Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London

Size: px
Start display at page:

Download "Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London"

Transcription

1 Measurement-based quantum computation 0th Canadian Summer School on QI Dan Browne Dept. of Physics and Astronomy University College London

2 What is a quantum computer?

3 The one-way quantum computer A multi-qubit entangled resource state Single-qubit measurements E.g. cluster state + Choice of bases specify computation Adaptive (some bases depend upon previous outcomes) = A universal quantum computer

4 Overview of Lectures. Cluster states and graph states I What are they? Basic properties. 2. The one-way quantum computer What is the model? How does it work?. Cluster states and graph states II Stabilizer formalism and graphical representation 4. Cluster states and graph states III How do we build them? 5. Beyond cluster states (If time permits) (other models of MBQC) 6. (Robert Raussendorf) Fault tolerant MBQC

5 Pauli group and Clifford Group Pauli group: n Set of all n-fold tensor products of X, Y, Z and I, with pre-factors +, -. +i, -i for group closure. Clifford group: Normalizer of Set of unitaries C such that n σ Cσ k C k n = σ j σ j n Equiv,: Cσ k = σ j C =(Cσ k C )C Maps Pauli group onto Pauli group

6 2-qubit gates and universal q.c. J J J J J J J J J J J J J J J

7 2-qubit gates and universal q.c. J J J J J J J J J J J J J J J

8 2-qubit gates and universal q.c. J J J J J J J J J J J J J J J

9 Etching with z measurements Ø quantum wire for logical single qubit information flow z-measurements quantum gate FIG.. Quantum computation by measuring two-state particles on a lattice. Before the measurements the qubits are in the cluster state jf C of (). Circles Ø symbolize measurements of s z, vertical arrows are measurements of s x, while tilted arrows refer to measurements in the x-y plane. Figure in H. J. Briegel and R. Raussendorf, Phys. Rev. Lett. 86, 588 (200)

10 Measurement-patterns for gates in the one-way model control X Y Y Y Y Y (a) Y 8 target X X X Y X X CNOT-gate (b) X _+! +_# + _" general rotation (d) X Y Y Y Hadamard-gate (c) X X +# _ X z-rotation (e) X X X Y π/2-phase gate R. Raussendorf, D. E. Browne and H.J. Briegel, Phys. Rev. A 68: 0222 (200)

11 LC-orbit of local Clifford equivalent states No. No. 2 No. No Fig. 4. An example for a successive application of the LC-rule, which exhibits the whole equivalence class associated with graph No.. The rule is successively applied to the vertex, which is colored red in the figure. \ No. 5 No. 6 No. 7 No No. 9 No. 0 No. Apply LC!Rule Figure 4 in M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.-J. Briegel, quant-ph/ (Varena lectures)

12 Counter-example to LU-LC conjecture The two graphs (with / without the red edge) represent locally equivalent states, but are not related by the LC rule. Zhengfeng Ji et al, Quantum Inf. Comput., Vol. 0, No. &2, 97-08, 200

13 Universal resources derived via graphical rules (a) (b) Hexagonal Triangular (c) (d) Kagome 2 Square These regular graphs Figurecan 2. Examples all be of mapped efficient universal into square resource forlattices MQC. These via are Pauli graphmeasurements states corresponding to (a) hexagonal, (b) triangular and (c) Kagome lattices. - using the graphical Deterministic rules. LOCC Hence transformation all are resources from (a) to (d) for (2Duniversal cluster state) MBQC. via (b) and (c) is indicated, where simple graph rules can be used sequentially (σ y and σ z measurements are displayed by and, respectively). Thespatialoverhead for the transformation is constant. M. Van den Nest, et al, New J. Phys (2007).

