Neutral Networks of RNA Genotypes and RNA Evolution in silico

Size: px
Start display at page:

Download "Neutral Networks of RNA Genotypes and RNA Evolution in silico"

Transcription

1

2 Neutral Networks of RNA Genotypes and RNA Evolution in silico Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien RNA Secondary Structures in Dijon Dijon,

3 No new principle will declare itself from below a heap of facts. Sir Peter Medawar, 1985

4 The genotypes or genomes of individuals and species, being reproductively related ensembles of individuals, are DNA or RNA sequences. They are changing from generation to generation through mutation and recombination. Genotypes unfold into phenotypes or organisms, which are the targets of the evolutionary selection process. Point mutations are single nucleotide exchanges. The Hamming distance of two sequences is the minimal number of single nucleotide exchanges that mutually converts the two sequence into each other.

5 A A A A A U U U U U U C C C C C C C C G G G G G G G G A U C G = adenylate = uridylate = cytidylate = guanylate Genotype: The sequence of an RNA molecule consisting of monomers chosen from four classes.

6 Phenotype: Three-dimensional structure of phenylalanyl transfer-rna

7 Sequence 5'-End 3'-End GCGGAUUUAGCUCAGDDGGGAGAGCMCCAGACUGAAYA UCUGGAGMUCCUGUGTPCGAUCCACAGAAUUCGCACCA 3'-End 5'-End 70 Secondary Structure Symbolic Notation 5'-End 3'-End Definition and formation of the secondary structure of phenylalanyl-trna

8 CGTCGTTACAATTTAGGTTATGTGCGAATTCACAAATTGAAAATACAAGAG... CGTCGTTACAATTTAAGTTATGTGCGAATTCCCAAATTAAAAACACAAGAG... Hamming distance d (S,S ) = H (i) (ii) (iii) d (S,S) = 0 H 1 1 d (S,S) = d (S,S) H 1 2 H 2 1 d (S,S) d (S,S) + d (S,S) H 1 3 H 1 2 H 2 3 The Hamming distance induces a metric in sequence space

9 Hydrogen bonds Hydrogen bonding between nucleotide bases is the principle of template action of RNA and DNA.

10 5' 3' Plus Strand G C C C G Synthesis 5' 3' Plus Strand G C C C G C 3' G Synthesis 5' 3' Plus Strand G C C C G Minus Strand C G G G C 3' 5' Complex Dissociation 5' 3' Plus Strand G C C C G 5' Minus Strand C G G + G C 3' Complementary replication as the simplest copying mechanism of RNA

11 (A) + I 1 f 1 I 1 + I 1 dx / dt = f x - x j j j j Φ =( f j - Φ) xj (A) + I 2 f 2 I 2 + I 2 Φ =Σ i f i x i ; Σ x = 1 ; i,j i i =1,2,...,n [A] = a = constant f m = max { f; j=1,2,...,n} j (A) + I j f j Ij + Ij x (t) 1 for t m (A) + I m f m I m + I m s = (f m+1 -f m )/f m succession of temporarily fittest variants: m m+1... (A) + I n f n I n + I n Selection of the fittest or fastest replicating species I m

12 Stock Solution [A] = a 0 Reaction Mixture: A; I, k=1,2,... k k 1 A + I 2 I 1 1 d 1 k 2 A + I 2 I 2 2 d 2 k 3 A + I 2 I 3 3 d 3 k 4 A + I 2 I 4 4 d 4 k 5 A + I 2 I 5 5 d 5 Replication in the flow reactor P.Schuster & K.Sigmund, Dynamics of evolutionary optimization, Ber.Bunsenges.Phys.Chem. 89: (1985)

13 Concentration of stock solution a 0 A + I + I 1 2 A + I 1 A k 1 A + I 2 I 1 1 d 1 k 2 A + I 2 I 2 2 d 2 k 3 A + I 2 I 3 3 d 3 k 4 A + I 2 I 4 4 d 4 k 5 A + I 2 I 5 5 d 5 k > k > k > k > k Flow rate r = R -1 Selection in the flow reactor: Reversible replication reactions

14 Concentration of stock solution a 0 A + I 1 A f 1 A + I 2 I 1 1 f 2 A + I 2 I 2 2 f 3 A + I 2 I 3 3 f 4 A + I 2 I 4 4 f 5 A + I 2 I 5 5 f > f > f > f > f Flow rate r = R -1 Selection in the flow reactor: Irreversible replication reactions

15 1 Fraction of advantageous variant s = 0.1 s = 0.02 s = Time [Generations] Selection of advantageous mutants in populations of N = individuals

