Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Size: px
Start display at page:

Download "Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas"

Transcription

1 Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Ben W. Reichardt UC Berkeley NSF, ARO [quant-ph/ ]

2 stabilizer operations, Q: Do form a universal set? prepare Motivation: [Knill 04] Estimated threshold of 5-10%. B Stabilizer op. fault-tolerance Universal fault-tolerance

3 Stabilizer operations Def: Stabilizer operations = CNOT, Hadamard, Phase gates, + Prepare, measure /. X x 2 {0,1} 5 X X X X Gottesman-Knill Theorem: Stabilizer operations are efficiently classically simulable.

4 Q: Do form a universal set? stabilizer operations, prepare

5 stabilizer operations, Q: Do form a universal set? prepare Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable.

6 Q: Do form a universal set? stabilizer operations, prepare

7 stabilizer operations, Q: Do form a universal set? prepare Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable.

8 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error

9 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error

10 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error [Bravyi-Kitaev 04] Yes for w/ <17.3% error

11 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error [Bravyi-Kitaev 04] Yes for w/ <17.3% error

12 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error [Bravyi-Kitaev 04] Yes for w/ <17.3% error Theorem: [R 04] Yes for w/ <14.6% error

13 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error [Bravyi-Kitaev 04] Yes for w/ <17.3% error Theorem: [R 04] Yes for w/ <14.6% error

14 stabilizer operations, Q: Do form a universal set? prepare [Bravyi-Kitaev 04, Knill 04] Yes for w/ <14.2% error [Bravyi-Kitaev 04] Yes for w/ <17.3% error Theorem: [R 04] Yes for w/ <14.6% error

15 Improved distillation procedure 1. With equal probabilities ½, apply H to. ) Assume lies along H axis:

16 Improved distillation procedure 1. Symmetrize into. 2. Take 7 copies of. Decode according to the [[7,1,3]] Steane/Hamming quantum code, rejecting if errors detected. 3. Conditioned on acceptance, the output state is Steane

17 Proof of improved distillation procedure For a CSS code in which X L = X -n, Z L = Z -n, where C is the set of codewords for a classical code. Thus. E.g.. Generally,

18 Universality via Magic states distillation Theorem: [R, 04] Stabilizer operations + Prepare w/ <14.6% error Universality. Appl. 1: Stabilizer op. fault-tolerance Universal fault-tolerance. Appl. Fact: 2: Stabilizer operations + Prepare Any other any single-qubit pure state unitary not a stabilizer state Universality. Corollary: Stabilizer operations + (ability to prepare repeatedly

19 Universality from single-qubit pure states Theorem: Stabilizer operations + (ability to prepare any single-qubit pure state which is not a Pauli eigenstate) is universal. Proof:

20 Universality from single-qubit pure states Theorem: Stabilizer operations + (ability to prepare any single-qubit pure state which is not a Pauli eigenstate) is universal. Proof:

21 Universality from multi-qubit pure states Theorem: Stabilizer operations + (ability to prepare any pure state which is not a stabilizer state) is universal. Proof: 9 sequence of Clifford unitaries and postselected Pauli measurements which reduces down to a single-qubit pure state which is not a Pauli eigenstate. By induction, true for n=1. with α, β 0, and stabilizer states (else apply induction). By applying Clifford unitaries, w.l.o.g.. But, can t both be stabilizer states!

22 Application to fault-tolerant computing [Knill, quant-ph/ ] Given scheme for fault-tolerantly applying stabilizer circuits, extend it to a universal fault-tolerant scheme. Universal faulttolerance Stabilizer op. fault-tolerance E.g., Knill s scheme has threshold of 5-10% for fault-tolerant stabilizer operations, and the same threshold for fault-tolerant universal operations. X Z

23 Open questions Fact: Any mixture of Pauli eigenstates (points in octahedron) is classically simulable. Universality from w/ < error is tight. Open: Is stabilizer operations + (ability to prepare repeatedly singlequbit mixed state ) universal for all outside the octahedron?

