOV CHAINS AND MARKOV CHAIN MIXING ERIC SHANG Abstract. This paper provides an introduction to Markov chains and their basic classifications and interesting properties. After establishing

More information

215 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that

215 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that 15 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that µ ν tv = (1/) x S µ(x) ν(x) = x S(µ(x) ν(x)) + where a + = max(a, 0). Show that

More information

25.1 Markov Chain Monte Carlo (MCMC)

25.1 Markov Chain Monte Carlo (MCMC) CS880: Approximations Algorithms Scribe: Dave Andrzejewski Lecturer: Shuchi Chawla Topic: Approx counting/sampling, MCMC methods Date: 4/4/07 The previous lecture showed that, for self-reducible problems,

More information

Stochastic Processes

Stochastic Processes Stochastic Processes 8.445 MIT, fall 20 Mid Term Exam Solutions October 27, 20 Your Name: Alberto De Sole Exercise Max Grade Grade 5 5 2 5 5 3 5 5 4 5 5 5 5 5 6 5 5 Total 30 30 Problem :. True / False

More information

Homework set 3 - Solutions

Homework set 3 - Solutions Homework set 3 - Solutions Math 495 Renato Feres Problems 1. (Text, Exercise 1.13, page 38.) Consider the Markov chain described in Exercise 1.1: The Smiths receive the paper every morning and place it

More information

Automorphic Equivalence Within Gapped Phases

Automorphic Equivalence Within Gapped Phases 1 Harvard University May 18, 2011 Automorphic Equivalence Within Gapped Phases Robert Sims University of Arizona based on joint work with Sven Bachmann, Spyridon Michalakis, and Bruno Nachtergaele 2 Outline:

More information

Oberwolfach workshop on Combinatorics and Probability

Oberwolfach workshop on Combinatorics and Probability Apr 2009 Oberwolfach workshop on Combinatorics and Probability 1 Describes a sharp transition in the convergence of finite ergodic Markov chains to stationarity. Steady convergence it takes a while to

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2

MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 MATH 56A: STOCHASTIC PROCESSES CHAPTER 2 2. Countable Markov Chains I started Chapter 2 which talks about Markov chains with a countably infinite number of states. I did my favorite example which is on

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Chapter 7. Markov chain background. 7.1 Finite state space

Chapter 7. Markov chain background. 7.1 Finite state space Chapter 7 Markov chain background A stochastic process is a family of random variables {X t } indexed by a varaible t which we will think of as time. Time can be discrete or continuous. We will only consider

More information

Finding is as easy as detecting for quantum walks

Finding is as easy as detecting for quantum walks Finding is as easy as detecting for quantum walks Jérémie Roland Hari Krovi Frédéric Magniez Maris Ozols LIAFA [ICALP 2010, arxiv:1002.2419] Jérémie Roland (NEC Labs) QIP 2011 1 / 14 Spatial search on

More information

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7

MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 MATH 56A: STOCHASTIC PROCESSES CHAPTER 7 7. Reversal This chapter talks about time reversal. A Markov process is a state X t which changes with time. If we run time backwards what does it look like? 7.1.

More information

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS HIROAKI AIKAWA Abstract. Let D be a bounded domain in R n with n 2. For a function f on D we denote by H D f the Dirichlet solution, for the Laplacian,

More information

The Distribution of Mixing Times in Markov Chains

The Distribution of Mixing Times in Markov Chains The Distribution of Mixing Times in Markov Chains Jeffrey J. Hunter School of Computing & Mathematical Sciences, Auckland University of Technology, Auckland, New Zealand December 2010 Abstract The distribution

More information

Part I Stochastic variables and Markov chains

Part I Stochastic variables and Markov chains Part I Stochastic variables and Markov chains Random variables describe the behaviour of a phenomenon independent of any specific sample space Distribution function (cdf, cumulative distribution function)

More information

Modelling data networks stochastic processes and Markov chains

Modelling data networks stochastic processes and Markov chains Modelling data networks stochastic processes and Markov chains a 1, 3 1, 2 2, 2 b 0, 3 2, 3 u 1, 3 α 1, 6 c 0, 3 v 2, 2 β 1, 1 Richard G. Clegg (richard@richardclegg.org) November 2016 Available online

More information

The coupling method - Simons Counting Complexity Bootcamp, 2016

The coupling method - Simons Counting Complexity Bootcamp, 2016 The coupling method - Simons Counting Complexity Bootcamp, 2016 Nayantara Bhatnagar (University of Delaware) Ivona Bezáková (Rochester Institute of Technology) January 26, 2016 Techniques for bounding