14 Universal resources derived via graphical rules (a) (b) Hexagonal Triangular (c) (d) Kagome 2 Square These regular graphs Figurecan 2. Examples all be of mapped efficient universal into square resource forlattices MQC. These via are Pauli graphmeasurements states corresponding to (a) hexagonal, (b) triangular and (c) Kagome lattices. - using the graphical Deterministic rules. LOCC Hence transformation all are resources from (a) to (d) for (2Duniversal cluster state) MBQC. via (b) and (c) is indicated, where simple graph rules can be used sequentially (σ y and σ z measurements are displayed by and, respectively). Thespatialoverhead for the transformation is constant. M. Van den Nest, et al, New J. Phys (2007).

15 Measurement-patterns for gates in the one-way model Generate control X Y Y Y Y Y (a) Y 8 target X X X Y X X CNOT-gate the full Clifford group (b) X _+! +_# + _" general rotation (d) X Y Y Y Hadamard-gate (c) X X +# _ X z-rotation (e) X X X Y π/2-phase gate R. Raussendorf, D. E. Browne and H.J. Briegel, Phys. Rev. A 68: 0222 (200)

16 Graphical Gottesman-Knill Theorem Quantum Fourier Transform Standard-form measurement pattern Graph state after all Pauli measurements performed M. Hein, J. Eisert and H.J. Briegel, Phys. Rev. A 69, 062 (2004)

17 Valence bond PEPS to MPS Virtual Qudit pairs d n= n n PEPS projector D j= d p,q= A j p,q jp q M(j) m,n = A j p,q Constructs a Matrix Product State MPS ψ = Tr[M(s )M(s 2 )...M(s n )] s s 2 s n s,...s n

18 References Progress Review H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. Van den Nest, Nature Physics 5, 9-26 (2009) Tutorials M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, H.-J. Briegel, quant-ph/ (Varena lectures on graph states) D. E. Browne and H. J. Briegel, quant-ph/ M.A. Nielsen, quant-ph/ And many more... Search arxiv for One-way, MBQC, Cluster States, Graph States,...

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

Tensors and complexity in quantum information science

Tensors and complexity in quantum information science Tensors in CS and geometry workshop, Nov. 11 (2014) Tensors and complexity in quantum information science Akimasa Miyake 1 CQuIC, University of New Mexico Outline Subject: math of tensors physics of

More information

Graphical description of local Gaussian operations for continuous-variable weighted graph states

Graphical description of local Gaussian operations for continuous-variable weighted graph states Graphical description of local Gaussian operations for continuous-variable weighted graph states Jing Zhang ( 张靖 * State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics,

More information

Ancilla-driven universal quantum computing

Ancilla-driven universal quantum computing Ancilla-driven universal quantum computing Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. September 30, 2010 Vlad Gheorghiu (CMU) Ancilla-driven universal

More information

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min Basics of quantum computing and some recent results Tomoyuki Morimae YITP Kyoto University) 50+10 min Outline 1. Basics of quantum computing circuit model, classically simulatable/unsimulatable, quantum

More information

Simulation of quantum computers with probabilistic models

Simulation of quantum computers with probabilistic models Simulation of quantum computers with probabilistic models Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. April 6, 2010 Vlad Gheorghiu (CMU) Simulation of quantum

More information

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum One-Way Quantum Computing Andrew Lopez A commonly used model in the field of quantum computing is the Quantum Circuit Model. The Circuit Model can be thought of as a quantum version of classical computing,

More information

arxiv: v2 [quant-ph] 29 Jan 2015

arxiv: v2 [quant-ph] 29 Jan 2015 Hybrid valence-bond states for universal quantum computation Tzu-Chieh Wei C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, State University of New York at Stony Brook,

More information

high thresholds in two dimensions

high thresholds in two dimensions Fault-tolerant quantum computation - high thresholds in two dimensions Robert Raussendorf, University of British Columbia QEC11, University of Southern California December 5, 2011 Outline Motivation Topological