24 Open questions Open: Is stabilizer operations + (ability to prepare repeatedly singlequbit mixed state ρ) universal for all ρ outside the octahedron? Open: What about perturbations to the states ρ? What about asymmetries? What if we only have fidelity lower bound? Can we characterize stable fixed points for stabilizer codes? Open: Can we give a provable reduction of fault-tolerance to problem of preparing stabilizer states with independent errors?

25 .

26 E.g., Knill s scheme has same threshold for fault-tolerant stabilizer Stabilizer op. fault-tolerance [Knill 04] Universal fault-tolerance B Magic Fact: states distillation: Stabilizer operations + Prepare or with <14.6% or <17.3% error resp. Universality. [R 04] [Bravyi Kitaev 04]

27 Universality Stabilizer operations (Clifford unitaries + prepare/measure Paulis) are not quantum universal. Q: What additional operations are needed to get universality? Fact: [Y. Shi, 2002] Stabilizer operations + any singlequbit unitary not in is universal. Theorem: Stabilizer operations + (ability to prepare repeatedly any pure state which is not a stabilizer state) gives universality. Q: Is stabilizer operations + (ability to prepare single-qubit mixed state ρ) universal?

Techniques for fault-tolerant quantum error correction

Techniques for fault-tolerant quantum error correction Techniques for fault-tolerant quantum error correction Ben Reichardt UC Berkeley Quantum fault-tolerance problem C 0/1 Fault-tolerant, larger High tolerable noise Low overhead 1 Encoding for fault tolerance

More information

Magic States. Presented by Nathan Babcock

Magic States. Presented by Nathan Babcock Magic States Presented by Nathan Babcock Overview I will discuss the following points:. Quantum Error Correction. The Stabilizer Formalism. Clifford Group Quantum Computation 4. Magic States 5. Derivation

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin Département de Physique, Université de Sherbrooke, Sherbrooke, Québec,

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

high thresholds in two dimensions

high thresholds in two dimensions Fault-tolerant quantum computation - high thresholds in two dimensions Robert Raussendorf, University of British Columbia QEC11, University of Southern California December 5, 2011 Outline Motivation Topological

More information

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

Threshold theorem for quantum supremacy arxiv:

Threshold theorem for quantum supremacy arxiv: 2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arxiv:1610.03632 Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA Threshold

More information

Classical simulability, entanglement breaking, and quantum computation thresholds

Classical simulability, entanglement breaking, and quantum computation thresholds Classical simulability, entanglement breaking, and quantum computation thresholds S. Virmani, 1 Susana F. Huelga, 1 and Martin B. Plenio 2 1 School of Physics, Astronomy and Mathematics, Quantum Physics

More information

Postselection threshold against biased noise (A probabilistic mixing lemma and quantum fault tolerance) Ben W. Reichardt Caltech

Postselection threshold against biased noise (A probabilistic mixing lemma and quantum fault tolerance) Ben W. Reichardt Caltech Postselection threshold against biased noise (A probabilistic mixing lemma and quantum fault tolerance) Ben W. Reichardt Caltech Results xistence of tolerable noise rates for many fault-tolerance schemes,

More information

Lectures on Fault-Tolerant Quantum Computation

Lectures on Fault-Tolerant Quantum Computation Lectures on Fault-Tolerant Quantum Computation B.M. Terhal, IBM Research I. Descriptions of Noise and Quantum States II. Quantum Coding and Error-Correction III. Fault-Tolerant Error-Correction. Surface

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Encoding One Logical Qubit Into Six Physical Qubits Bilal Shaw 1,4,5, Mark M. Wilde 1,5, Ognyan Oreshkov 2,5, Isaac Kremsky 2,5, and Daniel A. Lidar 1,2,3,5 1 Department of Electrical Engineering, 2 Department

More information

Problem Set # 6 Solutions

Problem Set # 6 Solutions Id: hw.tex,v 1.4 009/0/09 04:31:40 ike Exp 1 MIT.111/8.411/6.898/18.435 Quantum Information Science I Fall, 010 Sam Ocko October 6, 010 1. Building controlled-u from U (a) Problem Set # 6 Solutions FIG.

More information

arxiv: v2 [quant-ph] 8 Jun 2012

arxiv: v2 [quant-ph] 8 Jun 2012 Qutrit Magic State Distillation Hussain Anwar, 1, * Earl T. Campbell, 2 and Dan E. Browne 1 1 Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom.