16 Σ dx / dt = f x - x j i iq ji i j Φ I 1 + Ij Φ = Σ f x i i i ; Σ x = 1 ; i i Σ Q i ij = 1 f j Q 1j I 2 + Ij Q = (1-p) p ij n-d(i,j) d(i,j) p... Error rate per digit f j Q 2j d(i,j)... Hamming distance between I i and Ij (A) + I j f j Q jj Ij + Ij [A] = a = constant f j Q nj I n + Ij Chemical kinetics of replication and mutation

17 Concentration Master sequence Mutant cloud Sequence space The molecular quasispecies in sequence space

18 The RNA model considers RNA sequences as genotypes and simplified RNA structures, called secondary structures, as phenotypes. The mapping from genotypes into phenotypes is many-to-one. Hence, it is redundant and not invertible. Genotypes, i.e. RNA sequences, which are mapped onto the same phenotype, i.e. the same RNA secondary structure, form neutral networks. Neutral networks are represented by graphs in sequence space.

19 S k = ψ( I. ) f k = fs ( k ) Sequence space Phenotype space Non-negative numbers Mapping from sequence space into phenotype space and into fitness values

20 A multi-component neutral network Giant Component

21 A connected neutral network

22 Optimization of RNA molecules in silico W.Fontana, P.Schuster, A computer model of evolutionary optimization. Biophysical Chemistry 26 (1987), W.Fontana, W.Schnabl, P.Schuster, Physical aspects of evolutionary optimization and adaptation. Phys.Rev.A 40 (1989), M.A.Huynen, W.Fontana, P.F.Stadler, Smoothness within ruggedness. The role of neutrality in adaptation. Proc.Natl.Acad.Sci.USA 93 (1996), W.Fontana, P.Schuster, Continuity in evolution. On the nature of transitions. Science 280 (1998), W.Fontana, P.Schuster, Shaping space. The possible and the attainable in RNA genotypephenotype mapping. J.Theor.Biol. 194 (1998),

23 Evolution in the Flow Reactor: The RNA Model Sequence-structure map Structure-function map Environment ψ : f Ω(t) h s { I; d } { S; d }. ij ij { s S; } R. : d ij + Mapping into fitness values f k ( S, Ω( t) ) = f ( ( I, Ω( t)), Ω( )) ( t) = f ψ t k k dx dt k ( Q f ( t) Φ( t) ) + Q f ( t) x + η ( x, t) ω ( t), k = 1,..., n = xk kk k n j= 1, j k kj j j k k Wiener process dw ( t) = ω ( t) dt

24 Genotype-Phenotype Mapping I { S { = ( I { ) S { f = ƒ( S ) { { Evaluation of the Phenotype Mutation Q {j f 2 I 2 f 1 I1 I n I 1 f n I 2 f 2 f 1 I n+1 f n+1 f { Q f 3 I 3 Q f 3 I 3 f 4 I 4 I { f { I 4 I 5 f 4 f 5 f 5 I 5 Evolutionary dynamics including molecular phenotypes

25 Concentration Master sequence Mutant cloud Off-the-cloud mutations Sequence space The molecular quasispecies and mutations producing new variants

26 Stock Solution Reaction Mixture The flowreactor as a device for studies of evolution in vitro and in silico

27 50 S Average structure distance to target d Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor: Trajectory

28 36 Relay steps Number of relay step 38 Evolutionary trajectory Time Average structure distance to target d S Endconformation of optimization

29 36 Relay steps Number of relay step 38 Evolutionary trajectory Time Average structure distance to target d S Reconstruction of the last step 43 44

30 36 Relay steps Number of relay step Average structure distance to target d S 42 Evolutionary trajectory Reconstruction of last-but-one step ( 44) Time

31 36 Relay steps Number of relay step Average structure distance to target d S Evolutionary trajectory Reconstruction of step ( 43 44) Time

32 36 Relay steps Number of relay step Average structure distance to target d S Evolutionary trajectory Reconstruction of step ( ) Time

33 Average structure distance to target d S 10 Relay steps Number of relay step Evolutionary trajectory Time Evolutionary process Reconstruction Reconstruction of the relay series

34 Transition inducing point mutations Neutral point mutations Change in RNA sequences during the final five relay steps 39 44

35 50 Relay steps S Average structure distance to target d Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor: Trajectory and relay steps

36 50 Relay steps S Average structure distance to target d Uninterrupted presence Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor: Uninterrupted presence

37 Number of relay step Average structure distance to target d S Uninterrupted presence Evolutionary trajectory Time (arbitrary units) Transition inducing point mutations Neutral point mutations Neutral genotype evolution during phenotypic stasis