More information

G(t) := i. G(t) = 1 + e λut (1) u=2

G(t) := i. G(t) = 1 + e λut (1) u=2 Note: a conjectured compactification of some finite reversible MCs There are two established theories which concern different aspects of the behavior of finite state Markov chains as the size of the state

More information

Discrete Population Models with Asymptotically Constant or Periodic Solutions

Discrete Population Models with Asymptotically Constant or Periodic Solutions International Journal of Difference Equations ISSN 0973-6069, Volume 6, Number 2, pp. 143 152 (2011) http://campus.mst.edu/ijde Discrete Population Models with Asymptotically Constant or Periodic Solutions

More information

ADIABATIC PHASES IN QUANTUM MECHANICS

ADIABATIC PHASES IN QUANTUM MECHANICS ADIABATIC PHASES IN QUANTUM MECHANICS Hauptseminar: Geometric phases Prof. Dr. Michael Keyl Ana Šerjanc, 05. June 2014 Conditions in adiabatic process are changing gradually and therefore the infinitely

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution.

Lecture 7. µ(x)f(x). When µ is a probability measure, we say µ is a stationary distribution. Lecture 7 1 Stationary measures of a Markov chain We now study the long time behavior of a Markov Chain: in particular, the existence and uniqueness of stationary measures, and the convergence of the distribution

More information

Faithful couplings of Markov chains: now equals forever

Faithful couplings of Markov chains: now equals forever Faithful couplings of Markov chains: now equals forever by Jeffrey S. Rosenthal* Department of Statistics, University of Toronto, Toronto, Ontario, Canada M5S 1A1 Phone: (416) 978-4594; Internet: jeff@utstat.toronto.edu

More information

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions

Quantum Physics III (8.06) Spring 2008 Final Exam Solutions Quantum Physics III (8.6) Spring 8 Final Exam Solutions May 19, 8 1. Short answer questions (35 points) (a) ( points) α 4 mc (b) ( points) µ B B, where µ B = e m (c) (3 points) In the variational ansatz,

More information

On The Power Of Coherently Controlled Quantum Adiabatic Evolutions

On The Power Of Coherently Controlled Quantum Adiabatic Evolutions On The Power Of Coherently Controlled Quantum Adiabatic Evolutions Maria Kieferova (RCQI, Slovak Academy of Sciences, Bratislava, Slovakia) Nathan Wiebe (QuArC, Microsoft Research, Redmond, WA, USA) [arxiv:1403.6545]

More information

Controllability of linear PDEs (I): The wave equation

Controllability of linear PDEs (I): The wave equation Controllability of linear PDEs (I): The wave equation M. González-Burgos IMUS, Universidad de Sevilla Doc Course, Course 2, Sevilla, 2018 Contents 1 Introduction. Statement of the problem 2 Distributed

More information

Molecular propagation through crossings and avoided crossings of electron energy levels

Molecular propagation through crossings and avoided crossings of electron energy levels Molecular propagation through crossings and avoided crossings of electron energy levels George A. Hagedorn Department of Mathematics and Center for Statistical Mechanics and Mathematical Physics Virginia

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Confidence intervals for the mixing time of a reversible Markov chain from a single sample path

Confidence intervals for the mixing time of a reversible Markov chain from a single sample path Confidence intervals for the mixing time of a reversible Markov chain from a single sample path Daniel Hsu Aryeh Kontorovich Csaba Szepesvári Columbia University, Ben-Gurion University, University of Alberta

More information

Adiabatic Quantum Computation An alternative approach to a quantum computer

Adiabatic Quantum Computation An alternative approach to a quantum computer An alternative approach to a quantum computer ETH Zürich May 2. 2014 Table of Contents 1 Introduction 2 3 4 Literature: Introduction E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda

More information

Dynamics for the critical 2D Potts/FK model: many questions and a few answers

Dynamics for the critical 2D Potts/FK model: many questions and a few answers Dynamics for the critical 2D Potts/FK model: many questions and a few answers Eyal Lubetzky May 2018 Courant Institute, New York University Outline The models: static and dynamical Dynamical phase transitions

More information

Quantitative Model Checking (QMC) - SS12

Quantitative Model Checking (QMC) - SS12 Quantitative Model Checking (QMC) - SS12 Lecture 06 David Spieler Saarland University, Germany June 4, 2012 1 / 34 Deciding Bisimulations 2 / 34 Partition Refinement Algorithm Notation: A partition P over