More information

arxiv: v2 [quant-ph] 14 May 2017

arxiv: v2 [quant-ph] 14 May 2017 A Low-Overhead Hybrid Approach for Universal Fault-Tolerant Quantum Computation Eesa Nikahd, Morteza Saheb Zamani, and Mehdi Sedighi Quantum Design Automation Lab Amirkabir University of Technology, Tehran,

More information

Towards Fault-Tolerant Quantum Computation with Higher-Dimensional Systems

Towards Fault-Tolerant Quantum Computation with Higher-Dimensional Systems Towards Fault-Tolerant Quantum Computation with Higher-Dimensional Systems By Hussain Anwar A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Physics

More information

Universal quantum computation with ideal Clifford gates and noisy ancillas

Universal quantum computation with ideal Clifford gates and noisy ancillas PHYSICAL REVIEW A 71, 022316 2005 Universal quantum computation with ideal Clifford gates and noisy ancillas Sergey Bravyi* and Alexei Kitaev Institute for Quantum Information, California Institute of

More information

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction Quantum Error Correction and Fault Tolerance Daniel Gottesman Perimeter Institute The Classical and Quantum Worlds Quantum Errors A general quantum error is a superoperator: ρ ΣA k ρ A k (Σ A k A k = I)

More information

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states To cite this article: Terry Rudolph and Shashank Soyuz Virmani 2005 New

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

Limitations on transversal gates

Limitations on transversal gates Limitations on transversal gates Michael Newman 1 and Yaoyun Shi 1,2 University of Michigan 1, Alibaba Group 2 February 6, 2018 Quantum fault-tolerance Quantum fault-tolerance Quantum fault-tolerance Quantum

More information

How Often Must We Apply Syndrome Measurements?

How Often Must We Apply Syndrome Measurements? How Often Must We Apply Syndrome Measurements? Y. S. Weinstein Quantum Information Science Group, MITRE, 200 Forrestal Rd., Princeton, NJ 08540 ABSTRACT Quantum error correction requires encoding quantum

More information

Fault-tolerant logical gates in quantum error-correcting codes

Fault-tolerant logical gates in quantum error-correcting codes Fault-tolerant logical gates in quantum error-correcting codes Fernando Pastawski and Beni Yoshida (Caltech) arxiv:1408.1720 Phys Rev A xxxxxxx Jan 2015 @ QIP (Sydney, Australia) Fault-tolerant logical

More information

Topics in Fault-Tolerant Quantum Computation

Topics in Fault-Tolerant Quantum Computation Topics in Fault-Tolerant Quantum Computation by Hillary Dawkins A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Science in Physics

More information

John Preskill, Caltech 14 January The cost of quantum fault tolerance

John Preskill, Caltech 14 January The cost of quantum fault tolerance John Preskill, Caltech 14 January 2005 http://www.iqi.caltech.edu/ The cost of quantum fault tolerance t Quantum Error Correction Shor 95 Steane 95 Quantum information can be protected, and processed fault-tolerantly.

More information

Theory of fault-tolerant quantum computation

Theory of fault-tolerant quantum computation PHYSICAL REVIEW A VOLUME 57, NUMBER 1 JANUARY 1998 Theory of fault-tolerant quantum computation Daniel Gottesman* California Institute of Technology, Pasadena, California 91125 and Los Alamos National

More information

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3,

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3, 1 Ph 219c/CS 219c Exercises Due: Thursday 9 March 2017.1 A cleaning lemma for CSS codes In class we proved the cleaning lemma for stabilizer codes, which says the following: For an [[n, k]] stabilizer

More information

A new universal and fault-tolerant quantum basis

A new universal and fault-tolerant quantum basis Information Processing Letters 75 000 101 107 A new universal and fault-tolerant quantum basis P. Oscar Boykin a,talmor a,b, Matthew Pulver a, Vwani Roychowdhury a, Farrokh Vatan a, a Electrical Engineering