More information

Lectures on Fault-Tolerant Quantum Computation

Lectures on Fault-Tolerant Quantum Computation Lectures on Fault-Tolerant Quantum Computation B.M. Terhal, IBM Research I. Descriptions of Noise and Quantum States II. Quantum Coding and Error-Correction III. Fault-Tolerant Error-Correction. Surface

More information

arxiv:quant-ph/ v1 12 Feb 2007

arxiv:quant-ph/ v1 12 Feb 2007 Fundamentals of universality in one-way quantum computation arxiv:quant-ph/0702116v1 12 Feb 2007 M. Van den Nest 1, W. Dür 1,2, A. Miyake 1,2 and H. J. Briegel 1,2 1 Institut für Quantenoptik und Quanteninformation

More information

arxiv:quant-ph/ v5 6 Apr 2005

arxiv:quant-ph/ v5 6 Apr 2005 Nonunitary quantum circuit Hiroaki Terashima 1, and Masahito Ueda 1, arxiv:quant-ph/3461v5 6 Apr 5 1 Department of Physics, Tokyo Institute of Technology, Tokyo 15-8551, Japan CREST, Japan Science and

More information

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Ben W. Reichardt UC Berkeley NSF, ARO [quant-ph/0411036] stabilizer operations, Q: Do form a universal set? prepare

More information

Quantum Error Correction Codes - From Qubit to Qudit

Quantum Error Correction Codes - From Qubit to Qudit Quantum Error Correction Codes - From Qubit to Qudit Xiaoyi Tang Paul McGuirk December 7, 005 1 Introduction Quantum computation (QC), with inherent parallelism from the superposition principle of quantum

More information

Curriculum vitae Maarten Van den Nest

Curriculum vitae Maarten Van den Nest Curriculum vitae Maarten Van den Nest August 28, 2009 1 Personal data and contact details Date of birth: December 10th, 1978 Place of birth: Aalst, Belgium Nationality: Belgian Office address: Max-Planck-Institut

More information

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel Introduction to Topological Error Correction and Computation James R. Wootton Universität Basel Overview Part 1: Topological Quantum Computation Abelian and non-abelian anyons Quantum gates with Abelian

More information

arxiv: v2 [quant-ph] 3 Jul 2008

arxiv: v2 [quant-ph] 3 Jul 2008 Deterministic Dense Coding and Faithful Teleportation with Multipartite Graph States Ching-Yu Huang 1, I-Ching Yu 1, Feng-Li Lin 1, and Li-Yi Hsu 2 1 Department of Physics, National Taiwan Normal University,

More information

GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON ENTANGLEMENT OF SUBGRAPHS

GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON ENTANGLEMENT OF SUBGRAPHS International Journal of Modern Physics B Vol. 26, No. 4 (2012) 1250024 (16 pages) c World Scientific Publishing Company DOI: 10.1142/S0217979212500245 GRAPHICAL QUANTUM ERROR-CORRECTING CODES BASED ON

More information

Automatic Parallelisation of Quantum Circuits Using the Measurement Based Quantum Computing Model

Automatic Parallelisation of Quantum Circuits Using the Measurement Based Quantum Computing Model Automatic Parallelisation of Quantum Circuits Using the Measurement Based Quantum Computing Model Einar Pius August 26, 2010 MSc in High Performance Computing The University of Edinburgh Year of Presentation:

More information

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005 Semiconductors: Applications in spintronics and quantum computation Advanced Summer School 1 I. Background II. Spintronics Spin generation (magnetic semiconductors) Spin detection III. Spintronics - electron

More information

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State based on High-threshold universal quantum computation on the surface code -Austin G. Fowler, Ashley M. Stephens, and Peter

More information

Quantum computers still work with 25% of their qubits missing

Quantum computers still work with 25% of their qubits missing Quantum computers still work with 25% of their qubits missing Sean Barrett Tom Stace (UQ) Phys. Rev. Lett. 102, 200501(2009) Phys. Rev. A 81, 022317 (2010) Phys. Rev. Lett. 105, 200502 (2010) Outline Loss/leakage

More information

Problem Set # 6 Solutions

Problem Set # 6 Solutions Id: hw.tex,v 1.4 009/0/09 04:31:40 ike Exp 1 MIT.111/8.411/6.898/18.435 Quantum Information Science I Fall, 010 Sam Ocko October 6, 010 1. Building controlled-u from U (a) Problem Set # 6 Solutions FIG.

