How computation has changed research in chemistry and biology

Size: px
Start display at page:

Download "How computation has changed research in chemistry and biology"

Transcription

1

2 How computation has changed research in chemistry and biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA IWR - 25 Jahre-Jubiläum Heidelberg,

3 Web-Page for further information:

4 Some technological revolutions in 20 th century science: 1. molecular spectroscopy, 2. micro-technology, 3. electronic computation, 4. molecular revolution in biology, 5. computational quantum chemistry, and 6. holistic chemistry of biological entities.

5 Gordon E. Moore, Exponential increase in hardware power Electronics 38 (8), 4-7,1965

6 . Grötschel, an expert in optimization, observes that a benchmark production planning model solved using linear programming would have taken 82 years to solve in 1988, using the computers and the linear programming algorithms of the day. Fifteen years later in 2003 the same model could be solved in roughly 1 minute, an improvement by a factor of roughly 43 million. Of this, a factor of roughly 1000 was due to increased processor speed, whereas a factor of roughly was due to improvements in algortihms! Martin Grötschel, Grötschel also cites an algorithmic improvement of roughly for mixed integer programming between 1991 and PCIT Report to the President, Progress in Algorithms Beats Moore s Law. J.P. Holdren, E. Lander, H. Varmus. Designing a digital future: Federally funded research and development in networking and information technology. President s council on science and technology, Washington, DC, p.71, 2010

7 Four selected examples 1. Parameter determination in chemical kinetics 2. Design of ribonucleic acid (RNA) structures 3. Kinetic folding of RNA molecules 4. Modeling evolution

8 Four selected examples 1. Parameter determination in chemical kinetics 2. Design of ribonucleic acid (RNA) structures 3. Kinetic folding of RNA molecules 4. Modeling evolution

9 L. Michaelis, M. Menten. Die Kinetik der Invertin-Wirkung. Biochemische Zeitschrift 49, ,1913 d[p] dt = v([s]) = v K max M [S] + [S] basic assumptions: k r k d [E] 0 << [S] 0 v([s]) = k vv v r K M = [ES] k r + k k f and d, v max = k r [E] 0 Michaelis-Menten mechanism of enzyme reactions

10 Linearization of a hyperbola: v([s]) = K v max M [S] + [S] Lineweaver-Burk: Eadie-Hofstee: Scatchard: 1/v = f (1/[S]) v = f (1/[S]) 1/[S] = f (v) Hanes: [S] / v = f ([S]) Hill: log (v/(v max v)) = f (log [S])

11 The Lineweaver-Burke plot of Michaelis-Menten kinetics Source: Wikipedia, Enzymkinetik

12 Validity of the Michaelis-Menten approximation

13 The forward problem of chemical reaction kinetics

14 Parameter identification and determination is an ill-posed problem Inverse problem solution techniques The inverse problem of chemical reaction kinetics

15 Y y Q q y q y q F = and (noisy) data; parameter vector,, ) ( δ δ Q q Y q F y min ) ( 2 δ ill-conditioned problem ), ( with min ), ( ) ( Q Q q Y q q q q q q q F y = + R α R δ regularization term R - here Tikhonov regularization - with q 0 being an initial parameter guess and the regularization parameter Parameter identification and determination as an inverse problem

16

17 Four selected examples 1. Parameter determination in chemical kinetics 2. Design of ribonucleic acid (RNA) structures 3. Kinetic folding of RNA molecules 4. Modeling evolution

18 O 5' - end CH 2 O N 1 5'-end GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGAUCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA 3 -end O OH N k = A, U, G, C O P O CH 2 O N 2 Na O O OH O P O CH 2 O N 3 Na O RNA structure The molecular phenotype O Na O P O OH O CH 2 O N 4 O OH O P O 3' - end Na O

19 The notion of structure

20 S 5 (h) S 4 (h) S 3 (h) Free energy G 0 S 6 (h) S 7 (h) S 8 (h) (h) S (h) 1 S 2 (h) S 9 Suboptimal conformations S 0 (h) Minimum of free energy The minimum free energy structures on a discrete space of conformations

21 RNA sequence linear programming RNA folding: structural biology, spectroscopy of biomolecules, understanding molecular function biophysical chemistry: thermodynamics and kinetics empirical parameters RNA structure of minimal free energy From RNA sequence to structure

22 RNA sequence Linear programming RNA folding: Structural biology, spectroscopy of biomolecules, understanding molecular function iterative determination of a sequence for the given secondary structure inverse Folding Algorithm inverse folding of RNA: biotechnology, design of biomolecules with predefined structures and functions RNA structure of minimal free energy From RNA structure to sequence

23 ViennaRNA Package: Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, Sebastian Bonhoeffer, Manfred Tacker, and Peter Schuster. Fast folding and comparison of RNA secondary structures. Mh.Chem. 125: , 1994 Ronny Lorenz, Stephan H. Bernhart, Christian Höner zu Siederissen, Hakim Tafer, Christioh Flamm, Peter F. Stadler, and Ivo L. Hofacker. ViennaRNA Package 2.0. Algorithms Mol. Biol. 6:26, 2011

24

25 Space of genotypes: I = { I, I, I, I,..., I } ; Hamming metric N Space of phenotypes: S = { S, S, S, S,..., S } ; metric (not required) M N M ( I) = j S k -1 G k = ( S ) U I ( I) = S k j j k A mapping and its inversion