38 Number of relay step Average structure distance to target d S Uninterrupted presence Evolutionary trajectory Time (arbitrary units) A random sequence of minor or continuous transitions in the relay series

39 A random sequence of minor or continuous transitions in the relay series

40 Shortening of Stacks Elongation of Stacks Multiloop Minor or continuous transitions: Occur frequently on single point mutations Opening of Constrained Stacks

41 50 Relay steps S Average structure distance to target d Uninterrupted presence Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor: Uninterrupted presence

42 Main transition leading to clover leaf Average structure distance to target d S 10 Relay steps Evolutionary trajectory Number of relay step Time Reconstruction of a main transitions ( 38)

43 50 Relay steps Main transitions Average structure distance to target d S Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor: Main transitions

44 Shift Roll-Over α α a Flip a α a b Double Flip a α b β β Main or discontinuous transitions: Structural innovations, occur rarely on single point mutations Closing of Constrained Stacks Multiloop

45 50 Relay steps Main transitions Average structure distance to target d S Uninterrupted presence Evolutionary trajectory Time (arbitrary units) In silico optimization in the flow reactor

46 Variation in genotype space during optimization of phenotypes

47 Statistics of evolutionary trajectories Population size N Number of replications < n > rep Number of transitions < n > tr Number of main transitions < n > dtr The number of main transitions or evolutionary innovations is constant.

48 Three important steps in the formation of the trna clover leaf from a randomly chosen initial structure corresponding to three main transitions.

49 Main results of computer simulations of molecular evolution No trajectory was reproducible in detail. Sequences of target structures were different. Nevertheless solutions of comparable or the same quality are almost always achieved. Transitions between molecular phenotypes represented by RNA structures can be classified with respect to the induced structural changes. Highly probable minor transitions are opposed by main transitions with low probability of occurrence. Main transitions represent important innovations in the course of evolution. The number of minor transitions decreases with increasing population size. The number of main transitions or evolutionary innovations is approximately constant for given start and stop structures. Not all structures are accessible through evolution in the flow reactor. An example is the trna clover leaf for GC-only sequences.

50 ...Variations neither useful not injurious would not be affected by natural selection, and would be left either a fluctuating element, as perhaps we see in certain polymorphic species, or would ultimately become fixed, owing to the nature of the organism and the nature of the conditions.... Charles Darwin, Origin of species (1859)

51 Adaptive Periods End of Walk Fitness Random Drift Periods Start of Walk Genotype Space Evolution in genotype space sketched as a non-descending walk in a fitness landscape

52 Coworkers Walter Fontana, Santa Fe Institute, NM Christian Reidys, Christian Forst, Los Alamos National Laboratory, NM Peter Stadler, Universität Leipzig, GE Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT Bärbel Stadler, Andreas Wernitznig, Universität Wien, AT Michael Kospach, Ulrike Langhammer, Ulrike Mückstein, Stefanie Widder Jan Cupal, Kurt Grünberger, Andreas Svrček-Seiler, Stefan Wuchty Ulrike Göbel, Institut für Molekulare Biotechnologie, Jena, GE Walter Grüner, Stefan Kopp, Jaqueline Weber

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe,

More information

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity Peter Schuster Institut für Theoretische Chemie Universität Wien, Austria Nonlinearity, Fluctuations, and Complexity

More information

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster Is the Concept of Error Catastrophy Relevant for Viruses? Quasispecies and error thresholds on realistic landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules RNA From Mathematical Models to Real Molecules 3. Optimization and Evolution of RNA Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien IMPA enoma

More information

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 2008 Molecular

More information

Error thresholds on realistic fitness landscapes

Error thresholds on realistic fitness landscapes Error thresholds on realistic fitness landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Evolutionary Dynamics:

More information

Self-Organization and Evolution

Self-Organization and Evolution Self-Organization and Evolution Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Wissenschaftliche esellschaft: Dynamik Komplexität menschliche Systeme

More information

Tracing the Sources of Complexity in Evolution. Peter Schuster

Tracing the Sources of Complexity in Evolution. Peter Schuster Tracing the Sources of Complexity in Evolution Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Springer Complexity Lecture

More information

Evolution on simple and realistic landscapes

Evolution on simple and realistic landscapes Evolution on simple and realistic landscapes An old story in a new setting Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

More information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information Von der Thermodynamik zu Selbstorganisation, Evolution und Information Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Kolloquium des Physikalischen

More information

Evolution and Molecules

Evolution and Molecules Evolution and Molecules Basic questions of biology seen with phsicists eyes. Peter Schuster Institut für Theoretische Chemie, niversität Wien, Österreich und The Santa Fe Institute, Santa Fe, New Mexico,

More information

Complexity in Evolutionary Processes

Complexity in Evolutionary Processes Complexity in Evolutionary Processes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 7th Vienna Central European Seminar

More information

Mathematische Probleme aus den Life-Sciences

Mathematische Probleme aus den Life-Sciences Mathematische Probleme aus den Life-Sciences Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Vortragsreihe Mathematik im Betrieb Dornbirn, 27.05.2004

More information

Designing RNA Structures

Designing RNA Structures Designing RN Structures From Theoretical Models to Real Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien Microbiology Seminar Mount Sinai School

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules R From Mathematical Models to Real Molecules 1. Sequences and Structures Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien IMP enoma School Valdivia, 12.

