Complexity in Evolutionary Processes

Size: px
Start display at page:

Download "Complexity in Evolutionary Processes"

Transcription

1

2 Complexity in Evolutionary Processes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 7th Vienna Central European Seminar on Particle Physics and Quantum Field Theory Vienna,

3 Web-Page for further information:

4 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

5 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

6 F 1 = Fn + Fn 1 ; F0 = 0, 1 = 1 n+ F Thomas Robert Malthus , 2, 4, 8,16, 32, 64, 128,... geometric progression exponential growth Leonardo da Pisa Fibonacci ~1180 ~1240 f n n The history of exponential growth

7 Three necessary conditions for Darwinian evolution are: 1. Multiplication, 2. Variation, and 3. Selection. Darwin discovered the principle of natural selection from empirical observations in nature.

8 dx dt x x C r x (0) = 1, x( t) = C x(0) + ) r t ( C x(0 ) e Pierre-François Verhulst, The logistic equation, 1828

9 s = f f 2 1 = 1 f 0.1 Two variants with a mean progeny of ten or eleven descendants

10 Numbers N 1 (n) and N 2 (n) N 1 (0) = 9999, N 2 (0) = 1 ; s = 0.1, 0.02, 0.01 Selection of advantageous mutants in populations of N = individuals

11 ( ) Φ r x x C Φ x r x r C x x r x C x x r x = = = = dt d 1: (t), dt d 1 dt d Darwin [ ] ( ) ( ) = = = = = = = = = n i i i j j n i i i j j j n i i i i n x f Φ Φ f x x f f x x C x x ; dt d 1 ; X :,X,,X X K ( ) { } 0 var 2 2 dt d 2 2 = > > < < = f f f Φ Generalization of the logistic equation to n variables yields selection

12 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

13 Taq = thermus aquaticus Accuracy of replication: Q = q 1 q 2 q 3 q n The logics of DNA replication

14 Point mutation

15 Manfred Eigen = = = = = = n i i n i i i j i n i ji j x x f Φ n j Φ x x W x 1 1 1, 1,2, ; dt d K Mutation and (correct) replication as parallel chemical reactions M. Eigen Naturwissenschaften 58:465, M. Eigen & P. Schuster Naturwissenschaften 64:541, 65:7 und 65:341

16 = = = = = = = = n i i n i i i j i i n i ji j i n i ji j x x f Φ n j Φ x x f Q Φ x x W x , 1,2, ; dt d K Factorization of the value matrix W separates mutation and fitness effects.

17 integrating factor transformation eigenvalue problem Solution of the mutation-selection equation

18 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

19 Quasispecies Uniform distribution Stationary population or quasispecies as a function of the mutation or error rate p Error rate p = 1-q

20 The no-mutational backflow or zeroth order approximation

21 quasispecies The error threshold in replication and mutation

22 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

23 single peak landscape Rugged fitness landscapes

24 Error threshold on the single peak landscape

25 linear and multiplicative landscape Smooth fitness landscapes

26 The linear fitness landscape shows no error threshold

27 Make things as simple as possible, but not simpler! Albert Einstein Albert Einstein s razor, precise refence is unknown.

28 Sewall Wright Evolution in Mendelian populations. Genetics 16: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: D.F.Jones, ed. Proceedings of the Sixth International Congress on Genetics, Vol.I. Brooklyn Botanical Garden. Ithaca, NY, pp Surfaces of selective value revisited. The American Naturalist 131:

29 Build-up principle of binary sequence spaces

30

31 single peak landscape realistic landscape Rugged fitness landscapes over individual binary sequences with n = 10

32 Error threshold: Individual sequences n = 10, = 2, s = 491 and d = 0, 1.0, 1.875

33 d = d = Case I: Strong Quasispecies n = 10, f 0 = 1.1, f n = 1.0, s = 919

34 d = d = Case III: Multiple transitions n = 10, f 0 = 1.1, f n = 1.0, s = 637

35 d = d = Case III: Multiple transitions n = 10, f 0 = 1.1, f n = 1.0, s = 637

36 Paul E. Phillipson, Peter Schuster. (2009) Modeling by nonlinear differential equations. Dissipative and conservative processes. World Scientific, Singapore, pp.9-60.

37 1, 1 largest eigenvalue and eigenvector diagonalization of matrix W complicated but not complex W = G F mutation matrix fitness landscape ( complex ) complex sequence structure complex mutation selection Complexity in molecular evolution

38 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

39 N = 4 n N S < 3 n Criterion: Minimum free energy (mfe) Rules: _ ( _ ) _ {AU,CG,GC,GU,UA,UG} A symbolic notation of RNA secondary structure that is equivalent to the conventional graphs

40

41 The inverse folding algorithm searches for sequences that form a given RNA secondary structure under the minimum free energy criterion.