More information

Actively secure two-party evaluation of any quantum operation

Actively secure two-party evaluation of any quantum operation Actively secure two-party evaluation of any quantum operation Frédéric Dupuis ETH Zürich Joint work with Louis Salvail (Université de Montréal) Jesper Buus Nielsen (Aarhus Universitet) August 23, 2012

More information

arxiv: v2 [quant-ph] 3 Nov 2017

arxiv: v2 [quant-ph] 3 Nov 2017 Fault-tolerant fermionic quantum computation based on color code arxiv:1709.0645v [quant-ph] 3 Nov 017 Ying Li 1, 1 Graduate School of China Academy of Engineering Physics, Beijing 100193, China Department

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel Introduction to Topological Error Correction and Computation James R. Wootton Universität Basel Overview Part 1: Topological Quantum Computation Abelian and non-abelian anyons Quantum gates with Abelian

More information

More advanced codes 0 1 ( , 1 1 (

More advanced codes 0 1 ( , 1 1 ( p. 1/24 More advanced codes The Shor code was the first general-purpose quantum error-correcting code, but since then many others have been discovered. An important example, discovered independently of

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

arxiv:quant-ph/ v2 18 Feb 1997

arxiv:quant-ph/ v2 18 Feb 1997 CALT-68-2100, QUIC-97-004 A Theory of Fault-Tolerant Quantum Computation Daniel Gottesman California Institute of Technology, Pasadena, CA 91125 arxiv:quant-ph/9702029 v2 18 Feb 1997 Abstract In order

More information

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem Dave Bacon Department of Computer Science & Engineering, University of Washington In the last few lectures, we

More information

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State based on High-threshold universal quantum computation on the surface code -Austin G. Fowler, Ashley M. Stephens, and Peter

More information

arxiv: v1 [quant-ph] 7 Aug 2014

arxiv: v1 [quant-ph] 7 Aug 2014 Fault-tolerant logical gates in quantum error-correcting codes arxiv:1408.1720v1 [quant-ph] 7 Aug 2014 Fernando Pastawski 1 and Beni Yoshida 1 1 Institute for Quantum Information and Matter, California

More information

becomes at most η th ( η ) 2t. As a result, it requires only O(log log T ) levels of concatenation to achieve sucient accuracy (η effective 1 T

becomes at most η th ( η ) 2t. As a result, it requires only O(log log T ) levels of concatenation to achieve sucient accuracy (η effective 1 T SURVEY ON THE BOUNDS OF THE QUANTUM FAULT-TOLERANCE THRESHOLD CHRISTOPHER GRAVES 1. Introduction I rst briey summarize the threshold theorem and describe the motivations for tightening the bounds on the

More information

Simulating the transverse Ising model on a quantum computer: Error correction with the surface code

Simulating the transverse Ising model on a quantum computer: Error correction with the surface code PHYSICAL REVIEW A 87, 032341 (2013) Simulating the transverse Ising model on a quantum computer: Error correction with the surface code Hao You ( ), 1,2 Michael R. Geller, 1 and P. C. Stancil 1,2 1 Department

More information

sparse codes from quantum circuits

sparse codes from quantum circuits sparse codes from quantum circuits arxiv:1411.3334 Dave Bacon Steve Flammia Aram Harrow Jonathan Shi Coogee 23 Jan 2015 QECC [n,k,d] code: encode k logical qubits in n physical qubits and correct errors

More information

Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY J O I N T WO R K W I T H BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA

Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY J O I N T WO R K W I T H BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA Overlapping qubits THOMAS VIDICK CALIFORNIA INSTITUTE OF TECHNOLOGY JOINT WORK WITH BEN REICHARDT, UNIVERSITY OF SOUTHERN CALIFORNIA What is a qubit? Ion trap, Georgia Tech Superconducting qubit, Martinis

More information

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127 M Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/2008 2008-01-11, Folie 127 M Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/2008 2008-01-11,

More information

Performance Requirements of a Quantum Computer Using Surface Code Error Correction

Performance Requirements of a Quantum Computer Using Surface Code Error Correction Performance Requirements of a Quantum Computer Using Surface Code Error Correction Cody Jones, Stanford University Rodney Van Meter, Austin Fowler, Peter McMahon, James Whitfield, Man-Hong Yung, Thaddeus

