Quantum computers still work with 25% of their qubits missing

Size: px
Start display at page:

Download "Quantum computers still work with 25% of their qubits missing"

Transcription

1 Quantum computers still work with 25% of their qubits missing Sean Barrett Tom Stace (UQ) Phys. Rev. Lett. 102, (2009) Phys. Rev. A 81, (2010) Phys. Rev. Lett. 105, (2010)

2 Outline Loss/leakage errors are a serious problem for practical QIP This motivates development of error correction / fault tolerance schemes tailored for loss errors Kitaev s surface codes are robust to loss errors, with a very high threshold (percolation) Raussendorf s topological quantum computer is robust to computational and loss errors, with high thresholds for both pcomp Correctable Uncorrectable p loss

3 Loss errors in QIP Loss errors can be a serious (dominant) source of noise in various QIP architectures Photonic QIP: mode mismatch, imperfect sources, inefficient detectors Trapped atoms/ions: imperfect loading of lattices, leakage Solid state architectures: fabrication errors Greiner et al, Nature 415, 39 (2002)

4 Toric code I Qubits live on edges of L x L lattice

5 Toric code I Qubits live on edges of L x L lattice Two types of stabilizer operator: stars and plaquettes

6 Toric code I Qubits live on edges of L x L lattice Two types of stabilizer operator: stars and plaquettes Disjoint stabilizers (obviously) commute Overlapping stabilizers always share two qubits [P i,s j ]=0

7 Toric code I One of the stars (plaquettes) may be expressed as product of all others So generators of stabilizer are: S = P 1,P 2,..., P L 2 1,S 1,S 2,..., S L 2 1 Number of encoded qubits is thus k =2L 2 2(L 2 1) = 2

8 Toric code II What are the logical operators? First, consider effect of a chain of operators: An open chain commutes with S except at endpoints Closed chains ( cycles ) commute with S Homologically trivial cycle member of S Homologically non-trivial cycle logical operator

9 Correction procedure Measure all P 1,P 2,..., P L 2 1,S 1,S 2,..., S L 2 1 Reveal endpoints of error chains For error chains E, need to find correction chains E such that E+E is homologically trivial This can be done with a minimum weight matching algorithm Find p c = 10.3%

10 Loss errors Consider effect of losses in absence of Pauli errors

11 Loss errors Consider effect of losses in absence of Pauli errors When we loose qubits, can reroute logical operators: ' = P i C = P i C = C

12 Loss errors Consider effect of losses in absence of Pauli errors When we loose qubits, can reroute logical operators: ' This will work provided threshold p loss is less than percolation Relevant number is square lattice bond percolation threshold: p loss < 0.5

13 QEC for loss & Pauli errors When qubits are lost, plaquettes (and stars) can no longer be measured unambiguously??

14 QEC for loss & Pauli errors When qubits are lost, plaquettes (and stars) can no longer be measured unambiguously?? Solution: multiply damaged operators to get new stabilizers which can be measured unambiguously

15 QEC for loss & Pauli errors Algorithm: merge nodes on stabilizer graph Do perfect matching on reduced graph

16 QEC for loss & Pauli errors Algorithm: merge nodes on stabilizer graph Do perfect matching on reduced graph Results: Uncorrectable pt Correctable 0.02 Phys. Rev. Lett. 102, (2009) Phys. Rev. A 81, (2010) p loss

17 Topological FTQC scheme Raussendorf, Harrington & coworkers introduced a FTQC scheme inspired by topological quantum computing Measurement based QC Translationally invariant Nearest neighbour gates only Works in two dimensions

18 Topological FTQC scheme Raussendorf, Harrington & coworkers introduced a FTQC scheme inspired by topological quantum computing Measurement based QC Translationally invariant Nearest neighbour gates only Works in two dimensions p thres =

19 Topological FTQC scheme MBQC: start with cluster state on a 3D lattice, L Qubits live on faces & edges of L

20 Topological FTQC scheme MBQC: start with cluster state on a 3D lattice, L C gates Qubits live on faces & edges of L

21 Topological FTQC scheme MBQC: start with cluster state on a 3D lattice, L C gates Qubits live on faces & edges of L Divide qubits into three types: D V S qubits, measured in qubits, measured in qubits, measured in Y or ( + Y )

22 Topological FTQC scheme MBQC: start with cluster state on a 3D lattice, L C gates Qubits live on faces & edges of L Divide qubits into three types: D V S qubits, measured in qubits, measured in qubits, measured in Clifford gates Y or ( + Y ) Universality (via magic state purification)

23 Consider simplest encoded gate: identity gate Identity gate

24 Consider simplest encoded gate: identity gate Identity gate Defect regions

25 Consider simplest encoded gate: identity gate Identity gate Defect regions Vacuum

26 Consider simplest encoded gate: identity gate Identity gate Defect regions Logical qubits encoded in surface code Vacuum