More information

Experimental violation of multipartite Bell inequalities with trapped ions

Experimental violation of multipartite Bell inequalities with trapped ions Experimental violation of multipartite Bell inequalities with trapped ions B. P. Lanyon 1,2, M. Zwerger 3, P. Jurcevic 1,2, C. Hempel 1,2, W. Dür 3, H. J. Briegel 1,3, R. Blatt 1,2, and C. F. Roos 1,2

More information

arxiv: v2 [quant-ph] 21 Oct 2015

arxiv: v2 [quant-ph] 21 Oct 2015 Symmetry-protected topologically ordered states for universal quantum computation Hendrik Poulsen Nautrup Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, United States

More information

Measurement-based Quantum Computation

Measurement-based Quantum Computation Measurement-based Quantum Computation Elham Kashefi University of Edinburgh Measurement-based QC Measurements play a central role. Scalable implementation Clear separation between classical and quantum

More information

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick

Grover s algorithm. We want to find aa. Search in an unordered database. QC oracle (as usual) Usual trick Grover s algorithm Search in an unordered database Example: phonebook, need to find a person from a phone number Actually, something else, like hard (e.g., NP-complete) problem 0, xx aa Black box ff xx

More information

Experimental characterization of universal one-way quantum computing arxiv: v1 [quant-ph] 1 May 2013

Experimental characterization of universal one-way quantum computing arxiv: v1 [quant-ph] 1 May 2013 Experimental characterization of universal one-way quantum computing arxiv:1305.0212v1 [quant-ph] 1 May 2013 B. A. Bell, 1 M. S. Tame, 2 A. S. Clark, 3 R. W. Nock, 1 W. J. Wadsworth, 4 and J. G. Rarity

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Bounds on Quantum codes

Bounds on Quantum codes Bounds on Quantum codes No go we cannot encode too many logical qubits in too few physical qubits and hope to correct for many errors. Some simple consequences are given by the quantum Hamming bound and

More information

Preparing Projected Entangled Pair States on a Quantum Computer

Preparing Projected Entangled Pair States on a Quantum Computer Preparing Projected Entangled Pair States on a Quantum Computer Martin Schwarz, Kristan Temme, Frank Verstraete University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria Toby Cubitt,

More information

arxiv: v2 [quant-ph] 16 Nov 2018

arxiv: v2 [quant-ph] 16 Nov 2018 aaacxicdvhlsgmxfe3hv62vvswncwelkrmikdlgi7cqc1yfwyro+mthmasibkjlgg+wk3u/s2/wn8wfsxs1qsjh3nuosckjhcuhb8fry5+yxfpejyawv1bx2jxnm8tto1hftcs23ui7aohciwcjnxieojjf/xphvrdcxortlqhqykdgj6u6ako5kjmwo5gtsc0fi/qtgbvtaxmolcnxuap7gqihlspyhdblqgbicil5q1atid3qkfhfqqo+1ki6e5f+cyrt/txh1f/oj9+skd2npbhlnngojzmpd8k9tyjdw0kykioniem9jfmxflvtjmjlaseio9n9llpk/ahkfldycthdga3aj3t58/gwfolthsqx2olgidl87cdyigsjusbud182x0/7nbjs9utoacgfz/g1uj2phuaubx9u6fyy7kljdts8owchowj1dsarmc6qvbi39l78ta8bw9nvoovjv1tsanx9rbsmy8zw==