More information

3 Undirected Graphical Models

3 Undirected Graphical Models Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.438 Algorithms For Inference Fall 2014 3 Undirected Graphical Models In this lecture, we discuss undirected

More information

Iterative Methods for Ax=b

Iterative Methods for Ax=b 1 FUNDAMENTALS 1 Iterative Methods for Ax=b 1 Fundamentals consider the solution of the set of simultaneous equations Ax = b where A is a square matrix, n n and b is a right hand vector. We write the iterative

More information

Vertex and edge expansion properties for rapid mixing

Vertex and edge expansion properties for rapid mixing Vertex and edge expansion properties for rapid mixing Ravi Montenegro Abstract We show a strict hierarchy among various edge and vertex expansion properties of Markov chains. This gives easy proofs of

More information

Advanced Quantum Mechanics

Advanced Quantum Mechanics Advanced Quantum Mechanics Rajdeep Sensarma sensarma@theory.tifr.res.in Quantum Dynamics Lecture #3 Recap of Last lass Time Dependent Perturbation Theory Linear Response Function and Spectral Decomposition

More information

TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS

TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS TOTAL VARIATION CUTOFF IN BIRTH-AND-DEATH CHAINS JIAN DING, EYAL LUBETZKY AND YUVAL PERES ABSTRACT. The cutoff phenomenon describes a case where a Markov chain exhibits a sharp transition in its convergence

More information

Flip dynamics on canonical cut and project tilings

Flip dynamics on canonical cut and project tilings Flip dynamics on canonical cut and project tilings Thomas Fernique CNRS & Univ. Paris 13 M2 Pavages ENS Lyon November 5, 2015 Outline 1 Random tilings 2 Random sampling 3 Mixing time 4 Slow cooling Outline

More information

Entropy and Large Deviations

Entropy and Large Deviations Entropy and Large Deviations p. 1/32 Entropy and Large Deviations S.R.S. Varadhan Courant Institute, NYU Michigan State Universiy East Lansing March 31, 2015 Entropy comes up in many different contexts.

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Berry s Phase. Erik Lötstedt November 16, 2004

Berry s Phase. Erik Lötstedt November 16, 2004 Berry s Phase Erik Lötstedt lotstedt@kth.se November 16, 2004 Abstract The purpose of this report is to introduce and discuss Berry s phase in quantum mechanics. The quantum adiabatic theorem is discussed

More information

arxiv: v1 [quant-ph] 10 Apr 2007

arxiv: v1 [quant-ph] 10 Apr 2007 Sufficiency Criterion for the Validity of the Adiabatic Approximation D. M. Tong 1,2, K. Singh 1, L. C. Kwek 1,3, and C. H. Oh 1 1 Department of Physics, National University of Singapore, arxiv:0704.1184v1

More information

Stochastic optimization Markov Chain Monte Carlo

Stochastic optimization Markov Chain Monte Carlo Stochastic optimization Markov Chain Monte Carlo Ethan Fetaya Weizmann Institute of Science 1 Motivation Markov chains Stationary distribution Mixing time 2 Algorithms Metropolis-Hastings Simulated Annealing

More information

The adiabatic approximation

The adiabatic approximation Quantum mechanics 2 - Lecture 5 November 20, 2013 1 The adiabatic theorem 2 Berry s phase Nonholonomic processes Geometric phase 3 The Aharonov-Bohm effect 4 Literature Contents 1 The adiabatic theorem

More information

MP463 QUANTUM MECHANICS

MP463 QUANTUM MECHANICS MP463 QUANTUM MECHANICS Introduction Quantum theory of angular momentum Quantum theory of a particle in a central potential - Hydrogen atom - Three-dimensional isotropic harmonic oscillator (a model of

More information

Introduction to Stochastic Processes

Introduction to Stochastic Processes 18.445 Introduction to Stochastic Processes Lecture 1: Introduction to finite Markov chains Hao Wu MIT 04 February 2015 Hao Wu (MIT) 18.445 04 February 2015 1 / 15 Course description About this course

More information

Mixing Times and Hitting Times

Mixing Times and Hitting Times Mixing Times and Hitting Times David Aldous January 12, 2010 Old Results and Old Puzzles Levin-Peres-Wilmer give some history of the emergence of this Mixing Times topic in the early 1980s, and we nowadays

More information

LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012

LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012 LECTURE NOTES FOR MARKOV CHAINS: MIXING TIMES, HITTING TIMES, AND COVER TIMES IN SAINT PETERSBURG SUMMER SCHOOL, 2012 By Júlia Komjáthy Yuval Peres Eindhoven University of Technology and Microsoft Research