More information

Introduction to Quantum Error Correction

Introduction to Quantum Error Correction Introduction to Quantum Error Correction Nielsen & Chuang Quantum Information and Quantum Computation, CUP 2000, Ch. 10 Gottesman quant-ph/0004072 Steane quant-ph/0304016 Gottesman quant-ph/9903099 Errors

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski (IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE Aleksander Kubica, B. Yoshida, F. Pastawski MOTIVATION Topological quantum codes - non-local DOFs, local generators. Toric code: high threshold, experimentally

More information

Complexity Classification of Conjugated Clifford Circuits

Complexity Classification of Conjugated Clifford Circuits Complexity Classification of Conjugated Clifford Circuits Adam Bouland 1 Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA adam@csail.mit.edu

More information

Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London

Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London Measurement-based quantum computation 0th Canadian Summer School on QI Dan Browne Dept. of Physics and Astronomy University College London What is a quantum computer? The one-way quantum computer A multi-qubit

More information

arxiv:quant-ph/ v1 18 Apr 2000

arxiv:quant-ph/ v1 18 Apr 2000 Proceedings of Symposia in Applied Mathematics arxiv:quant-ph/0004072 v1 18 Apr 2000 An Introduction to Quantum Error Correction Daniel Gottesman Abstract. Quantum states are very delicate, so it is likely

More information

arxiv:quant-ph/ v1 14 Aug 2006

arxiv:quant-ph/ v1 14 Aug 2006 arxiv:quant-ph/0608112v1 14 Aug 2006 GATE-LEVEL SIMULATION OF LOGICAL STATE PREPARATION A.M. Stephens 1, S.J. Devitt 1,2, A.G. Fowler 3, J.C. Ang 1, and L.C.L. Hollenberg 1 1 Centre for Quantum Computer

More information

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code Non-Zero Syndromes and Syndrome Measurement Order for the [[,,]] Quantum Error Correction Code Yaakov S. Weinstein Quantum Information Science Group, Mitre, Forrestal Rd. Princeton, NJ, USA The[[,,]] quantum

More information

arxiv: v1 [quant-ph] 29 Apr 2014

arxiv: v1 [quant-ph] 29 Apr 2014 Classical leakage resilience from fault-tolerant quantum computation arxiv:1404.7516v1 [quant-ph] 29 Apr 2014 Felipe G. Lacerda 1,2, Joseph M. Renes 1, and Renato Renner 1 1 Institute for Theoretical Physics,

More information

arxiv: v1 [quant-ph] 27 Apr 2017

arxiv: v1 [quant-ph] 27 Apr 2017 The ZX calculus is a language for surface code lattice surgery Niel de Beaudrap Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD niel.debeaudrap@cs.ox.ac.uk arxiv:1704.08670v1

More information

Bounds on Quantum codes

Bounds on Quantum codes Bounds on Quantum codes No go we cannot encode too many logical qubits in too few physical qubits and hope to correct for many errors. Some simple consequences are given by the quantum Hamming bound and

More information

QEC in 2017: Past, present, and future

QEC in 2017: Past, present, and future QEC in 2017: Past, present, and future topological quantum code holographic quantum code John Preskill QEC 2017 15 Sep. 2017 Ken Jake Unruh, Physical Review A, Submitted June 1994 The thermal time scale

More information

Algorithms for the Optimization of Quantum Circuits

Algorithms for the Optimization of Quantum Circuits Algorithms for the Optimization of Quantum Circuits by Matthew Amy A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics in Computer

More information

Analog quantum error correction with encoding a qubit into an oscillator

Analog quantum error correction with encoding a qubit into an oscillator 17th Asian Quantum Information Science Conference 6 September 2017 Analog quantum error correction with encoding a qubit into an oscillator Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto Graduate School

More information

Q uantum computers1,2 are expected to outperform current classical computers. Many problems intractable

Q uantum computers1,2 are expected to outperform current classical computers. Many problems intractable OPEN SUBJECT AREAS: QUANTUM INFORMATION INFORMATION THEORY AND COMPUTATION INFORMATION TECHNOLOGY COMPUTER SCIENCE Received 3 January 203 Accepted 3 June 203 Published 20 June 203 Correspondence and requests