26 many genotypes one phenotype

27 Four selected examples 1. Parameter determination in chemical kinetics 2. Design of ribonucleic acid (RNA) structures 3. Kinetic folding of RNA molecules 4. Modeling evolution

28 Extension of the notion of structure

29

30 Free energy G 0 Saddle point T { k S { Free energy G 0 T { k S { S k S k "Reaction coordinate" "Barrier tree" Definition of a barrier tree

31 Interconversion of suboptimal structures

32

33 Computation of kinetic folding

34

35 1D R 2D GGGUGGAACCACGAGGUUCCACGAGGAACCACGAGGUUCCUCCC 3 13 G An experimental RNA switch J.H.A. Nagel, C. Flamm, I.L. Hofacker, K. Franke, M.H. de Smit, P. Schuster, and C.W.A. Pleij. 1D 2D CG CG A A A A C G C G C G C G A U A U A U A U G C G C G C G C U A/G A U 3 G C G C 44 GG R 23 CC 5' kcal mol kcal mol -1 JN1LH R 23 CG G/ A A C G C G U A U A G C G C A A 13 1D G C 2D C G 33 A A C G C G A U A U G G C C U U 3G C G C G C 44 5' kcal mol kcal mol -1 Structural parameters affecting the kinetic competition of RNA hairpin formation. Nucleic Acids Res. 34: (2006)

36 Free energy [kcal / mole] J1LH barrier tree

37 Four selected examples 1. Parameter determination in chemical kinetics 2. Design of ribonucleic acid (RNA) structures 3. Kinetic folding of RNA molecules 4. Modeling evolution

38 Sewall Wright The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: D.F.Jones, ed. Int. Proceedings of the Sixth International Congress on Genetics. Vol.1, Ithaca, NY. Sewall Wrights fitness landscape as metaphor for Darwinian evolution

39 Sewall Wright, wild type a... alternative allele on locus A : : : abcde alternative alleles on all five loci The multiplicity of gene replacements with two alleles on each locus Sewall Wright Surfaces of selective value revisited. American Naturalist 131:

40 Evolution is hill climbing of populations or subpopulations Sewall Wright Surfaces of selective value revisited. American Naturalist 131:

41 Accuracy of replication: Q = q 1 q 2 q 3 q 4 The logics of DNA (or RNA) replication

42 Sol Spiegelman, Evolution in the test tube: G.F. Joyce, Angew.Chem.Int.Ed. 46 (2007),

43

44

45 Christof K. Biebricher, Kinetics of RNA replication C.K. Biebricher, M. Eigen, W.C. Gardiner, Jr. Biochemistry 22: , 1983

46 Manfred Eigen = = = = = = = n i i n i i i i ji ji j i n i ji j x x f Φ f Q W n j Φ x x W x 1 1 1,, 1,2, ; dt d Mutation and (correct) replication as parallel chemical reactions M. Eigen Naturwissenschaften 58:465, M. Eigen & P. Schuster Naturwissenschaften 64:541, 65:7 und 65:341

47 quasispecies The error threshold in replication and mutation

48 The paradigm of structural biology

49 The simplified model

50

51 single peak landscape step linear landscape Model fitness landscapes I

52 Quasispecies Uniform distribution Stationary population or quasispecies as a function of the mutation or error rate p Error rate p = 1-q

53 Error threshold on the single peak landscape

54 Error threshold on the step linear landscape

55 single peak landscape realistic landscape Rugged fitness landscapes over individual binary sequences with n = 10

56 Random distribution of fitness values: d = 1.0 and s = 637

57 s = 541 s = 637 s = 919 Error threshold on realistic landscapes n = 10, f 0 = 1.1, f n = 1.0, d = 0.5

58 s = 541 s = 637 s = 919 Error threshold on realistic landscapes n = 10, f 0 = 1.1, f n = 1.0, d = 0.995

59 s = 541 s = 637 s = 919 Error threshold on realistic landscapes n = 10, f 0 = 1.1, f n = 1.0, d = 1.0

60 0, 0 largest eigenvalue and eigenvector diagonalization of matrix W complicated but not complex W = G F mutation matrix fitness landscape ( complex ) complex sequence structure complex mutation selection Complexity in molecular evolution

61 The new biology provides a hitherto unknown challenge for mathematicians, computer scientists, and theorical biologists for mainly two reasons enormous amount of data and complexity of structure and dynamics:

62 . I was taught in the pregenomic era to be a hunter. I learnt how to identify the wild beasts and how to go out, hunt them down and kill them. We are now urged to be gatherers, to collect everything lying around and put it into storehouses. Someday, it is assumed, someone will come and sort through the storehouses, discard all the junk, and keep the rare finds. The only difficulty is how to recognize them. Sydney Brenner, Sydney Brenner. Hunters and gatherers. The Scientist 16(4): 14, 2002 The big data problem in bioinformatics

63 Theory mathematics and computation cannot remove complexity, but it shows what kind of regular behavior can be expected and what experiments have to be done to get a grasp on the irregularities. Manfred Eigen, Preface to E. Domingo, C.R. Parrish, J.J.Holland, eds. Origin and Evolution of Viruses. Academic Press 2008 Theory, mathematics and complexity