42 What is neutrality? Selective neutrality = = several genotypes having the same fitness. Structural neutrality = = several genotypes forming molecules with the same structure.

43 Space of genotypes: I = { I, I, I, I,..., I } ; Hamming metric N Space of phenotypes: S = { S, S, S, S,..., S } ; metric (not required) M N M ( I) = j S k -1 G k = ( S ) U I ( I) = S k j j k A mapping and its inversion

44 many genotypes one phenotype

45 GGCAAUCAG GCCAAUCAG GACAAUCAG CUCAAUCAG UUCAAUCAG AUCAAUCAG GUCAAUCAC GUCAAUCAU GUCAAUCAA GUCAAUCCG GUCAAUCGG GUUAAUCAG GUAAAUCAG GUCAAUCAG One-error neighborhood GUCAAUCUG GUCAAUGAG GUGAAUCAG GUCAAUUAG GUCUAUCAG GUCAAUAAG GUCGAUCAG GUCCAUCAG GUCAUUCAG GUCAGUCAG GUCACUCAG GUCAAACAG GUCAAGCAG GUCAACCAG The surrounding of GUCAAUCAG in sequence space

46 One error neighborhood Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

47 One error neighborhood Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

48 One error neighborhood Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

49 One error neighborhood Surrounding of an RNA molecule of chain length n=50 in sequence and shape space

50 GGCUAUCGUAUGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUAGACG GGCUAUCGUACGUUUACUCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGCUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCCAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUGUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAACGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCUGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCACUGGACG GGCUAUCGUACGUUUACCCAAAAGUCUACGUUGGUCCCAGGCAUUGGACG GGCUAGCGUACGUUUACCCAAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCGAAAGUCUACGUUGGACCCAGGCAUUGGACG GGCUAUCGUACGUUUACCCAAAAGCCUACGUUGGACCCAGGCAUUGGACG One error neighborhood Surrounding of an RNA molecule of chain length n=50 in sequence and shape space U U A C A A C C A A A G G U C U G A C G G C C C C A GG U U A C U GG A G U C A A CG U G U U G U C

51 Number Mean Value Variance Std.Dev. Total Hamming Distance: Nonzero Hamming Distance: Degree of Neutrality: Number of Structures: (((((.((((..(((...)))..)))).))).)) (((.((((..(((...)))..)))).))) ((((((((((..(((...)))..)))))))).)) (((((.((((..((((...))))..)))).))).)) (((((.((((.((((...)))).)))).))).)) (((((.(((((.(((...))).))))).))).)) (((((..(((..(((...)))..)))..))).)) (((((.((((..((...))..)))).))).)) ((((..((((..(((...)))..))))..)).)) (((((.((((..(((...)))..)))).))))) ((((.((((..(((...)))..)))).)))) (((((.(((...(((...)))...))).))).)) (((((.((((..(((...)))..)))).)).))) (((((.((((...((...))...)))).))).)) (((((.((((...)))).))).)) ((.((.((((..(((...)))..)))).))..)) (.(((.((((..(((...)))..)))).))).) (((((.(((((((((...))))))))).))).)) ((((..((((..(((...)))..))))...)))) ((...((((..(((...)))..))))...)) G G C Shadow Surrounding of an RNA structure in shape space: AUGC alphabet, chain length n=50 A C C A C A C A G U U U A AG U C G U U AC U U A C G U UG A G G U C U G A G C GA CC C A G

52 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

53 Stochastic phenomena in evolutionary processes 1. Finite population size effects 2. Low numbers of individual species ODEs (in population genetics) describe expectation values in infinite populations. Every mutant starts from a single copy. 3. Selective neutrality Populations drift randomly in the space of neutral variants.

54 probabilistic notion of particle numbers X j master equation flow reactor

55 Evolution of RNA molecules as a Markow process

56 Evolution of RNA molecules as a Markow process

57 Evolution of RNA molecules as a Markow process

58 Evolution of RNA molecules as a Markow process

59 RNA replication and mutation as a multitype branching process

60

61 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

62 Population size N e = 10000, s = 0 Stochastic population genetics of neutral, asexually reproducing species

63 Motoo Kimura s population genetics of neutral evolution. Evolutionary rate at the molecular level. Nature 217: , The Neutral Theory of Molecular Evolution. Cambridge University Press. Cambridge, UK, 1983.

64 The average time of replacement of a dominant genotype in a population is the reciprocal mutation rate, 1/, and therefore independent of population size. Fixation of mutants in neutral evolution (Motoo Kimura, 1955)

65 Is the Kimura scenario correct for frequent mutations? Fixation of mutants in neutral evolution (Motoo Kimura, 1955)

66 0.5 ) ( ) ( lim = = p x p x p d H = 1 a p x a p x p p = = 1 ) ( lim ) ( lim d H = 2 d H 3 1 ) ( 0,lim ) ( lim or 0 ) ( 1,lim ) ( lim = = = = p x p x p x p x p p p p Random fixation in the sense of Motoo Kimura Pairs of neutral sequences in replication networks P. Schuster, J. Swetina Bull. Math. Biol. 50:

67 A fitness landscape including neutrality

68 Neutral network: Individual sequences n = 10, = 1.1, d = 1.0

69 Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance d H (X i,,x j ) = 1.