More information

CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes

CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes Dave Bacon Department of Computer Science & Engineering, University of Washington In the last lecture we learned of the quantum error

More information

arxiv:quant-ph/ v3 26 Aug 1997

arxiv:quant-ph/ v3 26 Aug 1997 CALT-68-2112 QUIC-97-030 quant-ph/9705031 eliable Quantum Computers arxiv:quant-ph/9705031v3 26 Aug 1997 John Preskill 1 California Institute of Technology, Pasadena, CA 91125, USA Abstract The new field

More information

arxiv: v1 [quant-ph] 8 Sep 2017

arxiv: v1 [quant-ph] 8 Sep 2017 Magic State Distillation at Intermediate Size Jeongwan Haah, 1 Matthew B. Hastings, 2,1 D. Poulin, 3 and D. Wecker 1 1 Quantum Architectures and Computation Group, Microsoft Research, Redmond, WA 98052,

More information

Doubled Color Codes. arxiv: v1 [quant-ph] 10 Sep 2015

Doubled Color Codes. arxiv: v1 [quant-ph] 10 Sep 2015 Doubled Color Codes Sergey Bravyi Andrew Cross arxiv:1509.03239v1 [quant-ph] 10 Sep 2015 Abstract We show how to perform a fault-tolerant universal quantum computation in 2D architectures using only transversal

More information

A Performance Simulator for Quantitative Analysis of the Implications of Fault-Tolerance in Distributed Quantum Computer Architectures

A Performance Simulator for Quantitative Analysis of the Implications of Fault-Tolerance in Distributed Quantum Computer Architectures A Performance Simulator for Quantitative Analysis of the Implications of Fault-Tolerance in Distributed Quantum Computer Architectures Jeff Hussmann Advisor: Jungsang Kim Duke University Abstract Successfully

More information

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min Basics of quantum computing and some recent results Tomoyuki Morimae YITP Kyoto University) 50+10 min Outline 1. Basics of quantum computing circuit model, classically simulatable/unsimulatable, quantum

More information

Lower Bounds on the Classical Simulation of Quantum Circuits for Quantum Supremacy. Alexander M. Dalzell

Lower Bounds on the Classical Simulation of Quantum Circuits for Quantum Supremacy. Alexander M. Dalzell Lower Bounds on the Classical Simulation of Quantum Circuits for Quantum Supremacy by Alexander M. Dalzell Submitted to the Department of Physics in partial fulfillment of the requirements for the degree

More information

QuRE: The Quantum Resource Estimator Toolbox

QuRE: The Quantum Resource Estimator Toolbox QuRE: The Quantum Resource Estimator Toolbox Martin Suchara and John Kubiatowicz Computer Science Division niv. of California Berkeley Berkeley, CA 94720,.S.A. {msuchara, kubitron}@cs.berkeley.edu Arvin

More information

The Entanglement Frontier

The Entanglement Frontier The Entanglement Frontier John Preskill, Caltech QuEST, 28 March 2011 HEP: What underlying theory explains the observed elementary particles and their interactions, including gravity? QIS: Can we control

More information

A Tutorial on Quantum Error Correction

A Tutorial on Quantum Error Correction Proceedings of the International School of Physics Enrico Fermi, course CLXII, Quantum Computers, Algorithms and Chaos, G. Casati, D. L. Shepelyansky and P. Zoller, eds., pp. 1 32 (IOS Press, Amsterdam

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Noise thresholds for optical cluster-state quantum computation

Noise thresholds for optical cluster-state quantum computation Noise thresholds for optical cluster-state quantum computation Christopher M. Dawson, 1 Henry L. Haselgrove, 1,2, * and Michael A. Nielsen 1 1 School of Physical Sciences, The University of Queensland,

More information

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs

Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Introduction into Quantum Computations Alexei Ashikhmin Bell Labs Workshop on Quantum Computing and its Application March 16, 2017 Qubits Unitary transformations Quantum Circuits Quantum Measurements Quantum

More information

QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION

QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION Quantum Information and Computation, Vol. 1, No. 0 (2001) 000 000 c Rinton Press QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION ANDREW M. STEANE Centre for Quantum Computation, Oxford University,