More information

Chemistry and Evolution at the Origin of Life. Visions and Reality

Chemistry and Evolution at the Origin of Life. Visions and Reality hemistry and Evolution at the rigin of Life Visions and Reality Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Madrid, Astrobiology Meeting 30.11.2001

More information

Mathematical Modeling of Evolution

Mathematical Modeling of Evolution Mathematical Modeling of Evolution Solved and Open Problems Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Emerging Modeling

More information

Different kinds of robustness in genetic and metabolic networks

Different kinds of robustness in genetic and metabolic networks Different kinds of robustness in genetic and metabolic networks Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Seminar lecture Linz, 15.12.2003 enomics

More information

How computation has changed research in chemistry and biology

How computation has changed research in chemistry and biology How computation has changed research in chemistry and biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA IWR - 25 Jahre-Jubiläum

More information

Evolution on Realistic Landscapes

Evolution on Realistic Landscapes Evolution on Realistic Landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Santa Fe Institute Seminar Santa Fe, 22.05.2012

More information

The Advantage of Using Mathematics in Biology

The Advantage of Using Mathematics in Biology The Advantage of Using Mathematics in Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Erwin Schrödinger-Institut

More information

The Role of Topology in the Study of Evolution

The Role of Topology in the Study of Evolution The Role of Topology in the Study of Evolution Avery Broome August 31, 2015 Abstract In this paper, we will attempt to understand the role topology plays in analyzing RNA secondary structures by providing

More information

COMP598: Advanced Computational Biology Methods and Research

COMP598: Advanced Computational Biology Methods and Research COMP598: Advanced Computational Biology Methods and Research Modeling the evolution of RNA in the sequence/structure network Jerome Waldispuhl School of Computer Science, McGill RNA world In prebiotic

More information

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster Origin of life and early evolution in the light of present day molecular biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico,

More information

Mechanisms of molecular cooperation

Mechanisms of molecular cooperation Mechanisms of molecular cooperation Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Homo Sociobiologicus Evolution of human

More information

Chemistry on the Early Earth

Chemistry on the Early Earth Chemistry on the Early Earth Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Germany-Japan Round Table Heidelberg, 01. 03.11.2011

More information

Chance and necessity in evolution: lessons from RNA

Chance and necessity in evolution: lessons from RNA Physica D 133 (1999) 427 452 Chance and necessity in evolution: lessons from RNA Peter Schuster a,, Walter Fontana b,1 a Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien,

More information

Problem solving by inverse methods in systems biology

Problem solving by inverse methods in systems biology Problem solving by inverse methods in systems biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA High-erformance comutational

More information

Replication and Mutation on Neutral Networks: Updated Version 2000

Replication and Mutation on Neutral Networks: Updated Version 2000 Replication and Mutation on Neutral Networks: Updated Version 2000 Christian Reidys Christian V. Forst Peter Schuster SFI WORKING PAPER: 2000-11-061 SFI Working Papers contain accounts of scientific work

More information

Evolution of Genotype-Phenotype mapping in a von Neumann Self-reproduction within the Platform of Tierra

Evolution of Genotype-Phenotype mapping in a von Neumann Self-reproduction within the Platform of Tierra Evolution of Genotype-Phenotype mapping in a von Neumann Self-reproduction within the Platform of Tierra Declan Baugh and Barry Mc Mullin The Rince Institute, Dublin City University, Ireland declan.baugh2@mail.dcu.ie,

More information

RNA evolution and Genotype to Phenotype maps

RNA evolution and Genotype to Phenotype maps RNA evolution and Genotype to Phenotype maps E.S. Colizzi November 8, 2018 Introduction Biological evolution occurs in a population because 1) different genomes can generate different reproductive success

More information

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes Evolutionary Dynamics and Optimization Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes Christian V. Forst, Christian Reidys, and Jacqueline Weber Mailing Address: Institut