70 Neutral network: Individual sequences n = 10, = 1.1, d = 1.0

71 Consensus sequence of a quasispecies of two strongly coupled sequences of Hamming distance d H (X i,,x j ) = 2.

72 N = 7 Adjacency matrix Neutral networks with increasing : = 0.10, s = 229

73 1. Exponential growth and selection 2. Evolution as replication and mutation 3. A phase transition in evolution 4. Fitness landscapes as source of complexity 5. Molecular landscapes from biopolymers 6. The role of stochasticity 7. Neutrality and selection 8. Computer simulation of evolution

74 Computer simulation using Gillespie s algorithm: Replication rate constant: f k = / [ + d S (k) ] d S (k) = d H (S k,s ) Selection constraint: Population size, N = # RNA molecules, is controlled by the flow N ( t) N ± N Mutation rate: p = / site replication The flowreactor as a device for studies of evolution in vitro and in silico

75 Evolution in silico W. Fontana, P. Schuster, Science 280 (1998),

76 Structure of randomly chosen initial sequence Phenylalanyl-tRNA as target structure

77 In silico optimization in the flow reactor: Evolutionary Trajectory

78 28 neutral point mutations during a long quasi-stationary epoch Transition inducing point mutations change the molecular structure Neutral point mutations leave the molecular structure unchanged Neutral genotype evolution during phenotypic stasis

79 Evolutionary trajectory Spreading of the population on neutral networks Drift of the population center in sequence space

80

81

82 Coworkers Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE Walter Fontana, Harvard Medical School, MA Ivo L.Hofacker, Christoph Flamm, Universität Wien, AT Universität Wien Martin Nowak, Harvard University, MA Christian Reidys, Nankai University, Tien Tsin, China Christian Forst, Los Alamos National Laboratory, NM Kurt Grünberger, Michael Kospach, Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Erich Bornberg-Bauer, Universität Wien, AT Thomas Wiehe, Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE

83 Acknowledgement of support Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Projects No , 10578, 11065, , and Universität Wien Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) Project No. Mat05 Jubiläumsfonds der Österreichischen Nationalbank Project No. Nat-7813 European Commission: Contracts No , (NEST) Austrian Genome Research Program GEN-AU: Bioinformatics Network (BIN) Österreichische Akademie der Wissenschaften Siemens AG, Austria Universität Wien and the Santa Fe Institute

84 Thank you for your attention!

85 Web-Page for further information:

86

Error thresholds on realistic fitness landscapes

Error thresholds on realistic fitness landscapes Error thresholds on realistic fitness landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Evolutionary Dynamics:

More information

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe,

More information

Evolution on simple and realistic landscapes

Evolution on simple and realistic landscapes Evolution on simple and realistic landscapes An old story in a new setting Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

More information

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster Is the Concept of Error Catastrophy Relevant for Viruses? Quasispecies and error thresholds on realistic landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa

More information

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity Peter Schuster Institut für Theoretische Chemie Universität Wien, Austria Nonlinearity, Fluctuations, and Complexity

More information

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 2008 Molecular

More information

Mathematical Modeling of Evolution

Mathematical Modeling of Evolution Mathematical Modeling of Evolution Solved and Open Problems Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Emerging Modeling

More information

Tracing the Sources of Complexity in Evolution. Peter Schuster

Tracing the Sources of Complexity in Evolution. Peter Schuster Tracing the Sources of Complexity in Evolution Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Springer Complexity Lecture

More information

Neutral Networks of RNA Genotypes and RNA Evolution in silico

Neutral Networks of RNA Genotypes and RNA Evolution in silico Neutral Networks of RNA Genotypes and RNA Evolution in silico Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien RNA Secondary Structures in Dijon Dijon,

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules RNA From Mathematical Models to Real Molecules 3. Optimization and Evolution of RNA Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien IMPA enoma

More information

Evolution on Realistic Landscapes

Evolution on Realistic Landscapes Evolution on Realistic Landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Santa Fe Institute Seminar Santa Fe, 22.05.2012

More information

How computation has changed research in chemistry and biology

How computation has changed research in chemistry and biology How computation has changed research in chemistry and biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA IWR - 25 Jahre-Jubiläum

More information

Evolution and Molecules

Evolution and Molecules Evolution and Molecules Basic questions of biology seen with phsicists eyes. Peter Schuster Institut für Theoretische Chemie, niversität Wien, Österreich und The Santa Fe Institute, Santa Fe, New Mexico,

More information

Designing RNA Structures

Designing RNA Structures Designing RN Structures From Theoretical Models to Real Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien Microbiology Seminar Mount Sinai School

More information

Mathematische Probleme aus den Life-Sciences

Mathematische Probleme aus den Life-Sciences Mathematische Probleme aus den Life-Sciences Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Vortragsreihe Mathematik im Betrieb Dornbirn, 27.05.2004

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules R From Mathematical Models to Real Molecules 1. Sequences and Structures Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien IMP enoma School Valdivia, 12.