More information

Measurement-based quantum error correction

Measurement-based quantum error correction Measurement-based quantum error correction Janna Hinchliff University of Bristol, Quantum Engineering Centre for Doctoral Training Introduction Measurement-based (or one-way) quantum error correction (MBQEC)

More information

Fault-tolerant quantum error detection

Fault-tolerant quantum error detection Fault-tolerant quantum error detection arxiv:6.06946v2 [quant-ph] 7 May 207 N. M. Linke, M. Gutierrez, 2 K. A. Landsman, C. Figgatt, S. Debnath, K. R. Brown, 2 C. Monroe,3 Joint Quantum Institute, Department

More information

Simulation of quantum computers with probabilistic models

Simulation of quantum computers with probabilistic models Simulation of quantum computers with probabilistic models Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. April 6, 2010 Vlad Gheorghiu (CMU) Simulation of quantum

More information

6.896 Quantum Complexity Theory September 18, Lecture 5

6.896 Quantum Complexity Theory September 18, Lecture 5 6.896 Quantum Complexity Theory September 18, 008 Lecturer: Scott Aaronson Lecture 5 Last time we looked at what s known about quantum computation as it relates to classical complexity classes. Today we

More information

arxiv: v2 [quant-ph] 18 Oct 2018

arxiv: v2 [quant-ph] 18 Oct 2018 Neural network decoder for topological color codes with circuit level noise arxiv:1804.02926v2 [quant-ph] 18 Oct 2018 P. Baireuther, 1 M. D. Caio, 1 B. Criger, 2, 3 C. W. J. Beenakker, 1 and T. E. O Brien

More information

A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs

A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs A Study of Topological Quantum Error Correcting Codes Part I: From Classical to Quantum ECCs Preetum Nairan preetum@bereley.edu Mar 3, 05 Abstract This survey aims to highlight some interesting ideas in

More information

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum One-Way Quantum Computing Andrew Lopez A commonly used model in the field of quantum computing is the Quantum Circuit Model. The Circuit Model can be thought of as a quantum version of classical computing,

More information

Negative Quasi-Probability in the Context of Quantum Computation

Negative Quasi-Probability in the Context of Quantum Computation Negative Quasi-Probability in the Context of Quantum Computation by Victor Veitch A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Mathematics

More information

arxiv: v1 [quant-ph] 27 May 2013

arxiv: v1 [quant-ph] 27 May 2013 Classical simulation complexity of extended Clifford circuits Richard Jozsa 1 and Maarten Van den Nest 2 arxiv:1305.6190v1 [quant-ph] 27 May 2013 1 DAMTP, Centre for Mathematical Sciences, University of

More information

THE ABC OF COLOR CODES

THE ABC OF COLOR CODES THE ABC OF COLOR CODES Aleksander Kubica ariv:1410.0069, 1503.02065 work in progress w/ F. Brandao, K. Svore, N. Delfosse 1 WHY DO WE CARE ABOUT QUANTUM CODES? Goal: store information and perform computation.

More information

Transversality versus Universality for Additive Quantum Codes

Transversality versus Universality for Additive Quantum Codes 1 Transversality versus Universality for Additive Quantum Codes Bei Zeng, Andrew Cross, and Isaac L. Chuang arxiv:0706.1382v3 [quant-ph] 11 Sep 2007 Abstract Certain quantum codes allow logic operations

More information

arxiv: v1 [quant-ph] 29 Apr 2010

arxiv: v1 [quant-ph] 29 Apr 2010 Minimal memory requirements for pearl necklace encoders of quantum convolutional codes arxiv:004.579v [quant-ph] 29 Apr 200 Monireh Houshmand and Saied Hosseini-Khayat Department of Electrical Engineering,

More information

Protected qubit based on a superconducting current mirror

Protected qubit based on a superconducting current mirror arxiv:cond-mat/0609v [cond-mat.mes-hall] 9 Sep 006 Protected qubit based on a superconducting current mirror Alexei Kitaev Microsoft Project Q, UCSB, Santa Barbara, California 906, USA California Institute