More information

Molecular evolution - Part 1. Pawan Dhar BII

Molecular evolution - Part 1. Pawan Dhar BII Molecular evolution - Part 1 Pawan Dhar BII Theodosius Dobzhansky Nothing in biology makes sense except in the light of evolution Age of life on earth: 3.85 billion years Formation of planet: 4.5 billion

More information

Chapter 17. From Gene to Protein. Biology Kevin Dees

Chapter 17. From Gene to Protein. Biology Kevin Dees Chapter 17 From Gene to Protein DNA The information molecule Sequences of bases is a code DNA organized in to chromosomes Chromosomes are organized into genes What do the genes actually say??? Reflecting

More information

Systems biology and complexity research

Systems biology and complexity research Systems biology and complexity research Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Interdisciplinary Challenges for

More information

When to use bit-wise neutrality

When to use bit-wise neutrality Nat Comput (010) 9:83 94 DOI 10.1007/s11047-008-9106-8 When to use bit-wise neutrality Tobias Friedrich Æ Frank Neumann Published online: 6 October 008 Ó Springer Science+Business Media B.V. 008 Abstract

More information

RNA folding at elementary step resolution

RNA folding at elementary step resolution RNA (2000), 6:325 338+ Cambridge University Press+ Printed in the USA+ Copyright 2000 RNA Society+ RNA folding at elementary step resolution CHRISTOPH FLAMM, 1 WALTER FONTANA, 2,3 IVO L. HOFACKER, 1 and

More information

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001 Maternal effects in molecular evolution Claus O. Wilke Digital Life Laboratory, Mail Code 36-93, Caltech, Pasadena, CA 925 wilke@caltech.edu (Printed: May 3, 27) arxiv:physics/693v [physics.bio-ph] 27

More information

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid.

(Lys), resulting in translation of a polypeptide without the Lys amino acid. resulting in translation of a polypeptide without the Lys amino acid. 1. A change that makes a polypeptide defective has been discovered in its amino acid sequence. The normal and defective amino acid sequences are shown below. Researchers are attempting to reproduce the

More information

EVOLUTIONARY DYNAMICS ON RANDOM STRUCTURES SIMON M. FRASER CHRISTIAN M, REIDYS DISCLAIMER. United States Government or any agency thereof.

EVOLUTIONARY DYNAMICS ON RANDOM STRUCTURES SIMON M. FRASER CHRISTIAN M, REIDYS DISCLAIMER. United States Government or any agency thereof. i LA-UR-, Title: Author@): Submitted io: EVOLUTONARY DYNAMCS ON RANDOM STRUCTURES SMON M. FRASER CHRSTAN M, REDYS OPTMZATON AND SSMULATWS CONFERENCE SNGAPORE SEPTEMBER 1-4, 1997 DSCLAMER This report was

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics.

Major questions of evolutionary genetics. Experimental tools of evolutionary genetics. Theoretical population genetics. Evolutionary Genetics (for Encyclopedia of Biodiversity) Sergey Gavrilets Departments of Ecology and Evolutionary Biology and Mathematics, University of Tennessee, Knoxville, TN 37996-6 USA Evolutionary

More information

Plasticity, Evolvability, and Modularity in RNA

Plasticity, Evolvability, and Modularity in RNA 242 JOURNAL L. OF ANCEL EXPERIMENTAL AND W. FONTANA ZOOLOGY (MOL DEV EVOL) 288:242 283 (2000) Plasticity, Evolvability, and Modularity in RNA LAUREN W. ANCEL 1 AND WALTER FONTANA 2,3 * 1 Department of

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

APES C4L2 HOW DOES THE EARTH S LIFE CHANGE OVER TIME? Textbook pages 85 88

APES C4L2 HOW DOES THE EARTH S LIFE CHANGE OVER TIME? Textbook pages 85 88 APES C4L2 HOW DOES THE EARTH S LIFE CHANGE OVER TIME? Textbook pages 85 88 Big Ideas Concept 4-2A The scientific theory of evolution explains how life on Earth changes over time through changes in the

More information

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria Tel: +43 2236 807 Fax: +43 2236 71313 E-mail: info@iiasa.ac.at Web: www.iiasa.ac.at INTERIM REPORT IR-98-039 / April

More information

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig

Molecular Modelling. part of Bioinformatik von RNA- und Proteinstrukturen. Sonja Prohaska. Leipzig, SS Computational EvoDevo University Leipzig part of Bioinformatik von RNA- und Proteinstrukturen Computational EvoDevo University Leipzig Leipzig, SS 2011 Protein Structure levels or organization Primary structure: sequence of amino acids (from

More information

Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a

Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a Manfred Eigen-Lecture, Göttingen 09.05.2018 Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a Peter Schuster, Institut für Theoretische Chemie, Universität Wien