More information

The Advantage of Using Mathematics in Biology

The Advantage of Using Mathematics in Biology The Advantage of Using Mathematics in Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Erwin Schrödinger-Institut

More information

Problem solving by inverse methods in systems biology

Problem solving by inverse methods in systems biology Problem solving by inverse methods in systems biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA High-erformance comutational

More information

Mechanisms of molecular cooperation

Mechanisms of molecular cooperation Mechanisms of molecular cooperation Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Homo Sociobiologicus Evolution of human

More information

Chemistry and Evolution at the Origin of Life. Visions and Reality

Chemistry and Evolution at the Origin of Life. Visions and Reality hemistry and Evolution at the rigin of Life Visions and Reality Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Madrid, Astrobiology Meeting 30.11.2001

More information

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster Origin of life and early evolution in the light of present day molecular biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico,

More information

Different kinds of robustness in genetic and metabolic networks

Different kinds of robustness in genetic and metabolic networks Different kinds of robustness in genetic and metabolic networks Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Seminar lecture Linz, 15.12.2003 enomics

More information

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes Evolutionary Dynamics and Optimization Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes Christian V. Forst, Christian Reidys, and Jacqueline Weber Mailing Address: Institut

More information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information Von der Thermodynamik zu Selbstorganisation, Evolution und Information Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Kolloquium des Physikalischen

More information

Self-Organization and Evolution

Self-Organization and Evolution Self-Organization and Evolution Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Wissenschaftliche esellschaft: Dynamik Komplexität menschliche Systeme

More information

Chemistry on the Early Earth

Chemistry on the Early Earth Chemistry on the Early Earth Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Germany-Japan Round Table Heidelberg, 01. 03.11.2011

More information

COMP598: Advanced Computational Biology Methods and Research

COMP598: Advanced Computational Biology Methods and Research COMP598: Advanced Computational Biology Methods and Research Modeling the evolution of RNA in the sequence/structure network Jerome Waldispuhl School of Computer Science, McGill RNA world In prebiotic

More information

Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a

Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a Manfred Eigen-Lecture, Göttingen 09.05.2018 Bridging from Chemistry to the Life Sciences Evolution seen with the Glasses of a Physicist a Peter Schuster, Institut für Theoretische Chemie, Universität Wien

More information

Critical Mutation Rate Has an Exponential Dependence on Population Size

Critical Mutation Rate Has an Exponential Dependence on Population Size Critical Mutation Rate Has an Exponential Dependence on Population Size Alastair Channon 1, Elizabeth Aston 1, Charles Day 1, Roman V. Belavkin 2 and Christopher G. Knight 3 1 Research Institute for the

More information

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001 Maternal effects in molecular evolution Claus O. Wilke Digital Life Laboratory, Mail Code 36-93, Caltech, Pasadena, CA 925 wilke@caltech.edu (Printed: May 3, 27) arxiv:physics/693v [physics.bio-ph] 27

More information

Replication and Mutation on Neutral Networks: Updated Version 2000

Replication and Mutation on Neutral Networks: Updated Version 2000 Replication and Mutation on Neutral Networks: Updated Version 2000 Christian Reidys Christian V. Forst Peter Schuster SFI WORKING PAPER: 2000-11-061 SFI Working Papers contain accounts of scientific work

More information

The Role of Topology in the Study of Evolution

The Role of Topology in the Study of Evolution The Role of Topology in the Study of Evolution Avery Broome August 31, 2015 Abstract In this paper, we will attempt to understand the role topology plays in analyzing RNA secondary structures by providing

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

Systems biology and complexity research

Systems biology and complexity research Systems biology and complexity research Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Interdisciplinary Challenges for

More information

Chance and necessity in evolution: lessons from RNA

Chance and necessity in evolution: lessons from RNA Physica D 133 (1999) 427 452 Chance and necessity in evolution: lessons from RNA Peter Schuster a,, Walter Fontana b,1 a Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität Wien,

More information

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION

EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Friday, July 27th, 11:00 EVOLUTIONARY DYNAMICS AND THE EVOLUTION OF MULTIPLAYER COOPERATION IN A SUBDIVIDED POPULATION Karan Pattni karanp@liverpool.ac.uk University of Liverpool Joint work with Prof.