More information

arxiv:quant-ph/ v1 19 Mar 2006

arxiv:quant-ph/ v1 19 Mar 2006 On the simulation of quantum circuits Richard Jozsa Department of Computer Science, University of Bristol, Merchant Venturers Building, Bristol BS8 1UB U.K. Abstract arxiv:quant-ph/0603163v1 19 Mar 2006

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 1 (2017) Jon Yard QNC 3126 jyard@uwaterloo.ca TAs Nitica Sakharwade nsakharwade@perimeterinstitute.ca

More information

Analog quantum error correction with encoding a qubit into an oscillator

Analog quantum error correction with encoding a qubit into an oscillator 17th Asian Quantum Information Science Conference 6 September 2017 Analog quantum error correction with encoding a qubit into an oscillator Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto Graduate School

More information

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states To cite this article: Terry Rudolph and Shashank Soyuz Virmani 2005 New

More information

Quantum Error-Correcting Codes by Concatenation

Quantum Error-Correcting Codes by Concatenation Second International Conference on Quantum Error Correction University of Southern California, Los Angeles, USA December 5 9, 2011 Quantum Error-Correcting Codes by Concatenation Markus Grassl joint work

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

ON THE ROLE OF THE BASIS OF MEASUREMENT IN QUANTUM GATE TELEPORTATION. F. V. Mendes, R. V. Ramos

ON THE ROLE OF THE BASIS OF MEASUREMENT IN QUANTUM GATE TELEPORTATION. F. V. Mendes, R. V. Ramos ON THE ROLE OF THE BASIS OF MEASREMENT IN QANTM GATE TELEPORTATION F V Mendes, R V Ramos fernandovm@detiufcbr rubens@detiufcbr Lab of Quantum Information Technology, Department of Teleinformatic Engineering

More information

arxiv: v3 [quant-ph] 29 Oct 2009

arxiv: v3 [quant-ph] 29 Oct 2009 Efficient quantum circuit implementation of quantum walks B L Douglas and J B Wang School of Physics, The University of Western Australia, 6009, Perth, Australia arxiv:07060304v3 [quant-ph] 29 Oct 2009

More information

Realization of Two-Qutrit Quantum Gates with Control Pulses

Realization of Two-Qutrit Quantum Gates with Control Pulses Commun. Theor. Phys. Beijing, China 51 pp. 65 65 c Chinese Physical Society and IOP Publishing Ltd Vol. 51, No., April 15, Realization of Two-Qutrit Quantum Gates with Control Pulses ZHANG Jie, DI Yao-Min,

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

Towards a quantum calculus

Towards a quantum calculus QPL 2006 Preliminary Version Towards a quantum calculus (work in progress, extended abstract) Philippe Jorrand 1 Simon Perdrix 2 Leibniz Laboratory IMAG-INPG Grenoble, France Abstract The aim of this paper

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Magic States. Presented by Nathan Babcock

Magic States. Presented by Nathan Babcock Magic States Presented by Nathan Babcock Overview I will discuss the following points:. Quantum Error Correction. The Stabilizer Formalism. Clifford Group Quantum Computation 4. Magic States 5. Derivation

More information

arxiv: v2 [quant-ph] 31 Jul 2012

arxiv: v2 [quant-ph] 31 Jul 2012 The 2D AKLT state on the honeycomb lattice is a universal resource for quantum computation Tzu-Chieh Wei C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony

More information

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator

Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator Projects about Quantum adder circuits Final examination June 2018 Quirk Simulator http://algassert.com/2016/05/22/quirk.html PROBLEM TO SOLVE 1. The HNG gate is described in reference: Haghparast M. and

More information

arxiv:quant-ph/ v2 17 Feb 2004

arxiv:quant-ph/ v2 17 Feb 2004 Graphical description of the action of local Clifford transformations on graph states Maarten Van den Nest Jeroen Dehaene and Bart De Moor Katholieke Universiteit Leuven ESAT-SCD Belgium. (Dated: February