More information

Evolution and Design

Evolution and Design Evolution and Design Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Traunkirchner Gedankenexperimente Traunkirchen, 13.09.2005

More information

Curriculum Links. AQA GCE Biology. AS level

Curriculum Links. AQA GCE Biology. AS level Curriculum Links AQA GCE Biology Unit 2 BIOL2 The variety of living organisms 3.2.1 Living organisms vary and this variation is influenced by genetic and environmental factors Causes of variation 3.2.2

More information

Genetical theory of natural selection

Genetical theory of natural selection Reminders Genetical theory of natural selection Chapter 12 Natural selection evolution Natural selection evolution by natural selection Natural selection can have no effect unless phenotypes differ in

More information

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine.

1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. Protein Synthesis & Mutations RNA 1. Contains the sugar ribose instead of deoxyribose. 2. Single-stranded instead of double stranded. 3. Contains uracil in place of thymine. RNA Contains: 1. Adenine 2.

More information

The Mathematics of Darwinian Systems

The Mathematics of Darwinian Systems The Mathematics of Darwinian Systems By Peter Schuster Abstract: Optimization is studied as the interplay of selection, recombination and mutation. The underlying model is based on ordinary differential

More information

Evolutionary dynamics of populations with genotype-phenotype map

Evolutionary dynamics of populations with genotype-phenotype map Evolutionary dynamics of populations with genotype-phenotype map Esther Ibáñez Marcelo, Tomas Alarcon Cor Biomat 2013: Mathematics of Planet Earth CENTRE DE RECERCA MATEMÀTICA 17-21 June 2013 Esther Ibáñez

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

From gene to protein. Premedical biology

From gene to protein. Premedical biology From gene to protein Premedical biology Central dogma of Biology, Molecular Biology, Genetics transcription replication reverse transcription translation DNA RNA Protein RNA chemically similar to DNA,

More information

Full file at CHAPTER 2 Genetics

Full file at   CHAPTER 2 Genetics CHAPTER 2 Genetics MULTIPLE CHOICE 1. Chromosomes are a. small linear bodies. b. contained in cells. c. replicated during cell division. 2. A cross between true-breeding plants bearing yellow seeds produces

More information

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection

CHAPTER 23 THE EVOLUTIONS OF POPULATIONS. Section C: Genetic Variation, the Substrate for Natural Selection CHAPTER 23 THE EVOLUTIONS OF POPULATIONS Section C: Genetic Variation, the Substrate for Natural Selection 1. Genetic variation occurs within and between populations 2. Mutation and sexual recombination

More information

Critical Mutation Rate Has an Exponential Dependence on Population Size

Critical Mutation Rate Has an Exponential Dependence on Population Size Critical Mutation Rate Has an Exponential Dependence on Population Size Alastair Channon 1, Elizabeth Aston 1, Charles Day 1, Roman V. Belavkin 2 and Christopher G. Knight 3 1 Research Institute for the

More information

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell.

Types of RNA. 1. Messenger RNA(mRNA): 1. Represents only 5% of the total RNA in the cell. RNAs L.Os. Know the different types of RNA & their relative concentration Know the structure of each RNA Understand their functions Know their locations in the cell Understand the differences between prokaryotic

More information

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA

RNA & PROTEIN SYNTHESIS. Making Proteins Using Directions From DNA RNA & PROTEIN SYNTHESIS Making Proteins Using Directions From DNA RNA & Protein Synthesis v Nitrogenous bases in DNA contain information that directs protein synthesis v DNA remains in nucleus v in order

More information

The Origin of Life on Earth

The Origin of Life on Earth Study Guide The Origin of Life on Earth Checking Your Knowledge You should be able to write out the definitions to each of the following terms in your own words: abiotic Miller-Urey experiment ribozyme

More information

Chapter 8: Introduction to Evolutionary Computation

Chapter 8: Introduction to Evolutionary Computation Computational Intelligence: Second Edition Contents Some Theories about Evolution Evolution is an optimization process: the aim is to improve the ability of an organism to survive in dynamically changing

More information

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Friday, July 27th, 11:00 EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Karan Pattni karanp@liverpool.ac.uk University of Liverpool Joint work with Prof.