More information

A Method for Estimating Mean First-passage Time in Genetic Algorithms

A Method for Estimating Mean First-passage Time in Genetic Algorithms A Method for Estimating Mean First-passage Time in Genetic Algorithms Hiroshi Furutani Department of Information Science, Kyoto University of Education, Fushimi-ku, Kyoto, 612-8522 Japan This paper presents

More information

Quasispecies distribution of Eigen model

Quasispecies distribution of Eigen model Vol 16 No 9, September 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(09)/2600-08 Chinese Physics and IOP Publishing Ltd Quasispecies distribution of Eigen model Chen Jia( ), Li Sheng( ), and Ma Hong-Ru(

More information

Error Propagation in the Hypercycle

Error Propagation in the Hypercycle Error Propagation in the Hypercycle Paulo R. A. Campos J. F. Fontanari Peter F. Stadler SFI WORKING PAPER: 1999-9-63 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily

More information

Exploration of population fixed-points versus mutation rates for functions of unitation

Exploration of population fixed-points versus mutation rates for functions of unitation Exploration of population fixed-points versus mutation rates for functions of unitation J Neal Richter 1, Alden Wright 2, John Paxton 1 1 Computer Science Department, Montana State University, 357 EPS,

More information

Evolution and Design

Evolution and Design Evolution and Design Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Traunkirchner Gedankenexperimente Traunkirchen, 13.09.2005

More information

Linear Algebra of the Quasispecies Model

Linear Algebra of the Quasispecies Model Linear Algebra of the Quasispecies Model Artem Novozhilov Department of Mathematics North Dakota State University SIAM Conference on the Life Sciences, Charlotte, North Caroline, USA August 6, 2014 Artem

More information

Endowed with an Extra Sense : Mathematics and Evolution

Endowed with an Extra Sense : Mathematics and Evolution Endowed with an Extra Sense : Mathematics and Evolution Todd Parsons Laboratoire de Probabilités et Modèles Aléatoires - Université Pierre et Marie Curie Center for Interdisciplinary Research in Biology

More information

Linear Algebra of Eigen s Quasispecies Model

Linear Algebra of Eigen s Quasispecies Model Linear Algebra of Eigen s Quasispecies Model Artem Novozhilov Department of Mathematics North Dakota State University Midwest Mathematical Biology Conference, University of Wisconsin La Crosse May 17,

More information

Population Genetics and Evolution III

Population Genetics and Evolution III Population Genetics and Evolution III The Mechanisms of Evolution: Drift São Paulo / January 2019 SMRI (Italy) luca@peliti.org 1 Drift 2 The Population Genetics Triad Sewall Wright Ronald A. Fisher Motoo

More information

Evolution of Model Proteins on a Foldability Landscape

Evolution of Model Proteins on a Foldability Landscape PROTEINS: Structure, Function, and Genetics 29:461 466 (1997) Evolution of Model Proteins on a Foldability Landscape Sridhar Govindarajan 1 and Richard A. Goldstein 1,2 * 1 Department of Chemistry, University

More information

Fitness landscapes and seascapes

Fitness landscapes and seascapes Fitness landscapes and seascapes Michael Lässig Institute for Theoretical Physics University of Cologne Thanks Ville Mustonen: Cross-species analysis of bacterial promoters, Nonequilibrium evolution of

More information

The Mathematics of Darwinian Systems

The Mathematics of Darwinian Systems The Mathematics of Darwinian Systems By Peter Schuster Abstract: Optimization is studied as the interplay of selection, recombination and mutation. The underlying model is based on ordinary differential

More information

EVOLUTIONARY DYNAMICS ON RANDOM STRUCTURES SIMON M. FRASER CHRISTIAN M, REIDYS DISCLAIMER. United States Government or any agency thereof.

EVOLUTIONARY DYNAMICS ON RANDOM STRUCTURES SIMON M. FRASER CHRISTIAN M, REIDYS DISCLAIMER. United States Government or any agency thereof. i LA-UR-, Title: Author@): Submitted io: EVOLUTONARY DYNAMCS ON RANDOM STRUCTURES SMON M. FRASER CHRSTAN M, REDYS OPTMZATON AND SSMULATWS CONFERENCE SNGAPORE SEPTEMBER 1-4, 1997 DSCLAMER This report was

More information

Effects of Neutral Selection on the Evolution of Molecular Species

Effects of Neutral Selection on the Evolution of Molecular Species Effects of Neutral Selection on the Evolution of Molecular Species M. E. J. Newman Robin Engelhardt SFI WORKING PAPER: 1998-01-001 SFI Working Papers contain accounts of scientific work of the author(s)

More information

Problems on Evolutionary dynamics

Problems on Evolutionary dynamics Problems on Evolutionary dynamics Doctoral Programme in Physics José A. Cuesta Lausanne, June 10 13, 2014 Replication 1. Consider the Galton-Watson process defined by the offspring distribution p 0 =