64 Coworkers Peter Stadler, Bärbel M. Stadler, Universität Leipzig, GE Paul E. Phillipson, University of Colorado at Boulder, CO Heinz Engl, Philipp Kügler, James Lu, Stefan Müller, RICAM Linz, AT Universität Wien Jord Nagel, Kees Pleij, Universiteit Leiden, NL Walter Fontana, Harvard Medical School, MA Martin Nowak, Harvard University, MA Christian Reidys, University of Southern Denmark, Odense, DK Christian Forst, University of Texas, Southwestern Medical Center, TX Thomas Wiehe, Ulrike Göbel, Walter Grüner, Stefan Kopp, Jaqueline Weber, Institut für Molekulare Biotechnologie, Jena, GE Ivo L.Hofacker, Christoph Flamm, Andreas Svrček-Seiler, Universität Wien, AT Kurt Grünberger, Michael Kospach, Andreas Wernitznig, Stefanie Widder, Stefan Wuchty, Jan Cupal, Stefan Bernhart, Lukas Endler, Ulrike Langhammer, Rainer Machne, Ulrike Mückstein, Erich Bornberg-Bauer, Universität Wien, AT

65 Acknowledgement of support Fonds zur Förderung der wissenschaftlichen Forschung (FWF) Projects No , 10578, 11065, , and Universität Wien Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) Project No. Mat05 Jubiläumsfonds der Österreichischen Nationalbank Project No. Nat-7813 European Commission: Contracts No , (NEST) Austrian Genome Research Program GEN-AU: Bioinformatics Network (BIN) Österreichische Akademie der Wissenschaften Siemens AG, Austria Universität Wien and the Santa Fe Institute

66 Happy 25th birthday IWR and ad multos annos. Thank you for your attention!

67 Web-Page for further information:

68

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster

Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come. Peter Schuster Evolution of Biomolecular Structure 2006 and RNA Secondary Structures in the Years to Come Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe,

More information

Evolution on simple and realistic landscapes

Evolution on simple and realistic landscapes Evolution on simple and realistic landscapes An old story in a new setting Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA

More information

Error thresholds on realistic fitness landscapes

Error thresholds on realistic fitness landscapes Error thresholds on realistic fitness landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Evolutionary Dynamics:

More information

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster

RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm. Peter Schuster RNA Bioinformatics Beyond the One Sequence-One Structure Paradigm Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 2008 Molecular

More information

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster

Is the Concept of Error Catastrophy Relevant for Viruses? Peter Schuster Is the Concept of Error Catastrophy Relevant for Viruses? Quasispecies and error thresholds on realistic landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa

More information

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster

How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity. Peter Schuster How Nature Circumvents Low Probabilities: The Molecular Basis of Information and Complexity Peter Schuster Institut für Theoretische Chemie Universität Wien, Austria Nonlinearity, Fluctuations, and Complexity

More information

Tracing the Sources of Complexity in Evolution. Peter Schuster

Tracing the Sources of Complexity in Evolution. Peter Schuster Tracing the Sources of Complexity in Evolution Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Springer Complexity Lecture

More information

Evolution on Realistic Landscapes

Evolution on Realistic Landscapes Evolution on Realistic Landscapes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Santa Fe Institute Seminar Santa Fe, 22.05.2012

More information

Complexity in Evolutionary Processes

Complexity in Evolutionary Processes Complexity in Evolutionary Processes Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA 7th Vienna Central European Seminar

More information

Evolution and Molecules

Evolution and Molecules Evolution and Molecules Basic questions of biology seen with phsicists eyes. Peter Schuster Institut für Theoretische Chemie, niversität Wien, Österreich und The Santa Fe Institute, Santa Fe, New Mexico,

More information

Mathematical Modeling of Evolution

Mathematical Modeling of Evolution Mathematical Modeling of Evolution Solved and Open Problems Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Emerging Modeling

More information

Designing RNA Structures

Designing RNA Structures Designing RN Structures From Theoretical Models to Real Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien Microbiology Seminar Mount Sinai School

More information

Neutral Networks of RNA Genotypes and RNA Evolution in silico

Neutral Networks of RNA Genotypes and RNA Evolution in silico Neutral Networks of RNA Genotypes and RNA Evolution in silico Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien RNA Secondary Structures in Dijon Dijon,

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules RNA From Mathematical Models to Real Molecules 3. Optimization and Evolution of RNA Molecules Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien IMPA enoma

More information

Chemistry on the Early Earth

Chemistry on the Early Earth Chemistry on the Early Earth Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Germany-Japan Round Table Heidelberg, 01. 03.11.2011

More information

Mechanisms of molecular cooperation

Mechanisms of molecular cooperation Mechanisms of molecular cooperation Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Homo Sociobiologicus Evolution of human

More information

RNA From Mathematical Models to Real Molecules

RNA From Mathematical Models to Real Molecules R From Mathematical Models to Real Molecules 1. Sequences and Structures Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der niversität Wien IMP enoma School Valdivia, 12.