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS 2757 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C7: BIOLOGICAL PHYSICS TRINITY TERM 2013 Monday, 17 June, 2.30 pm 5.45 pm 15

More information

Neutral Evolution of Mutational Robustness

Neutral Evolution of Mutational Robustness Neutral Evolution of Mutational Robustness Erik van Nimwegen James P. Crutchfield Martijn Huynen SFI WORKING PAPER: 1999-03-021 SFI Working Papers contain accounts of scientific work of the author(s) and

More information

Quantifying slow evolutionary dynamics in RNA fitness landscapes

Quantifying slow evolutionary dynamics in RNA fitness landscapes Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Quantifying slow evolutionary dynamics in RNA fitness landscapes Sulc,

More information

Exercise 3 Exploring Fitness and Population Change under Selection

Exercise 3 Exploring Fitness and Population Change under Selection Exercise 3 Exploring Fitness and Population Change under Selection Avidians descended from ancestors with different adaptations are competing in a selective environment. Can we predict how natural selection

More information

arxiv: v1 [q-bio.bm] 31 Oct 2017

arxiv: v1 [q-bio.bm] 31 Oct 2017 arxiv:1711.10549v1 [q-bio.bm] 31 Oct 2017 Doc-Start Structural bioinformatics Bioinformatics doi.10.1093/bioinformatics/xxxxxx Advance Access Publication Date: Day Month Year Manuscript Category An efficient

More information

Quasispecies distribution of Eigen model

Quasispecies distribution of Eigen model Vol 16 No 9, September 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(09)/2600-08 Chinese Physics and IOP Publishing Ltd Quasispecies distribution of Eigen model Chen Jia( ), Li Sheng( ), and Ma Hong-Ru(

More information

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures Stefan Wuchty 1 Walter Fontana 1,2 Ivo L. Hofacker 1 Peter Schuster 1,2 1 Institut für Theoretische Chemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria Complete Suboptimal Folding of RNA

More information

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications

GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 1 GENE ACTIVITY Gene structure Transcription Transcript processing mrna transport mrna stability Translation Posttranslational modifications 2 DNA Promoter Gene A Gene B Termination Signal Transcription

More information

The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change

The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change Bärbel M. R. Stadler Peter F. Stadler Günter P. Wagner Walter Fontana SFI WORKING PAPER: 2000-12-070 SFI Working Papers

More information

Cell Growth and Genetics

Cell Growth and Genetics Cell Growth and Genetics Cell Division (Mitosis) Cell division results in two identical daughter cells. The process of cell divisions occurs in three parts: Interphase - duplication of chromosomes and

More information

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology rigorous models of molecules... in organisms Modeling Evolutionary Biology rigorous models

More information

Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry

Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry Prologue The traditions of scientific research in physics

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

The Phenotype-Genotype- Phenotype (PGP) Map. Nayely Velez-Cruz and Dr. Manfred Laubichler

The Phenotype-Genotype- Phenotype (PGP) Map. Nayely Velez-Cruz and Dr. Manfred Laubichler The Phenotype-Genotype- Phenotype (PGP) Map Nayely Velez-Cruz and Dr. Manfred Laubichler Overview 1. The role of the genotype to phenotype map in current evolutionary theory 2. Origins of phenotypic variation

More information

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype

Reading Assignments. A. Genes and the Synthesis of Polypeptides. Lecture Series 7 From DNA to Protein: Genotype to Phenotype Lecture Series 7 From DNA to Protein: Genotype to Phenotype Reading Assignments Read Chapter 7 From DNA to Protein A. Genes and the Synthesis of Polypeptides Genes are made up of DNA and are expressed

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Objective 3.01 (DNA, RNA and Protein Synthesis)

Objective 3.01 (DNA, RNA and Protein Synthesis) Objective 3.01 (DNA, RNA and Protein Synthesis) DNA Structure o Discovered by Watson and Crick o Double-stranded o Shape is a double helix (twisted ladder) o Made of chains of nucleotides: o Has four types

More information

QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES

QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES Journal of Bioinformatics and Computational Biology Vol. 8, No. 6 (2010) 1027 1040 c Imperial College Press DOI: 10.1142/S0219720010005075 QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES

More information

SI Appendix. 1. A detailed description of the five model systems

SI Appendix. 1. A detailed description of the five model systems SI Appendix The supporting information is organized as follows: 1. Detailed description of all five models. 1.1 Combinatorial logic circuits composed of NAND gates (model 1). 1.2 Feed-forward combinatorial

More information

Computational Biology: Basics & Interesting Problems

Computational Biology: Basics & Interesting Problems Computational Biology: Basics & Interesting Problems Summary Sources of information Biological concepts: structure & terminology Sequencing Gene finding Protein structure prediction Sources of information

More information

Genetics 304 Lecture 6

Genetics 304 Lecture 6 Genetics 304 Lecture 6 00/01/27 Assigned Readings Busby, S. and R.H. Ebright (1994). Promoter structure, promoter recognition, and transcription activation in prokaryotes. Cell 79:743-746. Reed, W.L. and

More information

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution

Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution Mutation, Selection, Gene Flow, Genetic Drift, and Nonrandom Mating Results in Evolution 15.2 Intro In biology, evolution refers specifically to changes in the genetic makeup of populations over time.