27 To understand how this works (even without errors), make use of stabilizers K i C L = C L, Identity gate

28 To understand how this works (even without errors), make use of stabilizers K i C L = C L, Identity gate K i =

29 To understand how this works (even without errors), make use of stabilizers K i = Products of form: K i C L = C L, K i Identity gate s have an intuitive

30 To understand how this works (even without errors), make use of stabilizers K i = Products of form: K i C L = C L, K i s have an intuitive Identity gate Correlation surfaces

31 By considering these correlation surfaces, we can show: ± in out C L = C L, ± in out C L = C L, Identity gate

32 By considering these correlation surfaces, we can show: ± in out C L = C L, ± in out C L = C L, Identity gate After measuring input slice, are mapped to and out out in and in

33 By considering these correlation surfaces, we can show: ± in out C L = C L, ± in out C L = C L, Identity gate After measuring input slice, are mapped to and out out in and in Input state has been teleported to output plane

34 Gates with errors Now consider the effect of errors Consider products of K i s around a cube of the lattice

35 Gates with errors Now consider the effect of errors Consider products of K i s around a cube of the lattice

36 Gates with errors Now consider the effect of errors Consider products of K i s around a cube of the lattice Cubes with product -1 reveal the locations of endpoints of error chains

37 Gates with errors Now consider the effect of errors Consider products of K i s around a cube of the lattice Cubes with product -1 reveal the locations of endpoints of error chains Minimum weight matching problem

38 Loss errors First idea: correlation surfaces can by deformed by multiplying with {K i } Deform the surfaces so that they avoid lost qubits

39 Loss errors First idea: correlation surfaces can by deformed by multiplying with {K i } Deform the surfaces so that they avoid lost qubits

40 Loss errors First idea: correlation surfaces can by deformed by multiplying with {K i } Deform the surfaces so that they avoid lost qubits As long as we don t loose too many qubits, we are able to reroute all the correlation surfaces and the gate still works

41 Thresholds Rerouting the correlation surfaces is dual to the problem of bond percolation on the 3D lattice. We expect that failure threshold coincides with bond percolation threshold in 3D.

42 Thresholds Rerouting the correlation surfaces is dual to the problem of bond percolation on the 3D lattice. We expect that failure threshold coincides with bond percolation threshold in 3D p c correctable p loss 0.248

43 Loss errors In the presence of computational errors and loss errors, can still use parity checks to detect computational errors

44 Loss errors In the presence of computational errors and loss errors, can still use parity checks to detect computational errors Idea: join parity check cubes together to avoid lost faces

45 Loss errors In the presence of computational errors and loss errors, can still use parity checks to detect computational errors Idea: join parity check cubes together to avoid lost faces C E C C c E E b Minimum weight matching on modified graph

46 Results We performed Monte-Carlo simulations of error & recovery processes on finite size lattices (L = 8x8x8,...,16x16x16) Error model: computational errors in preparation, storage, C gates, measurements, with equal rate p comp Loss errors with rate p loss pcomp Correctable Uncorrectable Phys. Rev. Lett. 105, (2010) p loss

47 Conclusions We have developed methods for overcoming loss errors in fault tolerant quantum computing A modification of Raussendorf s scheme for FTQC is extremely robust to both computational and loss error pcomp Correctable Uncorrectable Ongoing work: nondeterministic gates (e.g. linear optics), static defects, overhead costs... Herrera-Martí et al., Phys. Rev. A 82, (2010) Li et al. Phys. Rev. Lett. 105, (2010) (talk tomorrow) Fujii and Tokunaga, Phys. Rev. Lett. 105, (2010) (poster) Nagayoma et al. (poster) p loss

high thresholds in two dimensions

high thresholds in two dimensions Fault-tolerant quantum computation - high thresholds in two dimensions Robert Raussendorf, University of British Columbia QEC11, University of Southern California December 5, 2011 Outline Motivation Topological

More information

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel

Introduction to Topological Error Correction and Computation. James R. Wootton Universität Basel Introduction to Topological Error Correction and Computation James R. Wootton Universität Basel Overview Part 1: Topological Quantum Computation Abelian and non-abelian anyons Quantum gates with Abelian

More information

Measurement-based quantum error correction

Measurement-based quantum error correction Measurement-based quantum error correction Janna Hinchliff University of Bristol, Quantum Engineering Centre for Doctoral Training Introduction Measurement-based (or one-way) quantum error correction (MBQEC)

More information

Threshold theorem for quantum supremacy arxiv:

Threshold theorem for quantum supremacy arxiv: 2017.1.16-20 QIP2017 Seattle, USA Threshold theorem for quantum supremacy arxiv:1610.03632 Keisuke Fujii Photon Science Center, The University of Tokyo /PRESTO, JST 2017.1.16-20 QIP2017 Seattle, USA Threshold