More information

Vom Modell zur Steuerung

Vom Modell zur Steuerung Vom Modell zur Steuerung Sind wir überfordert von der Komplexität der Welt? Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria und The Santa Fe Institute, Santa Fe, New Mexico,

More information

Modeling Evolution DAVID EPSTEIN CELEBRATION. John Milnor. Warwick University, July 14, Stony Brook University

Modeling Evolution DAVID EPSTEIN CELEBRATION. John Milnor. Warwick University, July 14, Stony Brook University Modeling Evolution John Milnor Stony Brook University DAVID EPSTEIN CELEBRATION Warwick University, July 14, 2007 A First Model for Evolution: The Phylogenetic Tree, U time V W X A B C D E F G 1500 1000

More information

Molecular evolution - Part 1. Pawan Dhar BII

Molecular evolution - Part 1. Pawan Dhar BII Molecular evolution - Part 1 Pawan Dhar BII Theodosius Dobzhansky Nothing in biology makes sense except in the light of evolution Age of life on earth: 3.85 billion years Formation of planet: 4.5 billion

More information

RNA folding at elementary step resolution

RNA folding at elementary step resolution RNA (2000), 6:325 338+ Cambridge University Press+ Printed in the USA+ Copyright 2000 RNA Society+ RNA folding at elementary step resolution CHRISTOPH FLAMM, 1 WALTER FONTANA, 2,3 IVO L. HOFACKER, 1 and

More information

Neutral Evolution of Mutational Robustness

Neutral Evolution of Mutational Robustness Neutral Evolution of Mutational Robustness Erik van Nimwegen James P. Crutchfield Martijn Huynen SFI WORKING PAPER: 1999-03-021 SFI Working Papers contain accounts of scientific work of the author(s) and

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

Convergence of a Moran model to Eigen s quasispecies model

Convergence of a Moran model to Eigen s quasispecies model Convergence of a Moran odel to Eigen s quasispecies odel Joseba Dalau Université Paris Sud and ENS Paris June 6, 2018 arxiv:1404.2133v1 [q-bio.pe] 8 Apr 2014 Abstract We prove that a Moran odel converges

More information

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures Stefan Wuchty 1 Walter Fontana 1,2 Ivo L. Hofacker 1 Peter Schuster 1,2 1 Institut für Theoretische Chemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria Complete Suboptimal Folding of RNA

More information

Population Genetics I. Bio

Population Genetics I. Bio Population Genetics I. Bio5488-2018 Don Conrad dconrad@genetics.wustl.edu Why study population genetics? Functional Inference Demographic inference: History of mankind is written in our DNA. We can learn

More information

SI Appendix. 1. A detailed description of the five model systems

SI Appendix. 1. A detailed description of the five model systems SI Appendix The supporting information is organized as follows: 1. Detailed description of all five models. 1.1 Combinatorial logic circuits composed of NAND gates (model 1). 1.2 Feed-forward combinatorial

More information

QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES

QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES Journal of Bioinformatics and Computational Biology Vol. 8, No. 6 (2010) 1027 1040 c Imperial College Press DOI: 10.1142/S0219720010005075 QUANTIFYING SLOW EVOLUTIONARY DYNAMICS IN RNA FITNESS LANDSCAPES

More information

How robust are the predictions of the W-F Model?

How robust are the predictions of the W-F Model? How robust are the predictions of the W-F Model? As simplistic as the Wright-Fisher model may be, it accurately describes the behavior of many other models incorporating additional complexity. Many population

More information

Lecture Notes in Mathematics Editors: J.-M. Morel, Cachan F. Takens, Groningen B. Teissier, Paris

Lecture Notes in Mathematics Editors: J.-M. Morel, Cachan F. Takens, Groningen B. Teissier, Paris Lecture Notes in Mathematics 1915 Editors: J.-M. Morel, Cachan F. Takens, Groningen B. Teissier, Paris Türker Bıyıkoğlu Josef Leydold Peter F. Stadler Laplacian Eigenvectors of Graphs Perron-Frobenius

More information

The Amoeba-Flagellate Transformation

The Amoeba-Flagellate Transformation The Amoeba-Flagellate Transformation Camille Stephan-Otto Attolini Institute for Theoretical Chemistry and Structural Biology, Vienna University, Austria Bled, Slovenia. March, 2005 The Amoeba-Flagellate

More information

Phylogeny and evolution of structure

Phylogeny and evolution of structure Phylogeny and evolution of structure Tanja Gesell and Peter Schuster Abstract Darwin s conviction that all living beings on Earth are related and the graph of relatedness is tree-shaped has been essentially

More information

The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells

The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells Nils G. Walter Chemistry So far we are here Chemistry Chemical Evolution Self-organization

More information

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution

Wright-Fisher Models, Approximations, and Minimum Increments of Evolution Wright-Fisher Models, Approximations, and Minimum Increments of Evolution William H. Press The University of Texas at Austin January 10, 2011 1 Introduction Wright-Fisher models [1] are idealized models