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

Casting Polymer Nets To Optimize Molecular Codes

Casting Polymer Nets To Optimize Molecular Codes Casting Polymer Nets To Optimize Molecular Codes The physical language of molecules Mathematical Biology Forum (PRL 2007, PNAS 2008, Phys Bio 2008, J Theo Bio 2007, E J Lin Alg 2007) Biological information

More information

CelloS: a Multi-level Approach to Evolutionary Dynamics

CelloS: a Multi-level Approach to Evolutionary Dynamics CelloS: a Multi-level Approach to Evolutionary Dynamics Camille Stephan-Otto Attolini 1, Peter F. Stadler 12, and Christoph Flamm 1 1 Institut für Theoretische Chemie, Universität Wien, Währingerstraße

More information

The role of form in molecular biology. Conceptual parallelism with developmental and evolutionary biology

The role of form in molecular biology. Conceptual parallelism with developmental and evolutionary biology The role of form in molecular biology Conceptual parallelism with developmental and evolutionary biology Laura Nuño de la Rosa (UCM & IHPST) KLI Brown Bag talks 2008 The irreducibility of biological form

More information

Metastable Evolutionary Dynamics: Crossing Fitness Barriers or Escaping via Neutral Paths?

Metastable Evolutionary Dynamics: Crossing Fitness Barriers or Escaping via Neutral Paths? Metastable Evolutionary Dynamics: Crossing Fitness Barriers or Escaping via Neutral Paths? Erik van Nimwegen James P. Crutchfield SFI WORKING PAPER: 1999-07-041 SFI Working Papers contain accounts of scientific

More information

The Amoeba-Flagellate Transformation

The Amoeba-Flagellate Transformation The Amoeba-Flagellate Transformation Camille Stephan-Otto Attolini Institute for Theoretical Chemistry and Structural Biology, Vienna University, Austria Bled, Slovenia. March, 2005 The Amoeba-Flagellate

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Apr 2000

arxiv:physics/ v1 [physics.bio-ph] 19 Apr 2000 Optimal Mutation Rates in Dynamic Environments Martin Nilsson Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA Institute of Theoretical Physics, Chalmers University of Technology

More information

Haploid & diploid recombination and their evolutionary impact

Haploid & diploid recombination and their evolutionary impact Haploid & diploid recombination and their evolutionary impact W. Garrett Mitchener College of Charleston Mathematics Department MitchenerG@cofc.edu http://mitchenerg.people.cofc.edu Introduction The basis

More information

Multiple Choice Review- Eukaryotic Gene Expression

Multiple Choice Review- Eukaryotic Gene Expression Multiple Choice Review- Eukaryotic Gene Expression 1. Which of the following is the Central Dogma of cell biology? a. DNA Nucleic Acid Protein Amino Acid b. Prokaryote Bacteria - Eukaryote c. Atom Molecule

More information

Genetic Algorithms. Donald Richards Penn State University

Genetic Algorithms. Donald Richards Penn State University Genetic Algorithms Donald Richards Penn State University Easy problem: Find the point which maximizes f(x, y) = [16 x(1 x)y(1 y)] 2, x, y [0,1] z (16*x*y*(1-x)*(1-y))**2 0.829 0.663 0.497 0.331 0.166 1

More information

Vom Modell zur Steuerung

Vom Modell zur Steuerung Vom Modell zur Steuerung Sind wir überfordert von der Komplexität der Welt? Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria und The Santa Fe Institute, Santa Fe, New Mexico,

More information

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR IAS 2012 Von Neumann s universal constructor Self-reproducing machine: constructor + tape (1948/9). Program on tape: (i) retrieve parts from

More information

The RNA World, Fitness Landscapes, and all that

The RNA World, Fitness Landscapes, and all that The RN World, Fitness Landscapes, and all that Peter F. Stadler Bioinformatics roup, Dept. of omputer Science & Interdisciplinary enter for Bioinformatics, niversity of Leipzig RNomics roup, Fraunhofer

More information

Darwin's theory of natural selection, its rivals, and cells. Week 3 (finish ch 2 and start ch 3)

Darwin's theory of natural selection, its rivals, and cells. Week 3 (finish ch 2 and start ch 3) Darwin's theory of natural selection, its rivals, and cells Week 3 (finish ch 2 and start ch 3) 1 Historical context Discovery of the new world -new observations challenged long-held views -exposure to

More information