More information

Mathematische Probleme aus den Life-Sciences

Mathematische Probleme aus den Life-Sciences Mathematische Probleme aus den Life-Sciences Peter Schuster Institut für Theoretische Chemie und Molekulare Strukturbiologie der Universität Wien Vortragsreihe Mathematik im Betrieb Dornbirn, 27.05.2004

More information

Problem solving by inverse methods in systems biology

Problem solving by inverse methods in systems biology Problem solving by inverse methods in systems biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA High-erformance comutational

More information

The Advantage of Using Mathematics in Biology

The Advantage of Using Mathematics in Biology The Advantage of Using Mathematics in Biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Erwin Schrödinger-Institut

More information

Systems biology and complexity research

Systems biology and complexity research Systems biology and complexity research Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico, USA Interdisciplinary Challenges for

More information

Chemistry and Evolution at the Origin of Life. Visions and Reality

Chemistry and Evolution at the Origin of Life. Visions and Reality hemistry and Evolution at the rigin of Life Visions and Reality Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Madrid, Astrobiology Meeting 30.11.2001

More information

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster

Origin of life and early evolution in the light of present day molecular biology. Peter Schuster Origin of life and early evolution in the light of present day molecular biology Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria and The Santa Fe Institute, Santa Fe, New Mexico,

More information

Different kinds of robustness in genetic and metabolic networks

Different kinds of robustness in genetic and metabolic networks Different kinds of robustness in genetic and metabolic networks Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Seminar lecture Linz, 15.12.2003 enomics

More information

The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells

The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells The tree of life: Darwinian chemistry as the evolutionary force from cyanic acid to living molecules and cells Nils G. Walter Chemistry So far we are here Chemistry Chemical Evolution Self-organization

More information

Self-Organization and Evolution

Self-Organization and Evolution Self-Organization and Evolution Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Wissenschaftliche esellschaft: Dynamik Komplexität menschliche Systeme

More information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information

Von der Thermodynamik zu Selbstorganisation, Evolution und Information Von der Thermodynamik zu Selbstorganisation, Evolution und Information Peter Schuster Institut für Theoretische hemie und Molekulare Strukturbiologie der Universität Wien Kolloquium des Physikalischen

More information

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes

Evolutionary Dynamics and Optimization. Neutral Networks as Model-Landscapes. for. RNA Secondary-Structure Folding-Landscapes Evolutionary Dynamics and Optimization Neutral Networks as Model-Landscapes for RNA Secondary-Structure Folding-Landscapes Christian V. Forst, Christian Reidys, and Jacqueline Weber Mailing Address: Institut

More information

RNA folding at elementary step resolution

RNA folding at elementary step resolution RNA (2000), 6:325 338+ Cambridge University Press+ Printed in the USA+ Copyright 2000 RNA Society+ RNA folding at elementary step resolution CHRISTOPH FLAMM, 1 WALTER FONTANA, 2,3 IVO L. HOFACKER, 1 and

More information

The Role of Topology in the Study of Evolution

The Role of Topology in the Study of Evolution The Role of Topology in the Study of Evolution Avery Broome August 31, 2015 Abstract In this paper, we will attempt to understand the role topology plays in analyzing RNA secondary structures by providing

More information

Critical Mutation Rate Has an Exponential Dependence on Population Size

Critical Mutation Rate Has an Exponential Dependence on Population Size Critical Mutation Rate Has an Exponential Dependence on Population Size Alastair Channon 1, Elizabeth Aston 1, Charles Day 1, Roman V. Belavkin 2 and Christopher G. Knight 3 1 Research Institute for the

More information

SI Appendix. 1. A detailed description of the five model systems

SI Appendix. 1. A detailed description of the five model systems SI Appendix The supporting information is organized as follows: 1. Detailed description of all five models. 1.1 Combinatorial logic circuits composed of NAND gates (model 1). 1.2 Feed-forward combinatorial

More information

On low energy barrier folding pathways for nucleic acid sequences

On low energy barrier folding pathways for nucleic acid sequences On low energy barrier folding pathways for nucleic acid sequences Leigh-Anne Mathieson and Anne Condon U. British Columbia, Department of Computer Science, Vancouver, BC, Canada Abstract. Secondary structure

More information

Michaelis-Menten Kinetics

Michaelis-Menten Kinetics Michaelis-Menten Kinetics Two early 20th century scientists, Leonor Michaelis and Maud Leonora Menten, proposed the model known as Michaelis-Menten Kinetics to account for enzymatic dynamics. The model

More information

COMP598: Advanced Computational Biology Methods and Research

COMP598: Advanced Computational Biology Methods and Research COMP598: Advanced Computational Biology Methods and Research Modeling the evolution of RNA in the sequence/structure network Jerome Waldispuhl School of Computer Science, McGill RNA world In prebiotic

More information

Prediction of Locally Stable RNA Secondary Structures for Genome-Wide Surveys

Prediction of Locally Stable RNA Secondary Structures for Genome-Wide Surveys Preprint Prediction of Locally Stable RNA Secondary Structures for Genome-Wide Surveys I.L. Hofacker, B. Priwitzer and P.F. Stadler Institut für Theoretische Chemie und Molekulare Strukturbiologie, Universität

More information

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai

Systems Biology: A Personal View IX. Landscapes. Sitabhra Sinha IMSc Chennai Systems Biology: A Personal View IX. Landscapes Sitabhra Sinha IMSc Chennai Fitness Landscapes Sewall Wright pioneered the description of how genotype or phenotypic fitness are related in terms of a fitness

More information

Evolution of Model Proteins on a Foldability Landscape

Evolution of Model Proteins on a Foldability Landscape PROTEINS: Structure, Function, and Genetics 29:461 466 (1997) Evolution of Model Proteins on a Foldability Landscape Sridhar Govindarajan 1 and Richard A. Goldstein 1,2 * 1 Department of Chemistry, University