More information

CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes

CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes CSE 599d - Quantum Computing Stabilizer Quantum Error Correcting Codes Dave Bacon Department of Computer Science & Engineering, University of Washington In the last lecture we learned of the quantum error

More information

arxiv: v1 [quant-ph] 14 Mar 2017

arxiv: v1 [quant-ph] 14 Mar 2017 Discrete Wigner Function Derivation of the Aaronson-Gottesman Tableau Algorithm Lucas Kocia, Yifei Huang, and Peter Love Department of Physics, Tufts University, Medford, Massachusetts 2155, USA arxiv:173463v1

More information

arxiv:quant-ph/ v2 30 May 2007

arxiv:quant-ph/ v2 30 May 2007 Ultracompact Generation of Continuous-Variable Cluster States arxiv:quant-ph/0703096v2 30 May 2007 Nicolas C. Menicucci, 1, 2, Steven T. Flammia, 3 Hussain Zaidi, 4 and Olivier Pfister 4, 1 Department

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

Quantum Entanglement and the Bell Matrix

Quantum Entanglement and the Bell Matrix Quantum Entanglement and the Bell Matrix Marco Pedicini (Roma Tre University) in collaboration with Anna Chiara Lai and Silvia Rognone (La Sapienza University of Rome) SIMAI2018 - MS27: Discrete Mathematics,

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

arxiv: v1 [quant-ph] 27 May 2013

arxiv: v1 [quant-ph] 27 May 2013 Classical simulation complexity of extended Clifford circuits Richard Jozsa 1 and Maarten Van den Nest 2 arxiv:1305.6190v1 [quant-ph] 27 May 2013 1 DAMTP, Centre for Mathematical Sciences, University of

More information

arxiv: v1 [quant-ph] 5 Oct 2017

arxiv: v1 [quant-ph] 5 Oct 2017 Dual correspondence between classical spin models and quantum CSS states Mohammad Hossein Zarei, and Afshin Montakhab, Physics Department, College of Sciences, Shiraz University, Shiraz 7454, Iran arxiv:70.090v

More information

How Often Must We Apply Syndrome Measurements?

How Often Must We Apply Syndrome Measurements? How Often Must We Apply Syndrome Measurements? Y. S. Weinstein Quantum Information Science Group, MITRE, 200 Forrestal Rd., Princeton, NJ 08540 ABSTRACT Quantum error correction requires encoding quantum

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

Witnessing Genuine Many-qubit Entanglement with only Two Local Measurement Settings

Witnessing Genuine Many-qubit Entanglement with only Two Local Measurement Settings Witnessing Genuine Many-qubit Entanglement with only Two Local Measurement Settings Géza Tóth (MPQ) Collaborator: Otfried Gühne (Innsbruck) uant-ph/0405165 uant-ph/0310039 Innbruck, 23 June 2004 Outline

More information

One-way quantum computation with two-photon multiqubit cluster states

One-way quantum computation with two-photon multiqubit cluster states PHYSICAL REVIEW A 78, 042335 2008 One-way quantum computation with two-photon multiqubit cluster states Giuseppe Vallone, 1, * Enrico Pomarico, 1, Francesco De Martini, 1,2, * and Paolo Mataloni 1, * 1

More information

arxiv:quant-ph/ v1 11 Feb 2006

arxiv:quant-ph/ v1 11 Feb 2006 arxiv:quant-ph/060096v Feb 006 Entanglement in Graph States and its Applications MARC HEIN Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 5, A-600 Innsbruck, Austria WOLFGANG

More information

Lecture 3: Hilbert spaces, tensor products

Lecture 3: Hilbert spaces, tensor products CS903: Quantum computation and Information theory (Special Topics In TCS) Lecture 3: Hilbert spaces, tensor products This lecture will formalize many of the notions introduced informally in the second

More information

Threshold theorem for quantum supremacy arxiv:

Threshold theorem for quantum supremacy arxiv: 2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arxiv:1610.03632 Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA Threshold

More information

Quantum Computing: Foundations to Frontier Fall Lecture 3

Quantum Computing: Foundations to Frontier Fall Lecture 3 Quantum Computing: Foundations to Frontier Fall 018 Lecturer: Henry Yuen Lecture 3 Scribes: Seyed Sajjad Nezhadi, Angad Kalra Nora Hahn, David Wandler 1 Overview In Lecture 3, we started off talking about

More information

Computation with coherent states via teleportations to and from a quantum bus

Computation with coherent states via teleportations to and from a quantum bus PHYSICAL REVIEW A 78, 06314 008 Computation with coherent states via teleportations to and from a quantum bus Marcus Silva 1, * and Casey R. Myers,1, 1 Department of Physics and Astronomy, and Institute

More information

Limitations on transversal gates

Limitations on transversal gates Limitations on transversal gates Michael Newman 1 and Yaoyun Shi 1,2 University of Michigan 1, Alibaba Group 2 February 6, 2018 Quantum fault-tolerance Quantum fault-tolerance Quantum fault-tolerance Quantum

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Fault-tolerant logical gates in quantum error-correcting codes

Fault-tolerant logical gates in quantum error-correcting codes Fault-tolerant logical gates in quantum error-correcting codes Fernando Pastawski and Beni Yoshida (Caltech) arxiv:1408.1720 Phys Rev A xxxxxxx Jan 2015 @ QIP (Sydney, Australia) Fault-tolerant logical

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127

M. Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/ , Folie 127 M Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/2008 2008-01-11, Folie 127 M Grassl, Grundlagen der Quantenfehlerkorrektur, Universität Innsbruck, WS 2007/2008 2008-01-11,

More information

The Quantum Supremacy Experiment

The Quantum Supremacy Experiment The Quantum Supremacy Experiment John Martinis, Google & UCSB New tests of QM: Does QM work for 10 15 Hilbert space? Does digitized error model also work? Demonstrate exponential computing power: Check

More information

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk

Quantum Error Correction Codes-From Qubit to Qudit. Xiaoyi Tang, Paul McGuirk Quantum Error Correction Codes-From Qubit to Qudit Xiaoyi Tang, Paul McGuirk Outline Introduction to quantum error correction codes (QECC) Qudits and Qudit Gates Generalizing QECC to Qudit computing Need

More information

Topological Quantum Computation

Topological Quantum Computation Texas A&M University October 2010 Outline 1 Gates, Circuits and Universality Examples and Efficiency 2 A Universal 3 The State Space Gates, Circuits and Universality Examples and Efficiency Fix d Z Definition

More information

arxiv: v3 [quant-ph] 17 Sep 2017

arxiv: v3 [quant-ph] 17 Sep 2017 Quantum Error Correction using Hypergraph States Shashanka Balakuntala and Goutam Paul # Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore 641 004, India,

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

A quantum computer only needs one universe

A quantum computer only needs one universe A quantum computer only needs one universe A. M. Steane Centre for Quantum Computation, Department of Atomic and Laser Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, England.

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski (IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE Aleksander Kubica, B. Yoshida, F. Pastawski MOTIVATION Topological quantum codes - non-local DOFs, local generators. Toric code: high threshold, experimentally

More information

Supervised quantum gate teaching for quantum hardware design

Supervised quantum gate teaching for quantum hardware design Supervised quantum gate teaching for quantum hardware design Leonardo Banchi1, Nicola Pancotti2 and Sougato Bose1 1- Department of Physics and Astronomy, University College London, Gower Street, London

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows:

The controlled-not (CNOT) gate exors the first qubit into the second qubit ( a,b. a,a + b mod 2 ). Thus it permutes the four basis states as follows: C/CS/Phys C9 Qubit gates, EPR, ell s inequality 9/8/05 Fall 005 Lecture 4 Two-qubit gate: COT The controlled-not (COT) gate exors the first qubit into the second qubit ( a,b a,a b = a,a + b mod ). Thus