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING

SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING Quantum Information and Computation, Vol. 3, No. 34 (203 08 094 c Rinton Press SUFFICIENT CONDITION ON NOISE CORRELATIONS FOR SCALABLE QUANTUM COMPUTING JOHN PRESKILL Institute for Quantum Information

More information

Estimating the Resources for Quantum Computation with the QuRE Toolbox

Estimating the Resources for Quantum Computation with the QuRE Toolbox Estimating the Resources for Quantum Computation with the QuRE Toolbox Martin Suchara Arvin Faruque Ching-Yi Lai Gerardo Paz Frederic Chong John D. Kubiatowicz Electrical Engineering and Computer Sciences

More information

arxiv:quant-ph/ Oct 2002

arxiv:quant-ph/ Oct 2002 Measurement of the overlap between quantum states with the use of coherently addressed teleportation Andrzej Grudka* and Antoni Wójcik** arxiv:quant-ph/00085 Oct 00 Faculty of Physics, Adam Mickiewicz

More information

Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality

Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality Preliminaries Mathematical Structure Geometry Applications Qudit versions of the π/8 gate: Applications in fault-tolerant QC and nonlocality Mark Howard1 & Jiri Vala1,2 1 National 2 Dublin October 2012

More information

SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, (2017) ARXIV:

SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, (2017) ARXIV: SHORTER GATE SEQUENCES FOR QUANTUM COMPUTING BY MIXING UNITARIES PHYSICAL REVIEW A 95, 042306 (2017) ARXIV:1612.02689 BIG PICTURE better compiling Can Randomisation help? if then do X, but if then do Y

More information

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator http://algassert.com/2016/05/22/quirk.html PROBLEM TO SOLVE 1. The HNG gate is described in reference: Haghparast M. and

More information

arxiv:quant-ph/ v2 20 Dec 2010

arxiv:quant-ph/ v2 20 Dec 2010 arxiv:quant-ph/41126v2 2 Dec 2 Constructing arbitrary Steane code single logical qubit fault-tolerant gates Austin G. Fowler Centre for Quantum Computer Technology School of Physics, University of Melbourne

More information

Quantum key distribution with 2-bit quantum codes

Quantum key distribution with 2-bit quantum codes Quantum key distribution with -bit quantum codes Xiang-Bin Wang Imai Quantum Computation and Information project, ERATO, Japan Sci. and Tech. Corp. Daini Hongo White Bldg. 0, 5-8-3, Hongo, Bunkyo, Tokyo

More information

Local fault-tolerant quantum computation

Local fault-tolerant quantum computation Local fault-tolerant quantum computation Krysta M. Svore, 1, * Barbara M. Terhal, 2, and David P. DiVincenzo 2, 1 Columbia University, 1214 Amsterdam Avenue, MC:0401, New York, New York 10025, USA 2 IBM

More information

General Qubit Errors Cannot Be Corrected

General Qubit Errors Cannot Be Corrected arxiv:quant-ph/0206144v4 27 Jun 2002 General Qubit Errors Cannot Be Corrected Subhash Kak June27, 2002 Abstract Error correction in the standard meaning of the term implies the ability to correct all small

More information

arxiv: Statistical mechanical models for quantum codes subject to correlated noise

arxiv: Statistical mechanical models for quantum codes subject to correlated noise Statistical mechanical models for quantum codes subject to correlated noise Christopher Chubb (EQUS USyd), Steve Flammia (EQUS USyd/YQI Yale) (me@)christopherchubb.com arxiv:1809.10704 Perimeter Institute

More information

Topological quantum computation

Topological quantum computation School US-Japan seminar 2013/4/4 @Nara Topological quantum computation -from topological order to fault-tolerant quantum computation- The Hakubi Center for Advanced Research, Kyoto University Graduate

More information

arxiv: v2 [quant-ph] 8 Aug 2017

arxiv: v2 [quant-ph] 8 Aug 2017 Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage ariv:1703.00590v2 [quant-ph] 8 Aug 2017 1. Introduction Nikolas P. Breuckmann 1, Christophe Vuillot 1, Earl Campbell 2, Anirudh Krishna

More information