More information

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology

Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology. Evolutionary Biology Why EvoSysBio? Combine the rigor from two powerful quantitative modeling traditions: Molecular Systems Biology rigorous models of molecules... in organisms Modeling Evolutionary Biology rigorous models

More information

Vom Modell zur Steuerung

Vom Modell zur Steuerung Vom Modell zur Steuerung Sind wir überfordert von der Komplexität der Welt? Peter Schuster Institut für Theoretische Chemie, Universität Wien, Austria und The Santa Fe Institute, Santa Fe, New Mexico,

More information

A Method for Estimating Mean First-passage Time in Genetic Algorithms

A Method for Estimating Mean First-passage Time in Genetic Algorithms A Method for Estimating Mean First-passage Time in Genetic Algorithms Hiroshi Furutani Department of Information Science, Kyoto University of Education, Fushimi-ku, Kyoto, 612-8522 Japan This paper presents

More information

Sparse RNA Folding Revisited: Space-Efficient Minimum Free Energy Prediction

Sparse RNA Folding Revisited: Space-Efficient Minimum Free Energy Prediction Sparse RNA Folding Revisited: Space-Efficient Minimum Free Energy Prediction Sebastian Will 1 and Hosna Jabbari 2 1 Bioinformatics/IZBI, University Leipzig, swill@csail.mit.edu 2 Ingenuity Lab, National

More information

Predicting RNA Secondary Structure

Predicting RNA Secondary Structure 7.91 / 7.36 / BE.490 Lecture #6 Mar. 11, 2004 Predicting RNA Secondary Structure Chris Burge Review of Markov Models & DNA Evolution CpG Island HMM The Viterbi Algorithm Real World HMMs Markov Models for

More information

Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use.

Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. Provided for non-commercial research and educational use. Not for reproduction, distribution or commercial use. This article was originally published in the Encyclopedia of Ecology, Volumes 1-5 published

More information

arxiv: v1 [q-bio.bm] 31 Oct 2017

arxiv: v1 [q-bio.bm] 31 Oct 2017 arxiv:1711.10549v1 [q-bio.bm] 31 Oct 2017 Doc-Start Structural bioinformatics Bioinformatics doi.10.1093/bioinformatics/xxxxxx Advance Access Publication Date: Day Month Year Manuscript Category An efficient

More information

Parameter Identification in Systems Biology: Solving Ill-posed Inverse Problems using Regularization

Parameter Identification in Systems Biology: Solving Ill-posed Inverse Problems using Regularization www.oeaw.ac.at Parameter Identification in Systems Biology: Solving Ill-posed Inverse Problems using Regularization S. Müller, J. Lu, P. Kuegler, H.W. Engl RICAM-Report 28-25 www.ricam.oeaw.ac.at Parameter

More information

NP-completeness of the direct energy barrier problem without pseudoknots

NP-completeness of the direct energy barrier problem without pseudoknots NP-completeness of the direct energy barrier problem without pseudoknots Ján Maňuch 1, Chris Thachuk 2, Ladislav Stacho 1, Anne Condon 2 1 Simon Fraser University 2 University of British Columbia Abstract.

More information

Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate Limiting Steps on the Tree of Life

Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate Limiting Steps on the Tree of Life Ursinus College Digital Commons @ Ursinus College Mathematics Summer Fellows Student Research 7-21-2016 Mutation Selection on the Metabolic Pathway and the Effects on Protein Co-evolution and the Rate

More information

Design of Multi-Stable RNA Molecules

Design of Multi-Stable RNA Molecules Design of Multi-Stable RNA Molecules Christoph Flamm a, Ivo L. Hofacker a,, Sebastian Maurer-Stroh a, Peter F. Stadler a,b, Martin Zehl a a Institut für Theoretische Chemie und Molekulare Strukturbiologie

More information

DANNY BARASH ABSTRACT

DANNY BARASH ABSTRACT JOURNAL OF COMPUTATIONAL BIOLOGY Volume 11, Number 6, 2004 Mary Ann Liebert, Inc. Pp. 1169 1174 Spectral Decomposition for the Search and Analysis of RNA Secondary Structure DANNY BARASH ABSTRACT Scales

More information

Critical Properties of Complex Fitness Landscapes

Critical Properties of Complex Fitness Landscapes Critical Properties of Complex Fitness Landscapes Bjørn Østman 1, Arend Hintze 1, and Christoph Adami 1 1 Keck Graduate Institute, Claremont, CA 91711 bostman@kgi.edu Abstract Evolutionary adaptation is

More information

Error Propagation in the Hypercycle

Error Propagation in the Hypercycle Error Propagation in the Hypercycle Paulo R. A. Campos J. F. Fontanari Peter F. Stadler SFI WORKING PAPER: 1999-9-63 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily

More information

Statistics of RNA Melting Kinetics

Statistics of RNA Melting Kinetics Statistics of RNA Melting Kinetics By Manfred Tacker a, Walter Fontana b, Peter F. Stadler a;b and Peter Schuster a;b;c; a Institut fur Theoretische Chemie, Universitat Wien b Santa Fe Institute, Santa