More information

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin Département de Physique, Université de Sherbrooke, Sherbrooke, Québec,

More information

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3,

X row 1 X row 2, X row 2 X row 3, Z col 1 Z col 2, Z col 2 Z col 3, 1 Ph 219c/CS 219c Exercises Due: Thursday 9 March 2017.1 A cleaning lemma for CSS codes In class we proved the cleaning lemma for stabilizer codes, which says the following: For an [[n, k]] stabilizer

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

A scheme for protecting one-qubit information against erasure. error. Abstract

A scheme for protecting one-qubit information against erasure. error. Abstract A scheme for protecting one-qubit information against erasure error Chui-Ping Yang 1, Shih-I Chu 1, and Siyuan Han 1 Department of Chemistry, University of Kansas, and Kansas Center for Advanced Scientific

More information

Experimental Quantum Teleportation of a Two-Qubit

Experimental Quantum Teleportation of a Two-Qubit Experimental Quantum Teleportation of a Two-Qubit Composite System Qiang Zhang,1, Alexander Goebel 1, Claudia Wagenknecht 1, Yu-Ao Chen 1, Bo Zhao 1, Tao Yang, Alois Mair 1, Jörg Schmiedmayer 1,3 & Jian-Wei

More information

arxiv: v1 [quant-ph] 11 Jan 2017

arxiv: v1 [quant-ph] 11 Jan 2017 Compressed quantum computation using the IBM Quantum Experience M. Hebenstreit, 1 D. Alsina, 2, 3 J. I. Latorre, 2, 3 and B. Kraus 1 1 Institute for Theoretical Physics, University of Innsbruck, Innsbruck,

More information

Quantum Information and Quantum Many-body Systems

Quantum Information and Quantum Many-body Systems Quantum Information and Quantum Many-body Systems Lecture 1 Norbert Schuch California Institute of Technology Institute for Quantum Information Quantum Information and Quantum Many-Body Systems Aim: Understand

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Logical operators of quantum codes

Logical operators of quantum codes Logical operators of quantum codes Mark M. Wilde* Electronic Systems Division, Science Applications International Corporation, 4001 North Fairfax Drive, Arlington, Virginia 22203, USA Received 30 March

More information

Quantum Phase Estimation using Multivalued Logic

Quantum Phase Estimation using Multivalued Logic Quantum Phase Estimation using Multivalued Logic Agenda Importance of Quantum Phase Estimation (QPE) QPE using binary logic QPE using MVL Performance Requirements Salient features Conclusion Introduction

More information

arxiv: v1 [quant-ph] 23 Nov 2017

arxiv: v1 [quant-ph] 23 Nov 2017 State-injection schemes of quantum computation in Spekkens toy theory Lorenzo Catani and Dan E. Browne University College London, Physics and Astronomy department, Gower St, London WC1E 6BT, UK lorenzo.catani.14@ucl.ac.uk

More information

Measurement-based quantum computation beyond the one-way model

Measurement-based quantum computation beyond the one-way model Measurement-based quantum computation beyond the one-way model D Gross and J Eisert Blackett Laboratory Imperial College London Prince Consort Road London SW7 2BW United Kingdom and Institute for Mathematical

More information

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012

More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 More measurement & computing (Clusters, N00N states, Zeno gates,...) 13 Mar 2012 The cost of postselection Of course, if each gate only succeeds some fraction p of the time... the odds of an N-gate computer

More information

THE ABC OF COLOR CODES

THE ABC OF COLOR CODES THE ABC OF COLOR CODES Aleksander Kubica ariv:1410.0069, 1503.02065 work in progress w/ F. Brandao, K. Svore, N. Delfosse 1 WHY DO WE CARE ABOUT QUANTUM CODES? Goal: store information and perform computation.

More information