More information

To appear in the American Naturalist

To appear in the American Naturalist Unifying within- and between-generation bet-hedging theories: An ode to J.H. Gillespie Sebastian J. Schreiber Department of Evolution and Ecology, One Shields Avenue, University of California, Davis, California

More information

A Note On Minimum Path Bases

A Note On Minimum Path Bases A Note On Minimum Path Bases Petra M. Gleiss a, Josef Leydold b, Peter F. Stadler a,c a Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Währingerstrasse 17, A-1090 Vienna,

More information

Chemical Organization Theory

Chemical Organization Theory Chemical Organization Theory How are living systems organized? How do they evolve? Peter Dittrich Bio Systems Analysis Group FSU Jena Friedrich-Schiller-Universität Jena Jena Centre for Bioinformatics

More information

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria Tel: +43 2236 807 Fax: +43 2236 71313 E-mail: info@iiasa.ac.at Web: www.iiasa.ac.at INTERIM REPORT IR-98-039 / April

More information

MA 777: Topics in Mathematical Biology

MA 777: Topics in Mathematical Biology MA 777: Topics in Mathematical Biology David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma777/ Spring 2018 David Murrugarra (University of Kentucky) Lecture

More information

Quantifying slow evolutionary dynamics in RNA fitness landscapes

Quantifying slow evolutionary dynamics in RNA fitness landscapes Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Quantifying slow evolutionary dynamics in RNA fitness landscapes Sulc,

More information

Complexity in social dynamics : from the. micro to the macro. Lecture 4. Franco Bagnoli. Lecture 4. Namur 7-18/4/2008

Complexity in social dynamics : from the. micro to the macro. Lecture 4. Franco Bagnoli. Lecture 4. Namur 7-18/4/2008 Complexity in Namur 7-18/4/2008 Outline 1 Evolutionary models. 2 Fitness landscapes. 3 Game theory. 4 Iterated games. Prisoner dilemma. 5 Finite populations. Evolutionary dynamics The word evolution is

More information

Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Ecology, Volumes 1-5 published

More information

Networks in Molecular Evolution

Networks in Molecular Evolution PETER SCHUSTER & PETER F. STADLER Institut für Theoretische Chemie und Molekulare Strukturbiologie Universität Wien, Währingerstrasse 17,A-1090 Wien, Austria Tel: ++43 1 4277 52745, Fax: ++43 1 4277 52793,

More information

arxiv:physics/ v1 [physics.bio-ph] 19 Apr 2000

arxiv:physics/ v1 [physics.bio-ph] 19 Apr 2000 Optimal Mutation Rates in Dynamic Environments Martin Nilsson Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501 USA Institute of Theoretical Physics, Chalmers University of Technology

More information

Predicting Fitness Effects of Beneficial Mutations in Digital Organisms

Predicting Fitness Effects of Beneficial Mutations in Digital Organisms Predicting Fitness Effects of Beneficial Mutations in Digital Organisms Haitao Zhang 1 and Michael Travisano 1 1 Department of Biology and Biochemistry, University of Houston, Houston TX 77204-5001 Abstract-Evolutionary

More information

Statistics of RNA Melting Kinetics

Statistics of RNA Melting Kinetics Statistics of RNA Melting Kinetics By Manfred Tacker a, Walter Fontana b, Peter F. Stadler a;b and Peter Schuster a;b;c; a Institut fur Theoretische Chemie, Universitat Wien b Santa Fe Institute, Santa

More information

Evolutionary Dynamics & its Tendencies. David Krakauer, Santa Fe Institute.

Evolutionary Dynamics & its Tendencies. David Krakauer, Santa Fe Institute. Evolutionary Dynamics & its Tendencies David Krakauer, Santa Fe Institute. A Talk in 2 Parts Part 1: What is Evolution, What has it generated & What are its limits? Part II: The Evolutionary dynamics of

More information

CelloS: a Multi-level Approach to Evolutionary Dynamics

CelloS: a Multi-level Approach to Evolutionary Dynamics CelloS: a Multi-level Approach to Evolutionary Dynamics Camille Stephan-Otto Attolini 1, Peter F. Stadler 12, and Christoph Flamm 1 1 Institut für Theoretische Chemie, Universität Wien, Währingerstraße

More information

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria.

Institut für Mathematik, Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria. Letters in Math. Phys. 28 (1993), 251 255 A QUANTUM GROUP LIKE STRUCTURE ON NON COMMUTATIVE 2 TORI Andreas Cap Peter W. Michor Hermann Schichl Institut für Mathematik, Universität Wien, Strudlhofgasse

More information

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other?