More information

SECTION II: KINETICS AND BIOREACTOR DESIGN: JAVIER CALZADA FUNES

SECTION II: KINETICS AND BIOREACTOR DESIGN: JAVIER CALZADA FUNES SECTION II: KINETICS AND BIOREACTOR DESIGN: LESSON 9.1. - Enzymatic kinetics, microbial kinetics and metabolic stoichiometry - Brief review on enzymatic reaction kinetics JAVIER CALZADA FUNES Biotechnology

More information

Biology Scope & Sequence

Biology Scope & Sequence Process Standards: Tools to Know: B.1(A) demonstrate safe practices during laboratory and field investigations B.1(B) demonstrate an understanding of the use and conservation of resources and the proper

More information

Scientists have been measuring organisms metabolic rate per gram as a way of

Scientists have been measuring organisms metabolic rate per gram as a way of 1 Mechanism of Power Laws in Allometric Scaling in Biology Thursday 3/22/12: Scientists have been measuring organisms metabolic rate per gram as a way of comparing various species metabolic efficiency.

More information

The Amoeba-Flagellate Transformation

The Amoeba-Flagellate Transformation The Amoeba-Flagellate Transformation Camille Stephan-Otto Attolini Institute for Theoretical Chemistry and Structural Biology, Vienna University, Austria Bled, Slovenia. March, 2005 The Amoeba-Flagellate

More information

GSBHSRSBRSRRk IZTI/^Q. LlML. I Iv^O IV I I I FROM GENES TO GENOMES ^^^H*" ^^^^J*^ ill! BQPIP. illt. goidbkc. itip31. li4»twlil FIFTH EDITION

GSBHSRSBRSRRk IZTI/^Q. LlML. I Iv^O IV I I I FROM GENES TO GENOMES ^^^H* ^^^^J*^ ill! BQPIP. illt. goidbkc. itip31. li4»twlil FIFTH EDITION FIFTH EDITION IV I ^HHk ^ttm IZTI/^Q i I II MPHBBMWBBIHB '-llwmpbi^hbwm^^pfc ' GSBHSRSBRSRRk LlML I I \l 1MB ^HP'^^MMMP" jflp^^^^^^^^st I Iv^O FROM GENES TO GENOMES %^MiM^PM^^MWi99Mi$9i0^^ ^^^^^^^^^^^^^V^^^fii^^t^i^^^^^

More information

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME

MATHEMATICAL MODELS - Vol. III - Mathematical Modeling and the Human Genome - Hilary S. Booth MATHEMATICAL MODELING AND THE HUMAN GENOME MATHEMATICAL MODELING AND THE HUMAN GENOME Hilary S. Booth Australian National University, Australia Keywords: Human genome, DNA, bioinformatics, sequence analysis, evolution. Contents 1. Introduction:

More information

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS

STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS STUDY GUIDE #2 Winter 2000 Chem 4540 ANSWERS R. Merrill 1. Sketch the appropriate plots on the following axes. Assume that simple Michaelis- Menten kinetics apply. 2. The enzyme-catalyzed hydrolysis of

More information

Formative/Summative Assessments (Tests, Quizzes, reflective writing, Journals, Presentations)

Formative/Summative Assessments (Tests, Quizzes, reflective writing, Journals, Presentations) Biology Curriculum Map 2017-18 2 Weeks- Introduction to Biology: Scientific method, lab safety, organizing and analyzing data, and psuedoscience. This unit establishes the fundamental nature of scientific

More information

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002

Enzyme Kinetics. Jonathan Gent and Douglas Saucedo May 24, 2002 Enzyme Kinetics Jonathan Gent and Douglas Saucedo May 24, 2002 Abstract This paper consists of a mathematical derivation of the Michaelis-Menten equation, which models the rate of reaction of certain enzymatic

More information

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state

Previous Class. Today. Michaelis Menten equation Steady state vs pre-steady state Previous Class Michaelis Menten equation Steady state vs pre-steady state Today Review derivation and interpretation Graphical representation Michaelis Menten equations and parameters The Michaelis Menten

More information

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR

RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR RIBOSOME: THE ENGINE OF THE LIVING VON NEUMANN S CONSTRUCTOR IAS 2012 Von Neumann s universal constructor Self-reproducing machine: constructor + tape (1948/9). Program on tape: (i) retrieve parts from

More information

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents

Enzyme Kinetics. Differential Equations Series. Instructor s Guide. Table of Contents Enzyme Kinetics Differential Equations Series Instructor s Guide Table of Contents Introduction.... 2 When to Use this Video.... 2 Learning Objectives.... 2 Motivation.... 2 Student Experience.... 2 Key

More information

Elucidation of the RNA-folding mechanism at the level of both

Elucidation of the RNA-folding mechanism at the level of both RNA hairpin-folding kinetics Wenbing Zhang and Shi-Jie Chen* Department of Physics and Astronomy and Department of Biochemistry, University of Missouri, Columbia, MO 65211 Edited by Peter G. Wolynes, University

More information

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS Course Number: BIOL 102 Department: Biological Sciences Course Title: Principles of Biology 1 Semester: Spring Year: 1997 Objectives/ 1. Summarize

More information

Fitness landscapes and seascapes

Fitness landscapes and seascapes Fitness landscapes and seascapes Michael Lässig Institute for Theoretical Physics University of Cologne Thanks Ville Mustonen: Cross-species analysis of bacterial promoters, Nonequilibrium evolution of