More information

Topological quantum computation

Topological quantum computation School US-Japan seminar 2013/4/4 @Nara Topological quantum computation -from topological order to fault-tolerant quantum computation- The Hakubi Center for Advanced Research, Kyoto University Graduate

More information

From Majorana Fermions to Topological Order

From Majorana Fermions to Topological Order From Majorana Fermions to Topological Order Arxiv: 1201.3757, to appear in PRL. B.M. Terhal, F. Hassler, D.P. DiVincenzo IQI, RWTH Aachen We are looking for PhD students or postdocs for theoretical research

More information

Analog quantum error correction with encoding a qubit into an oscillator

Analog quantum error correction with encoding a qubit into an oscillator 17th Asian Quantum Information Science Conference 6 September 2017 Analog quantum error correction with encoding a qubit into an oscillator Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto Graduate School

More information

arxiv: v2 [quant-ph] 7 Sep 2009

arxiv: v2 [quant-ph] 7 Sep 2009 Classical Processing Requirements for a Topological Quantum Computing System. arxiv:090.045v2 [quant-ph] 7 Sep 2009 Simon J. Devitt,, Austin G. Fowler, 2 Todd Tilma, W. J. Munro, 3, and Kae Nemoto National

More information

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State

Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State Overview of Topological Cluster-State Quantum Computation on 2D Cluster-State based on High-threshold universal quantum computation on the surface code -Austin G. Fowler, Ashley M. Stephens, and Peter

More information

arxiv: v2 [quant-ph] 19 Sep 2016

arxiv: v2 [quant-ph] 19 Sep 2016 LOCAL DECODERS FOR THE 2D AND 4D TORIC CODE Nikolas P. Breuckmann JARA Institute for Quantum Information, RWTH Aachen, Otto-Blumenthal-Straße 20 Aachen, Nordrhein-Westfalen, 52074 Germany Kasper Duivenvoorden

More information

Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arxiv:

Fault-tolerant quantum computing with color codes Andrew J. Landahl with Jonas T. Anderson and Patrick R. Rice. arxiv: '!" '!"!!!* % $!!!* "#$%!"#$#%&'()*+,&-.&"#/-0#.$)(&'#%-1#.&& & 2-$"&+3+.&)4#5.$&#6&2"-$+&%')*+&!! &7+$2++.&'"#$#%&).,&"+),+/& "#$% &!&!!!%!$ % $ &+!! ) '!# )!+' ( %+!&!" (!& *+!" )+!% (+!$!* % $!!!%!$

More information

Supplemental Material - Synthesis of Arbitrary Quantum Circuits to Topological Assembly

Supplemental Material - Synthesis of Arbitrary Quantum Circuits to Topological Assembly Supplemental Material - Synthesis of Arbitrary Quantum Circuits to Topological Assembly Alexandru Paler 1*, Simon J. Devitt 2, and Austin G. Fowler 3 1 Universitatea Transilvania, Facultatea de Matematică

More information

arxiv: v5 [quant-ph] 28 Jan 2015

arxiv: v5 [quant-ph] 28 Jan 2015 Long-distance quantum communication over noisy networks without long-time quantum memory Paweł Mazurek 1, Andrzej Grudka 2, Michał Horodecki 1, Paweł Horodecki 3, Justyna Łodyga 2, Łukasz Pankowski 1 and

More information

THE ABC OF COLOR CODES

THE ABC OF COLOR CODES THE ABC OF COLOR CODES Aleksander Kubica ariv:1410.0069, 1503.02065 work in progress w/ F. Brandao, K. Svore, N. Delfosse 1 WHY DO WE CARE ABOUT QUANTUM CODES? Goal: store information and perform computation.

More information

Lectures on Fault-Tolerant Quantum Computation

Lectures on Fault-Tolerant Quantum Computation Lectures on Fault-Tolerant Quantum Computation B.M. Terhal, IBM Research I. Descriptions of Noise and Quantum States II. Quantum Coding and Error-Correction III. Fault-Tolerant Error-Correction. Surface

More information

John Preskill, Caltech 14 January The cost of quantum fault tolerance

John Preskill, Caltech 14 January The cost of quantum fault tolerance John Preskill, Caltech 14 January 2005 http://www.iqi.caltech.edu/ The cost of quantum fault tolerance t Quantum Error Correction Shor 95 Steane 95 Quantum information can be protected, and processed fault-tolerantly.