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Banach J. Math. Anal. 1 (2007), no. 1, 56 65 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) http://www.math-analysis.org SOME REMARKS ON STABILITY AND SOLVABILITY OF LINEAR FUNCTIONAL

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

Lecture 10: Semi-Markov Type Processes

Lecture 10: Semi-Markov Type Processes Lecture 1: Semi-Markov Type Processes 1. Semi-Markov processes (SMP) 1.1 Definition of SMP 1.2 Transition probabilities for SMP 1.3 Hitting times and semi-markov renewal equations 2. Processes with semi-markov

More information

Some Definition and Example of Markov Chain

Some Definition and Example of Markov Chain Some Definition and Example of Markov Chain Bowen Dai The Ohio State University April 5 th 2016 Introduction Definition and Notation Simple example of Markov Chain Aim Have some taste of Markov Chain and

More information

6.842 Randomness and Computation March 3, Lecture 8

6.842 Randomness and Computation March 3, Lecture 8 6.84 Randomness and Computation March 3, 04 Lecture 8 Lecturer: Ronitt Rubinfeld Scribe: Daniel Grier Useful Linear Algebra Let v = (v, v,..., v n ) be a non-zero n-dimensional row vector and P an n n

More information

Time Reversibility and Burke s Theorem

Time Reversibility and Burke s Theorem Queuing Analysis: Time Reversibility and Burke s Theorem Hongwei Zhang http://www.cs.wayne.edu/~hzhang Acknowledgement: this lecture is partially based on the slides of Dr. Yannis A. Korilis. Outline Time-Reversal

More information

Non-Essential Uses of Probability in Analysis Part IV Efficient Markovian Couplings. Krzysztof Burdzy University of Washington

Non-Essential Uses of Probability in Analysis Part IV Efficient Markovian Couplings. Krzysztof Burdzy University of Washington Non-Essential Uses of Probability in Analysis Part IV Efficient Markovian Couplings Krzysztof Burdzy University of Washington 1 Review See B and Kendall (2000) for more details. See also the unpublished

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Diffusion and random walks on graphs

Diffusion and random walks on graphs Diffusion and random walks on graphs Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Structural

More information

SMSTC (2007/08) Probability.

SMSTC (2007/08) Probability. SMSTC (27/8) Probability www.smstc.ac.uk Contents 12 Markov chains in continuous time 12 1 12.1 Markov property and the Kolmogorov equations.................... 12 2 12.1.1 Finite state space.................................

More information

Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines

Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines Mixing Rates for the Gibbs Sampler over Restricted Boltzmann Machines Christopher Tosh Department of Computer Science and Engineering University of California, San Diego ctosh@cs.ucsd.edu Abstract The

More information

A lecture on the averaging process

A lecture on the averaging process Probability Surveys Vol. 0 (0) ISSN: 1549-5787 A lecture on the averaging process David Aldous Department of Statistics, 367 Evans Hall # 3860, U.C. Berkeley CA 9470 e-mail: aldous@stat.berkeley.edu url:

More information

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and

Solution Set 3. Hand out : i d dt. Ψ(t) = Ĥ Ψ(t) + and Physikalische Chemie IV Magnetische Resonanz HS Solution Set 3 Hand out : 5.. Repetition. The Schrödinger equation describes the time evolution of a closed quantum system: i d dt Ψt Ĥ Ψt Here the state

More information

Interlude: Practice Final

Interlude: Practice Final 8 POISSON PROCESS 08 Interlude: Practice Final This practice exam covers the material from the chapters 9 through 8. Give yourself 0 minutes to solve the six problems, which you may assume have equal point

More information

Quantum Systems: Dynamics and Control 1

Quantum Systems: Dynamics and Control 1 Quantum Systems: Dynamics and Control 1 Mazyar Mirrahimi and Pierre Rouchon 3 February, 18 1 See the web page: http://cas.ensmp.fr/~rouchon/masterupmc/index.html INRIA Paris, QUANTIC research team 3 Mines

More information

RECURRENCE IN COUNTABLE STATE MARKOV CHAINS

RECURRENCE IN COUNTABLE STATE MARKOV CHAINS RECURRENCE IN COUNTABLE STATE MARKOV CHAINS JIN WOO SUNG Abstract. This paper investigates the recurrence and transience of countable state irreducible Markov chains. Recurrence is the property that a

More information

CS 798: Homework Assignment 3 (Queueing Theory)