More information

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001

arxiv:physics/ v1 [physics.bio-ph] 27 Jun 2001 Maternal effects in molecular evolution Claus O. Wilke Digital Life Laboratory, Mail Code 36-93, Caltech, Pasadena, CA 925 wilke@caltech.edu (Printed: May 3, 27) arxiv:physics/693v [physics.bio-ph] 27

More information

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Biology Assessment. Eligible Texas Essential Knowledge and Skills Biology Assessment Eligible Texas Essential Knowledge and Skills STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules

More information

Hybrid Model of gene regulatory networks, the case of the lac-operon

Hybrid Model of gene regulatory networks, the case of the lac-operon Hybrid Model of gene regulatory networks, the case of the lac-operon Laurent Tournier and Etienne Farcot LMC-IMAG, 51 rue des Mathématiques, 38041 Grenoble Cedex 9, France Laurent.Tournier@imag.fr, Etienne.Farcot@imag.fr

More information

Replication and Mutation on Neutral Networks: Updated Version 2000

Replication and Mutation on Neutral Networks: Updated Version 2000 Replication and Mutation on Neutral Networks: Updated Version 2000 Christian Reidys Christian V. Forst Peter Schuster SFI WORKING PAPER: 2000-11-061 SFI Working Papers contain accounts of scientific work

More information

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures

Complete Suboptimal Folding of RNA and the Stability of Secondary Structures Stefan Wuchty 1 Walter Fontana 1,2 Ivo L. Hofacker 1 Peter Schuster 1,2 1 Institut für Theoretische Chemie, Universität Wien, Währingerstrasse 17, A-1090 Wien, Austria Complete Suboptimal Folding of RNA

More information

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To

After lectures by. disappearance of reactants or appearance of. measure a reaction rate we monitor the. Reaction Rates (reaction velocities): To Revised 3/21/2017 After lectures by Dr. Loren Williams (GeorgiaTech) Protein Folding: 1 st order reaction DNA annealing: 2 nd order reaction Reaction Rates (reaction velocities): To measure a reaction

More information

Networks in Molecular Evolution

Networks in Molecular Evolution PETER SCHUSTER & PETER F. STADLER Institut für Theoretische Chemie und Molekulare Strukturbiologie Universität Wien, Währingerstrasse 17,A-1090 Wien, Austria Tel: ++43 1 4277 52745, Fax: ++43 1 4277 52793,

More information

CelloS: a Multi-level Approach to Evolutionary Dynamics

CelloS: a Multi-level Approach to Evolutionary Dynamics CelloS: a Multi-level Approach to Evolutionary Dynamics Camille Stephan-Otto Attolini 1, Peter F. Stadler 12, and Christoph Flamm 1 1 Institut für Theoretische Chemie, Universität Wien, Währingerstraße

More information

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition

Chemistry 112 Chemical Kinetics. Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Chemistry Chemical Kinetics Kinetics of Simple Enzymatic Reactions: The Case of Competitive Inhibition Introduction: In the following, we will develop the equations describing the kinetics of a single

More information

Quasispecies distribution of Eigen model

Quasispecies distribution of Eigen model Vol 16 No 9, September 2007 c 2007 Chin. Phys. Soc. 1009-1963/2007/16(09)/2600-08 Chinese Physics and IOP Publishing Ltd Quasispecies distribution of Eigen model Chen Jia( ), Li Sheng( ), and Ma Hong-Ru(

More information

Curriculum Links. AQA GCE Biology. AS level

Curriculum Links. AQA GCE Biology. AS level Curriculum Links AQA GCE Biology Unit 2 BIOL2 The variety of living organisms 3.2.1 Living organisms vary and this variation is influenced by genetic and environmental factors Causes of variation 3.2.2

More information

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure

Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution. Classical vs. balanced views of genome structure Febuary 1 st, 2010 Bioe 109 Winter 2010 Lecture 11 Molecular evolution Classical vs. balanced views of genome structure - the proposal of the neutral theory by Kimura in 1968 led to the so-called neutralist-selectionist

More information

Computer Simulation and Data Analysis in Molecular Biology and Biophysics

Computer Simulation and Data Analysis in Molecular Biology and Biophysics Victor Bloomfield Computer Simulation and Data Analysis in Molecular Biology and Biophysics An Introduction Using R Springer Contents Part I The Basics of R 1 Calculating with R 3 1.1 Installing R 3 1.1.1

More information

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7

ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 ENZYME SCIENCE AND ENGINEERING PROF. SUBHASH CHAND DEPARTMENT OF BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY IIT DELHI LECTURE 7 KINETICS OF ENZYME CATALYSED REACTIONS (CONTD.) So in the last lecture we

More information

Bundle at a Glance Biology 2015/16

Bundle at a Glance Biology 2015/16 Introduction: Scientific Investigation and Reasoning Skills (3 A/B days) Biology Process TEKS: 1A demonstrate safe practices during laboratory and field investigations. 1B demonstrate an understanding

More information

Plasticity, Evolvability, and Modularity in RNA

Plasticity, Evolvability, and Modularity in RNA 242 JOURNAL L. OF ANCEL EXPERIMENTAL AND W. FONTANA ZOOLOGY (MOL DEV EVOL) 288:242 283 (2000) Plasticity, Evolvability, and Modularity in RNA LAUREN W. ANCEL 1 AND WALTER FONTANA 2,3 * 1 Department of