More information

arxiv: v3 [quant-ph] 21 Feb 2013

arxiv: v3 [quant-ph] 21 Feb 2013 Surface code quantum computing by lattice surgery arxiv:1111.4022v3 [quant-ph] 21 Feb 2013 Clare Horsman 1, Austin G. Fowler 2, Simon Devitt 3 and Rodney Van Meter 4 1 Keio University Shonan Fujisawa Campus,

More information

Universal Topological Phase of 2D Stabilizer Codes

Universal Topological Phase of 2D Stabilizer Codes H. Bombin, G. Duclos-Cianci, D. Poulin arxiv:1103.4606 H. Bombin arxiv:1107.2707 Universal Topological Phase of 2D Stabilizer Codes Héctor Bombín Perimeter Institute collaborators David Poulin Guillaume

More information

QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION

QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION Quantum Information and Computation, Vol. 1, No. 0 (2001) 000 000 c Rinton Press QUANTUM COMPUTER ARCHITECTURE FOR FAST ENTROPY EXTRACTION ANDREW M. STEANE Centre for Quantum Computation, Oxford University,

More information

Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London

Measurement-based quantum computation 10th Canadian Summer School on QI. Dan Browne Dept. of Physics and Astronomy University College London Measurement-based quantum computation 0th Canadian Summer School on QI Dan Browne Dept. of Physics and Astronomy University College London What is a quantum computer? The one-way quantum computer A multi-qubit

More information

Teleportation-based approaches to universal quantum computation with single-qubit measurements

Teleportation-based approaches to universal quantum computation with single-qubit measurements Teleportation-based approaches to universal quantum computation with single-qubit measurements Andrew Childs MIT Center for Theoretical Physics joint work with Debbie Leung and Michael Nielsen Resource

More information

Towards Scalable Linear-Optical Quantum Computers

Towards Scalable Linear-Optical Quantum Computers Quantum Information Processing, Vol. 3, Nos. 1 5, October 2004 ( 2004) Towards Scalable Linear-Optical Quantum Computers J. P. Dowling, 1,5 J. D. Franson, 2 H. Lee, 1,4 and G. J. Milburn 3 Received February

More information

Surface Code Threshold in the Presence of Correlated Errors

Surface Code Threshold in the Presence of Correlated Errors Surface Code Threshold in the Presence of Correlated Errors USP-São Carlos - 2013 E. Novais, P. Jouzdani, and E. Mucciolo CCNH Universidade Federal do ABC Department of Physics University of Central Florida

More information

Energetics and Error Rates of Self-Correcting Quantum Memories

Energetics and Error Rates of Self-Correcting Quantum Memories Energetics and Error Rates of Self-Correcting Quantum Memories John Schulman Quantum codes allow for the robust storage of quantum information despite interaction with the environment. In a quantum code,

More information

Fault-tolerant logical gates in quantum error-correcting codes

Fault-tolerant logical gates in quantum error-correcting codes Fault-tolerant logical gates in quantum error-correcting codes Fernando Pastawski and Beni Yoshida (Caltech) arxiv:1408.1720 Phys Rev A xxxxxxx Jan 2015 @ QIP (Sydney, Australia) Fault-tolerant logical

More information

Fault-tolerance thresholds for the surface code with fabrication errors

Fault-tolerance thresholds for the surface code with fabrication errors Fault-tolerance thresholds for the surface code with fabrication errors James M. Auger, 1, Hussain Anwar, 2, 1 Mercedes Gimeno-Segovia, 3, 4, 2 Thomas M. Stace, 5 and Dan E. Browne 1 1 Department of Physics

More information

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski

(IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE. Aleksander Kubica, B. Yoshida, F. Pastawski (IN)EQUIVALENCE OF COLOR CODE AND TORIC CODE Aleksander Kubica, B. Yoshida, F. Pastawski MOTIVATION Topological quantum codes - non-local DOFs, local generators. Toric code: high threshold, experimentally

More information

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem

CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem CSE 599d - Quantum Computing Fault-Tolerant Quantum Computation and the Threshold Theorem Dave Bacon Department of Computer Science & Engineering, University of Washington In the last few lectures, we

More information

arxiv: v1 [quant-ph] 22 Jun 2016

arxiv: v1 [quant-ph] 22 Jun 2016 Generalized surface codes and packing of logical qubits Nicolas Delfosse 1,2 Pavithran Iyer 3 and David Poulin 3 June 24, 2016 arxiv:1606.07116v1 [quant-ph] 22 Jun 2016 Abstract We consider a notion of

More information

Ph/CS 219b. Exercises Due: Thursday 22 February 2018

Ph/CS 219b. Exercises Due: Thursday 22 February 2018 Ph/CS 219b 3.1 Bound on D-dimensional codes Exercises Due: Thursday 22 February 2018 In class we proved a bound on [[n, k, d]] for local stabilizer codes in 2 dimensions: kd 2 = O(n), where k is the number

More information

Global Quantum Computation: Error Correction and Fault Tolerance

Global Quantum Computation: Error Correction and Fault Tolerance Global Quantum Computation: Error Correction and Fault Tolerance Jason Twamley Centre for Quantum Computer Technology, Macquarie University, Sydney, Australia Joseph Fitzsimons Department of Materials,