CS 798: Homework Assignment 3 (Queueing Theory) 1.0 Little s law Assigned: October 6, 009 Patients arriving to the emergency room at the Grand River Hospital have a mean waiting time of three hours. It has been found that, averaged over the period of

More information

Reflected Brownian Motion

Reflected Brownian Motion Chapter 6 Reflected Brownian Motion Often we encounter Diffusions in regions with boundary. If the process can reach the boundary from the interior in finite time with positive probability we need to decide

More information

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11

MATH325 - QUANTUM MECHANICS - SOLUTION SHEET 11 MATH35 - QUANTUM MECHANICS - SOLUTION SHEET. The Hamiltonian for a particle of mass m moving in three dimensions under the influence of a three-dimensional harmonic oscillator potential is Ĥ = h m + mω

More information

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ),

MS&E 321 Spring Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10. x n+1 = f(x n ), MS&E 321 Spring 12-13 Stochastic Systems June 1, 2013 Prof. Peter W. Glynn Page 1 of 10 Section 4: Steady-State Theory Contents 4.1 The Concept of Stochastic Equilibrium.......................... 1 4.2

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Statistics 992 Continuous-time Markov Chains Spring 2004

Statistics 992 Continuous-time Markov Chains Spring 2004 Summary Continuous-time finite-state-space Markov chains are stochastic processes that are widely used to model the process of nucleotide substitution. This chapter aims to present much of the mathematics

More information

A Glimpse of Quantum Computation

A Glimpse of Quantum Computation A Glimpse of Quantum Computation Zhengfeng Ji (UTS:QSI) QCSS 2018, UTS 1. 1 Introduction What is quantum computation? Where does the power come from? Superposition Incompatible states can coexist Transformation

More information

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians

A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians A New Class of Adiabatic Cyclic States and Geometric Phases for Non-Hermitian Hamiltonians Ali Mostafazadeh Department of Mathematics, Koç University, Istinye 886, Istanbul, TURKEY Abstract For a T -periodic

More information

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18.

IEOR 6711: Stochastic Models I, Fall 2003, Professor Whitt. Solutions to Final Exam: Thursday, December 18. IEOR 6711: Stochastic Models I, Fall 23, Professor Whitt Solutions to Final Exam: Thursday, December 18. Below are six questions with several parts. Do as much as you can. Show your work. 1. Two-Pump Gas

More information

Quantum Complexity Theory and Adiabatic Computation

Quantum Complexity Theory and Adiabatic Computation Chapter 9 Quantum Complexity Theory and Adiabatic Computation 9.1 Defining Quantum Complexity We are familiar with complexity theory in classical computer science: how quickly can a computer (or Turing

More information

Random point patterns and counting processes

Random point patterns and counting processes Chapter 7 Random point patterns and counting processes 7.1 Random point pattern A random point pattern satunnainen pistekuvio) on an interval S R is a locally finite 1 random subset of S, defined on some

More information

The Theory behind PageRank

The Theory behind PageRank The Theory behind PageRank Mauro Sozio Telecom ParisTech May 21, 2014 Mauro Sozio (LTCI TPT) The Theory behind PageRank May 21, 2014 1 / 19 A Crash Course on Discrete Probability Events and Probability

More information

Quantum Mechanics I Physics 5701

Quantum Mechanics I Physics 5701 Quantum Mechanics I Physics 5701 Z. E. Meziani 02/23//2017 Physics 5701 Lecture Outline 1 General Formulation of Quantum Mechanics 2 Measurement of physical quantities and observables 3 Representations

More information

A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH. John Pike

A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH. John Pike A NOTE ON THE POINCARÉ AND CHEEGER INEQUALITIES FOR SIMPLE RANDOM WALK ON A CONNECTED GRAPH John Pike Department of Mathematics University of Southern California jpike@usc.edu Abstract. In 1991, Persi

More information

Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION

Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces ABSTRACT 1. INTRODUCTION Malaysian Journal of Mathematical Sciences 6(2): 25-36 (202) Bernstein-Szegö Inequalities in Reproducing Kernel Hilbert Spaces Noli N. Reyes and Rosalio G. Artes Institute of Mathematics, University of

More information

Monte Carlo and cold gases. Lode Pollet.

Monte Carlo and cold gases. Lode Pollet. Monte Carlo and cold gases Lode Pollet lpollet@physics.harvard.edu 1 Outline Classical Monte Carlo The Monte Carlo trick Markov chains Metropolis algorithm Ising model critical slowing down Quantum Monte

More information