More information

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April

IIASA. Continuity in Evolution: On the Nature of Transitions INTERIM REPORT. IR / April IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria Tel: +43 2236 807 Fax: +43 2236 71313 E-mail: info@iiasa.ac.at Web: www.iiasa.ac.at INTERIM REPORT IR-98-039 / April

More information

Exploration of population fixed-points versus mutation rates for functions of unitation

Exploration of population fixed-points versus mutation rates for functions of unitation Exploration of population fixed-points versus mutation rates for functions of unitation J Neal Richter 1, Alden Wright 2, John Paxton 1 1 Computer Science Department, Montana State University, 357 EPS,

More information

A Note On Minimum Path Bases

A Note On Minimum Path Bases A Note On Minimum Path Bases Petra M. Gleiss a, Josef Leydold b, Peter F. Stadler a,c a Institute for Theoretical Chemistry and Structural Biology, University of Vienna, Währingerstrasse 17, A-1090 Vienna,

More information

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v:

It can be derived from the Michaelis Menten equation as follows: invert and multiply with V max : Rearrange: Isolate v: Eadie Hofstee diagram In Enzymology, an Eadie Hofstee diagram (also Woolf Eadie Augustinsson Hofstee or Eadie Augustinsson plot) is a graphical representation of enzyme kinetics in which reaction velocity

More information

Neutral Evolution of Mutational Robustness

Neutral Evolution of Mutational Robustness Neutral Evolution of Mutational Robustness Erik van Nimwegen James P. Crutchfield Martijn Huynen SFI WORKING PAPER: 1999-03-021 SFI Working Papers contain accounts of scientific work of the author(s) and

More information

Systems Biology in Photosynthesis INTRODUCTION

Systems Biology in Photosynthesis INTRODUCTION 1 / 26 Systems Biology in Photosynthesis INTRODUCTION Rainer Machné Institute for Theoretical Chemistry, University of Vienna, Austria PSI - Photon System Instruments, Czech Republic Brno, April, 2011

More information

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

Enzyme reaction example of Catalysis, simplest form: E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate V 41 Enzyme Kinetics Enzyme reaction example of Catalysis, simplest form: k 1 E + S k -1 ES E at beginning and ES k 2 k -2 E + P at end of reaction No consumption of E (ES): enzyme-substrate complex Intermediate

More information

I N N O V A T I O N L E C T U R E S (I N N O l E C) Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A.

I N N O V A T I O N L E C T U R E S (I N N O l E C) Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN, MASSACHUSETTS, U.S.A. I N N O V A T I O N L E C T U R E S (I N N O l E C) Binding and Kinetics for Experimental Biologists Lecture 2 Evolutionary Computing: Initial Estimate Problem Petr Kuzmič, Ph.D. BioKin, Ltd. WATERTOWN,

More information

Chemical kinetics and catalysis

Chemical kinetics and catalysis Chemical kinetics and catalysis Outline Classification of chemical reactions Definition of chemical kinetics Rate of chemical reaction The law of chemical raction rate Collision theory of reactions, transition

More information

Baryon spectroscopy with spatially improved quark sources

Baryon spectroscopy with spatially improved quark sources Baryon spectroscopy with spatially improved quark sources T. Burch,, D. Hierl, and A. Schäfer Institut für Theoretische Physik Universität Regensburg D-93040 Regensburg, Germany. E-mail: christian.hagen@physik.uni-regensburg.de

More information

STAAR Biology Assessment

STAAR Biology Assessment STAAR Biology Assessment Reporting Category 1: Cell Structure and Function The student will demonstrate an understanding of biomolecules as building blocks of cells, and that cells are the basic unit of

More information

BarMap & SundialsWrapper

BarMap & SundialsWrapper BarMap & SundialsWrapper advanced RN folding kinetics Stefan Badelt Institute for Theoretical hemistry Theoretical Biochemistry roup stef@tbi.univie.ac.at February 17, 215 1 Outline BarMap.pm & SundialsWrapper.pm

More information

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design

VCE BIOLOGY Relationship between the key knowledge and key skills of the Study Design and the Study Design VCE BIOLOGY 2006 2014 Relationship between the key knowledge and key skills of the 2000 2005 Study Design and the 2006 2014 Study Design The following table provides a comparison of the key knowledge (and

More information

Foundations of Chemical Kinetics. Lecture 30: Transition-state theory in the solution phase

Foundations of Chemical Kinetics. Lecture 30: Transition-state theory in the solution phase Foundations of Chemical Kinetics Lecture 30: Transition-state theory in the solution phase Marc R. Roussel Department of Chemistry and Biochemistry Transition-state theory in solution We revisit our original

More information

BIOLOGY I: COURSE OVERVIEW

BIOLOGY I: COURSE OVERVIEW BIOLOGY I: COURSE OVERVIEW The academic standards for High School Biology I establish the content knowledge and skills for Tennessee students in order to prepare them for the rigorous levels of higher

More information

The neutral theory of molecular evolution

The neutral theory of molecular evolution The neutral theory of molecular evolution Introduction I didn t make a big deal of it in what we just went over, but in deriving the Jukes-Cantor equation I used the phrase substitution rate instead of

More information