More information

arxiv: v2 [quant-ph] 8 Aug 2017

arxiv: v2 [quant-ph] 8 Aug 2017 Hyperbolic and Semi-Hyperbolic Surface Codes for Quantum Storage ariv:1703.00590v2 [quant-ph] 8 Aug 2017 1. Introduction Nikolas P. Breuckmann 1, Christophe Vuillot 1, Earl Campbell 2, Anirudh Krishna

More information

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes

Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Fault-tolerant conversion between the Steane and Reed-Muller quantum codes Jonas T. Anderson, Guillaume Duclos-Cianci, and David Poulin Département de Physique, Université de Sherbrooke, Sherbrooke, Québec,

More information

Techniques for fault-tolerant quantum error correction

Techniques for fault-tolerant quantum error correction Techniques for fault-tolerant quantum error correction Ben Reichardt UC Berkeley Quantum fault-tolerance problem C 0/1 Fault-tolerant, larger High tolerable noise Low overhead 1 Encoding for fault tolerance

More information

Quantum Computing An Overview

Quantum Computing An Overview Quantum Computing An Overview NAS Division NASA Ames Research Center TR Govindan Program Manager, QIS U.S. Army Research Office Outline Motivation Essentials of the Quantum Computing (QC) model Challenges

More information

Topological quantum memory a

Topological quantum memory a JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 9 SEPTEMBER 2002 Topological quantum memory a Eric Dennis b) Princeton University, Princeton, New Jersey 08544 Alexei Kitaev, c) Andrew Landahl, d) and

More information

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07

Quantum Computation. Dr Austin Fowler Centre for Quantum Computer Technology. New Scientist, 10/11/07 Quantum Computation Dr Austin Fowler Centre for Quantum Computer Technology New Scientist, 10/11/07 Overview what is a quantum computer? bits vs qubits superpositions and measurement implementations why

More information

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES ADIABATIC PREPARATION OF ENCODED QUANTUM STATES Fernando Pastawski & Beni Yoshida USC Los Angeles, June 11, 2014 QUANTUM NOISE Storing single observable not enough. Decoherence deteriorates quantum observables.

More information

Transversal logical gates

Transversal logical gates Transversal logical gates SPT phases gapped boundaries eni Yoshida (Perimeter Institute) *SPT = symmetry protected topological Transversal logical gates SPT phases gapped boundaries *SPT = symmetry protected

More information

スタビライザー形式と トポロジカル量子計算 藤井 啓祐 ψ pl eiθlpz ψ pl

スタビライザー形式と トポロジカル量子計算 藤井 啓祐 ψ pl eiθlpz ψ pl ψ p L e iθlp ψ p L 1990.-G. Wen Ground-state degeneracy of the fractional quantum Hall states in the presence of a random potential and on high-genus Riemann surfaces:topological order Phys. Rev. B 41

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

Quantum Computing with Very Noisy Gates

Quantum Computing with Very Noisy Gates Quantum Computing with Very Noisy Gates Produced with pdflatex and xfig Fault-tolerance thresholds in theory and practice. Available techniques for fault tolerance. A scheme based on the [[4, 2, 2]] code.

More information

Category theory and topological quantum computing

Category theory and topological quantum computing Categor theor and topological quantum computing Gregor Schaumann Group seminar QOS Freiburg 7..3 Introduction Conformal field theor Invariants of manifolds and knots Topological field theor Tensor categories

More information

Summary: Types of Error

Summary: Types of Error Summary: Types of Error Unitary errors (including leakage and cross-talk) due to gates, interactions. How does this scale up (meet resonance conditions for misc. higher-order photon exchange processes

More information

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min

Basics of quantum computing and some recent results. Tomoyuki Morimae YITP Kyoto University) min Basics of quantum computing and some recent results Tomoyuki Morimae YITP Kyoto University) 50+10 min Outline 1. Basics of quantum computing circuit model, classically simulatable/unsimulatable, quantum

More information

arxiv: v2 [quant-ph] 14 May 2017

arxiv: v2 [quant-ph] 14 May 2017 A Low-Overhead Hybrid Approach for Universal Fault-Tolerant Quantum Computation Eesa Nikahd, Morteza Saheb Zamani, and Mehdi Sedighi Quantum Design Automation Lab Amirkabir University of Technology, Tehran,

More information

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices

Quantum computing and quantum communication with atoms. 1 Introduction. 2 Universal Quantum Simulator with Cold Atoms in Optical Lattices Quantum computing and quantum communication with atoms L.-M. Duan 1,2, W. Dür 1,3, J.I. Cirac 1,3 D. Jaksch 1, G. Vidal 1,2, P. Zoller 1 1 Institute for Theoretical Physics, University of Innsbruck, A-6020

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

1 Review of an argument by Peierls

1 Review of an argument by Peierls 1 Review of an argument by Peierls In 1936, Peierls formulated a rigorous argument to establish that the two-dimensional Ising model is ferromagnetically ordered at a sufficiently low nonzero temperature.