Phylogeny and systematics. Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Why are these disciplines important in evolutionary biology and how are they related to each other? Phylogeny and systematics Phylogeny: the evolutionary history of a species

More information

Relaxation Property and Stability Analysis of the Quasispecies Models

Relaxation Property and Stability Analysis of the Quasispecies Models Commun. Theor. Phys. (Beijing, China) 52 (2009) pp. 726 734 c Chinese Physical Society and IOP Publishing Ltd Vol. 52, No. 4, October 15, 2009 Relaxation Property and Stability Analysis of the Quasispecies

More information

A coarse-grained Schrödinger cat

A coarse-grained Schrödinger cat A coarse-grained Schrödinger cat Johannes KOFLER and Časlav BRUKNER Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, 1090 Wien, Austria;

More information

Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry

Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry Peter Schuster, Institut für Theoretische Chemie der Universität Wien, Austria Darwin s Optimization in the looking glasses of physics and chemistry Prologue The traditions of scientific research in physics

More information

Molecular models of biological evolution have attracted

Molecular models of biological evolution have attracted Exact solution of the Eigen model with general fitness functions and degradation rates David B. Saakian* and Chin-Kun Hu* *Institute of Physics, Academia Sinica, ankang, Taipei 11529, Taiwan; and Yerevan

More information

The Evolution of Gene Dominance through the. Baldwin Effect

The Evolution of Gene Dominance through the. Baldwin Effect The Evolution of Gene Dominance through the Baldwin Effect Larry Bull Computer Science Research Centre Department of Computer Science & Creative Technologies University of the West of England, Bristol

More information

The Wright-Fisher Model and Genetic Drift

The Wright-Fisher Model and Genetic Drift The Wright-Fisher Model and Genetic Drift January 22, 2015 1 1 Hardy-Weinberg Equilibrium Our goal is to understand the dynamics of allele and genotype frequencies in an infinite, randomlymating population

More information

Population Genetics: a tutorial

Population Genetics: a tutorial : a tutorial Institute for Science and Technology Austria ThRaSh 2014 provides the basic mathematical foundation of evolutionary theory allows a better understanding of experiments allows the development

More information

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology rigorous models of molecules... in organisms Modeling Evolutionary Biology rigorous models

More information

Evolving Antibiotic Resistance in Bacteria by Controlling Mutation Rate

Evolving Antibiotic Resistance in Bacteria by Controlling Mutation Rate Evolving Antibiotic Resistance in Bacteria by Controlling Mutation Rate Roman V. Belavkin 1 1 School of Science and Technology Middlesex University, London NW4 4BT, UK December 11, 2015, Tokyo University

More information

When to use bit-wise neutrality

When to use bit-wise neutrality Nat Comput (010) 9:83 94 DOI 10.1007/s11047-008-9106-8 When to use bit-wise neutrality Tobias Friedrich Æ Frank Neumann Published online: 6 October 008 Ó Springer Science+Business Media B.V. 008 Abstract

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics 70 Grundlagen der Bioinformatik, SoSe 11, D. Huson, May 19, 2011 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information

The Phenotype-Genotype- Phenotype (PGP) Map. Nayely Velez-Cruz and Dr. Manfred Laubichler

The Phenotype-Genotype- Phenotype (PGP) Map. Nayely Velez-Cruz and Dr. Manfred Laubichler The Phenotype-Genotype- Phenotype (PGP) Map Nayely Velez-Cruz and Dr. Manfred Laubichler Overview 1. The role of the genotype to phenotype map in current evolutionary theory 2. Origins of phenotypic variation

More information

Scientists have been measuring organisms metabolic rate per gram as a way of

Scientists have been measuring organisms metabolic rate per gram as a way of 1 Mechanism of Power Laws in Allometric Scaling in Biology Thursday 3/22/12: Scientists have been measuring organisms metabolic rate per gram as a way of comparing various species metabolic efficiency.

More information

Plasticity, Evolvability, and Modularity in RNA

Plasticity, Evolvability, and Modularity in RNA 242 JOURNAL L. OF ANCEL EXPERIMENTAL AND W. FONTANA ZOOLOGY (MOL DEV EVOL) 288:242 283 (2000) Plasticity, Evolvability, and Modularity in RNA LAUREN W. ANCEL 1 AND WALTER FONTANA 2,3 * 1 Department of

More information

The Time Scale of Evolutionary Innovation

The Time Scale of Evolutionary Innovation Krishnendu Chatterjee 1 *, Andreas Pavlogiannis 1, Ben Adlam 2, Martin A. Nowak 2 1 IST Austria, Klosterneuburg, Austria, 2 Program for Evolutionary Dynamics, Department of Organismic and Evolutionary

More information

6 Introduction to Population Genetics

6 Introduction to Population Genetics Grundlagen der Bioinformatik, SoSe 14, D. Huson, May 18, 2014 67 6 Introduction to Population Genetics This chapter is based on: J. Hein, M.H. Schierup and C. Wuif, Gene genealogies, variation and evolution,

More information