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

arxiv: v2 [quant-ph] 18 Aug 2016

arxiv: v2 [quant-ph] 18 Aug 2016 Quantum Information and Computation, Vol. 0, No. 0 (2003) 000 000 c Rinton Press NOISE THRESHOLDS FOR THE 4, 2, 2 -CONCATENATED TORIC CODE ariv:1604.04062v2 [quant-ph] 18 Aug 2016 Ben Criger JARA Institute

More information

Noise thresholds for optical cluster-state quantum computation

Noise thresholds for optical cluster-state quantum computation Noise thresholds for optical cluster-state quantum computation Christopher M. Dawson, 1 Henry L. Haselgrove, 1,2, * and Michael A. Nielsen 1 1 School of Physical Sciences, The University of Queensland,

More information

Ancilla-driven universal quantum computing

Ancilla-driven universal quantum computing Ancilla-driven universal quantum computing Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. September 30, 2010 Vlad Gheorghiu (CMU) Ancilla-driven universal

More information

More advanced codes 0 1 ( , 1 1 (

More advanced codes 0 1 ( , 1 1 ( p. 1/24 More advanced codes The Shor code was the first general-purpose quantum error-correcting code, but since then many others have been discovered. An important example, discovered independently of

More information

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH

WORKSHOP ON QUANTUM ALGORITHMS AND DEVICES FRIDAY JULY 15, 2016 MICROSOFT RESEARCH Workshop on Quantum Algorithms and Devices Friday, July 15, 2016 - Microsoft Research Building 33 In 1981, Richard Feynman proposed a device called a quantum computer that would take advantage of methods

More information

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum

One-Way Quantum Computing Andrew Lopez. A commonly used model in the field of quantum computing is the Quantum One-Way Quantum Computing Andrew Lopez A commonly used model in the field of quantum computing is the Quantum Circuit Model. The Circuit Model can be thought of as a quantum version of classical computing,

More information

arxiv: v2 [quant-ph] 29 Jan 2015

arxiv: v2 [quant-ph] 29 Jan 2015 Hybrid valence-bond states for universal quantum computation Tzu-Chieh Wei C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy, State University of New York at Stony Brook,

More information

Simple scheme for efficient linear optics quantum gates

Simple scheme for efficient linear optics quantum gates PHYSICAL REVIEW A, VOLUME 65, 012314 Simple scheme for efficient linear optics quantum gates T. C. Ralph,* A. G. White, W. J. Munro, and G. J. Milburn Centre for Quantum Computer Technology, University

More information

Universal quantum computation on the power of quantum non-demolition measurements

Universal quantum computation on the power of quantum non-demolition measurements Universal quantum computation on the power of quantum non-demolition measurements Kae Nemoto 1, William J. Munro Trusted Systems Laboratory P Laboratories Bristol PL-2005-202 November 23, 2005* universal

More information

High-fidelity Z-measurement error encoding of optical qubits

High-fidelity Z-measurement error encoding of optical qubits Griffith Research Online https://research-repository.griffith.edu.au High-fidelity Z-measurement error encoding of optical qubits Author O'Brien, J., Pryde, G., White, A., Ralph, T. Published 2005 Journal

More information

becomes at most η th ( η ) 2t. As a result, it requires only O(log log T ) levels of concatenation to achieve sucient accuracy (η effective 1 T

becomes at most η th ( η ) 2t. As a result, it requires only O(log log T ) levels of concatenation to achieve sucient accuracy (η effective 1 T SURVEY ON THE BOUNDS OF THE QUANTUM FAULT-TOLERANCE THRESHOLD CHRISTOPHER GRAVES 1. Introduction I rst briey summarize the threshold theorem and describe the motivations for tightening the bounds on the

More information

arxiv:quant-ph/ v3 2 Nov 2005

arxiv:quant-ph/ v3 2 Nov 2005 Repeat-Until-Success quantum computing using stationary and flying qubits arxiv:quant-ph/05088v3 Nov 005 Yuan Liang Lim, Sean D. Barrett, Almut Beige, Pieter Kok, and Leong Chuan Kwek 3,4 Blackett Laboratory,

More information

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states

A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states A relational quantum computer using only twoqubit total spin measurement and an initial supply of highly mixed single-qubit states To cite this article: Terry Rudolph and Shashank Soyuz Virmani 2005 New

More information

Programming a Topological Quantum Computer

Programming a Topological Quantum Computer rogramming a opological Quantum Computer Simon Devitt 1 Kae Nemoto 1 1 National Institute of Informatics 2-1-2 itotsubashi, Chiyoda-ku okyo, Japan {devitt nemoto}@nii.ac.jp arxiv:129.1441v1 [quant-ph]

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

Rydberg Quantum Simulation Ground State Preparation by Master Equation

Rydberg Quantum Simulation Ground State Preparation by Master Equation Rydberg Quantum Simulation Ground State Preparation by Master Equation Henri Menke 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany (Talk: January 29, 2015,

More information

arxiv: v2 [quant-ph] 31 Jul 2012

arxiv: v2 [quant-ph] 31 Jul 2012 The 2D AKLT state on the honeycomb lattice is a universal resource for quantum computation Tzu-Chieh Wei C. N. Yang Institute for Theoretical Physics, State University of New York at Stony Brook, Stony

More information

Topological order of a two-dimensional toric code

Topological order of a two-dimensional toric code University of Ljubljana Faculty of Mathematics and Physics Seminar I a, 1st year, 2nd cycle Topological order of a two-dimensional toric code Author: Lenart Zadnik Advisor: Doc. Dr. Marko Žnidarič June

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas

Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Fault-Tolerant Universality from Fault-Tolerant Stabilizer Operations and Noisy Ancillas Ben W. Reichardt UC Berkeley NSF, ARO [quant-ph/0411036] stabilizer operations, Q: Do form a universal set? prepare

More information

arxiv: v1 [quant-ph] 22 Oct 2018

arxiv: v1 [quant-ph] 22 Oct 2018 2D quantum computation with 3D topological codes Héctor Bombín PsiQuantum, Palo Alto I present a fault-tolerant quantum computing method for 2D architectures that is particularly appealing for photonic

More information

Introduction to Quantum Information Technologies. B.M. Terhal, JARA-IQI, RWTH Aachen University & Forschungszentrum Jülich

Introduction to Quantum Information Technologies. B.M. Terhal, JARA-IQI, RWTH Aachen University & Forschungszentrum Jülich Introduction to Quantum Information Technologies B.M. Terhal, JARA-IQI, RWTH Aachen University & Forschungszentrum Jülich How long can we store a bit Hieroglyphs carved in sandstone at the Luxor Temple

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

Performance Requirements of a Quantum Computer Using Surface Code Error Correction

Performance Requirements of a Quantum Computer Using Surface Code Error Correction Performance Requirements of a Quantum Computer Using Surface Code Error Correction Cody Jones, Stanford University Rodney Van Meter, Austin Fowler, Peter McMahon, James Whitfield, Man-Hong Yung, Thaddeus

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Requirements for scaleable QIP

Requirements for scaleable QIP p. 1/25 Requirements for scaleable QIP These requirements were presented in a very influential paper by David Divincenzo, and are widely used to determine if a particular physical system could potentially

More information

arxiv:quant-ph/ v4 4 Jul 2005

arxiv:quant-ph/ v4 4 Jul 2005 Operator Quantum Error Correcting Subsystems for Self-Correcting Quantum Memories Dave Bacon Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195 (Dated: June 6, 2005)

More information

arxiv:hep-th/ v2 7 May 2004

arxiv:hep-th/ v2 7 May 2004 Self-dual random-plaquette gauge model and the quantum toric code arxiv:hep-th/0310279 v2 7 May 2004 Koujin Takeda and Hidetoshi Nishimori Department of Physics, Tokyo Institute of Technology, Oh-okayama,

More information

Fault-tolerant quantum computation with cluster states

Fault-tolerant quantum computation with cluster states PHYSICAL REVIEW A 71, 042323 2005 Fault-tolerant quantum computation with cluster states Michael A. Nielsen 1,2, * and Christopher M. Dawson 1, 1 School of Physical Sciences, The University of Queensland,

More information

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto

Quantum error correction on a hybrid spin system. Christoph Fischer, Andrea Rocchetto Quantum error correction on a hybrid spin system Christoph Fischer, Andrea Rocchetto Christoph Fischer, Andrea Rocchetto 17/05/14 1 Outline Error correction: why we need it, how it works Experimental realization

More information

arxiv: Statistical mechanical models for quantum codes subject to correlated noise

arxiv: Statistical mechanical models for quantum codes subject to correlated noise Statistical mechanical models for quantum codes subject to correlated noise Christopher Chubb (EQUS USyd), Steve Flammia (EQUS USyd/YQI Yale) (me@)christopherchubb.com arxiv:1809.10704 Perimeter Institute

More information

Jian-Wei Pan

Jian-Wei Pan Lecture Note 6 11.06.2008 open system dynamics 0 E 0 U ( t) ( t) 0 E ( t) E U 1 E ( t) 1 1 System Environment U() t ( ) 0 + 1 E 0 E ( t) + 1 E ( t) 0 1 0 0 1 1 2 * 0 01 E1 E0 q() t = TrEq+ E = * 2 1 0

More information

Measurement Based Quantum Computing, Graph States, and Near-term Realizations

Measurement Based Quantum Computing, Graph States, and Near-term Realizations Measurement Based Quantum Computing, Graph States, and Near-term Realizations Miami 2018 Antonio Russo Edwin Barnes S. E. Economou 17 December 2018 Virginia Polytechnic Institute and State University A.

More information

Thermalization time bounds for Pauli stabilizer Hamiltonians

Thermalization time bounds for Pauli stabilizer Hamiltonians Thermalization time bounds for Pauli stabilizer Hamiltonians Kristan Temme California Institute of Technology arxiv:1412.2858 QEC 2014, Zurich t mix apple O(N 2 e 2 ) Overview Motivation & previous results

More information

The Classification of Clifford Gates over Qubits

The Classification of Clifford Gates over Qubits The Classification of Clifford Gates over Qubits Daniel Grier, Luke Schaeffer MIT Introduction Section 1 Introduction Classification Introduction Idea Study universality by finding non-universal gate sets.

More information

arxiv: v1 [quant-ph] 23 Mar 2012

arxiv: v1 [quant-ph] 23 Mar 2012 Unconditionally verifiable blind computation Joseph F. Fitzsimons 1 and Elham Kashefi 2 arxiv:1203.5217v1 [quant-ph] 23 Mar 2012 1 Centre for Quantum Technologies, National University of Singapore, 3 Science

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

How Often Must We Apply Syndrome Measurements?

How Often Must We Apply Syndrome Measurements? How Often Must We Apply Syndrome Measurements? Y. S. Weinstein Quantum Information Science Group, MITRE, 200 Forrestal Rd., Princeton, NJ 08540 ABSTRACT Quantum error correction requires encoding quantum

More information

arxiv: v2 [quant-ph] 25 Apr 2017

arxiv: v2 [quant-ph] 25 Apr 2017 FIBRE BUNDLE FRAMEWORK FOR UNITARY QUANTUM FAULT TOLERANCE DANIEL GOTTESMAN AND LUCY LIUXUAN ZHANG arxiv:1309.7062v2 [quant-ph] 25 Apr 2017 Abstract. We introduce a differential geometric framework for

More information

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code

Non-Zero Syndromes and Syndrome Measurement Order for the [[7,1,3]] Quantum Error Correction Code Non-Zero Syndromes and Syndrome Measurement Order for the [[,,]] Quantum Error Correction Code Yaakov S. Weinstein Quantum Information Science Group, Mitre, Forrestal Rd. Princeton, NJ, USA The[[,,]] quantum

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

sparse codes from quantum circuits

sparse codes from quantum circuits sparse codes from quantum circuits arxiv:1411.3334 Dave Bacon Steve Flammia Aram Harrow Jonathan Shi Coogee 23 Jan 2015 QECC [n,k,d] code: encode k logical qubits in n physical qubits and correct errors

More information

Quantum Computer Architecture

Quantum Computer Architecture Quantum Computer Architecture Scalable and Reliable Quantum Computers Greg Byrd (ECE) CSC 801 - Feb 13, 2018 Overview 1 Sources 2 Key Concepts Quantum Computer 3 Outline 4 Ion Trap Operation The ion can

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Quantum non-demolition measurements:

Quantum non-demolition measurements: Quantum non-demolition measurements: One path to truly scalable quantum computation Kae Nemoto Tim Spiller Sean Barrett Ray Beausoleil Pieter Kok Bill Munro HP Labs (Bristol) Why should optical quantum

More information

Preparing multi-partite entanglement of photons and matter qubits

Preparing multi-partite entanglement of photons and matter qubits Preparing multi-partite entanglement of photons and matter qubits Pieter Kok, Sean D. Barrett, Timothy P. Spiller Trusted Systems Laboratory HP Laboratories Bristol HPL-2005-199 November 23, 2005* state

More information

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

arxiv: v1 [cond-mat.str-el] 7 Aug 2011 Topological Geometric Entanglement of Blocks Román Orús 1, 2 and Tzu-Chieh Wei 3, 4 1 School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia 2 Max-Planck-Institut für Quantenoptik,

More information

B. CONSERVATIVE LOGIC 19

B. CONSERVATIVE LOGIC 19 B. CONSERVATIVE LOGIC 19 B Conservative logic These lectures are based primarily on Edward Fredkin and Tommaso To oli s Conservative logic, Int. J. Theo. Phys., 1982 [FT82]. B.1 Mechanical and thermal

More information

Quantum Error Correction Codes - From Qubit to Qudit

Quantum Error Correction Codes - From Qubit to Qudit Quantum Error Correction Codes - From Qubit to Qudit Xiaoyi Tang Paul McGuirk December 7, 005 1 Introduction Quantum computation (QC), with inherent parallelism from the superposition principle of quantum

More information

Topological quantum error correction and quantum algorithm simulations

Topological quantum error correction and quantum algorithm simulations Topological quantum error correction and quantum algorithm simulations David Wang Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy August 2011 School of Physics The

More information