All Excuses must be taken to 233 Loomis before 4:15, Monday, May 1.

Size: px
Start display at page:

Download "All Excuses must be taken to 233 Loomis before 4:15, Monday, May 1."

Transcription

1 Miscellaneous Notes The end is near don t get behind. All Excuses must be taken to 233 Loomis before 4:15, Monday, May 1. The PHYS 213 final exam times are * 8-10 AM, Monday, May 7 * 8-10 AM, Tuesday, May 8 and * 1:30-3:30 PM, Friday, May 11. The deadline for changing your final exam time is 10pm, Monday, May 1. Homework 6 is due Tuesday, May 2 at 8 am. (NO late turnin). Course Survey = 2 bonus points (soon to accessible in SmartPhysics) Lecture 17, p 1

2 Lecture 17 Applications of Free Energy Minimum Semiconductors, doped Law of Atmospheres, revisited Reference for this Lecture: Elements Ch 12 Reference for Lecture 19: Elements Ch 13 Lecture 17, p 2

3 Last time: Intrinsic Semiconductors Energy gap, E = E = 0 At T = 0: Conduction band has no electrons Valence band totally filled with electrons We now have the tools to solve for the equilibrium density of e-h pairs: 1. Since they act like ideal gases, the chemical potentials are n µ h = kt ln n h Qh n e µ e = + kt ln nqe 2. Electrons and holes are created in pairs total free energy is minimized when n h ne nhne µ h + µ e = 0 = kt ln + + kt ln = + kt ln nqh nqe nqhnqe 3. For a pure semiconductor, n e = n h = n i ( intrinsic pair density ) 2 n hne nhne ni n kt i ln = = = e = e nqhnqe kt nqhnqe nqhnqe nq The quantum density for an e-h pair is n Q (n Qe n Qh ) 1/2. 2kT Compare to I-V result (p. 11). Lecture 17, p 3

4 Doping of Semiconductors At T = 0, in a pure semiconductor the valence band is completely filled with electrons, and there are none in the conduction band. Suppose we replace one Si atom with a P atom. Phosphorous has one more electron, which is very weakly bound (its is very small), and will almost certainly end up in the conduction band. Think of Shockley s garage. If we add one car, it will have to go into the upper level, and there are still no vacancies (holes) in the lower level. Phosphorus is called a donor atom. Silicon (Group IV) Phosphorous (Group V) Si Si Si Si Si Si Si P Si Si Si An extra (free) electron. No extra hole. The addition of impurities that have a different number (more or fewer) of valence electrons is called doping. It can have a dramatic effect on the material s electrical properties. With doping, we no longer have N e = N h. Instead, N e = N h + N d, where N d is the number of donor atoms. More of Shockley s cartoon Lecture 17, p 4

5 ACT 1 We can also replace Si atoms with Al. Aluminum has one fewer electron than silicon. What is the relation between N e and N h in this case? Silicon (Group IV) Aluminum (Group III) Si Si Si Si Si Si Si Al Si Si Si a) N e = N h - N Al b) N e = N h c) N e = N h + N Al Lecture 17, p 5

6 Solution We can also replace Si atoms with Al. Aluminum has one fewer electron than silicon. What is the relation between N e and N h in this case? Silicon (Group IV) Aluminum (Group III) Si Si Si Si Si Si Si Al Si Si Si a) N e = N h - N Al b) N e = N h c) N e = N h + N Al We are missing some valence electrons, so even when N e (electrons in the conduction band) is zero, we have one hole per Aluminum atom. Look at the p-type part of Shockley s cartoon. Aluminum is called an acceptor atom. In the equations, acceptors act like negative N d. Lecture 17, p 6

7 Doping of Semiconductors (2) We can follow the same procedure to minimize the free energy. Assume n d <<n Q. (This is called light doping.) F = 0 implies that µ e + µ h = 0. This is again like the vacancy-interstitial problem. ne nh µ e + µ h = + kt ln( ) + kt ln( ) = 0 n n Qe Qh n e = n h + n d Assume: n e and n h << n Q. n n Solution: or n e n h = n i 2 e h kt = e 2 Q n Typically, n d >> n i. Therefore n e = n i + n d n d. Almost all of the free (conduction) electrons come from the dopant atoms. For Si at T = 300 K: nenh 10 2 n Q This is an example of the law of mass action. intrinsic pair density n i = n e = n h n Q = (n Qe n Qh ) 1/2 If there were no doping, both n e /n Q and n h /n Q would be ~ Even a small amount of doping: n d /n Q = 10-7, increases n e dramatically and suppresses n h. n e /n Q ~ 10-7, n h /n Q ~ In the I-V problem, adding interstitial atoms to a crystal reduces the number of vacancies. 19 Lecture 17, p 7

8 Summary: Particle equilibrium in Semiconductors µ µ = + = = 2 / kt F 0 e h 0 nenh nqe if n e and n h << n Q. Pure (intrinsic) semiconductor n e = n h = n i = n Q e - /2kT Doped semiconductor n i is called the intrinsic carrier concentration = intrinsic e-h pair concentration n e = n h + n d n e n h = n i 2 The law of mass action. This is valid for intrinsic and doped semiconductors. Lecture 17, p 8

9 Example: Law of Mass Action The addition of impurities increases the crystal s conductivity. Let s add n d = /m 3 phosphorous atoms to Si produces. Using the intrinsic carrier density, n I, that we calculated for silicon, compute the density of holes, n h, in this doped crystal. Lecture 17, p 9

10 Solution The addition of impurities increases the crystal s conductivity. Let s add n d = /m 3 phosphorous atoms to Si produces. Using the intrinsic carrier density, n I, that we calculated for silicon, compute the density of holes, n h, in this doped crystal. n I = << n d, so n e n d. This doping overwhelms the intrinsic carrier density. n e n h, but n e n h = n i2 still holds. Law of Mass Action ( ) 2 2 ni n h = = = /m 24 n The addition of electrons has depressed the density of holes by over 8 orders of magnitude! e Question: Is atoms/m 3 a lot or a little? Hint: There are Si atoms/m 3. Lecture 17, p 10

11 Act 2 Suppose you have a piece of dirty silicon, with lots of unwanted phosphorous impurities (making the conductivity too high because there are too many free electrons). What might you do to fix this? a) dope with more phosphorous b) dope with a different type of donor c) dope with an acceptor atom, like boron Lecture 17, p 11

12 Solution Suppose you have a piece of dirty silicon, with lots of unwanted phosphorous impurities (making the conductivity too high because there are too many free electrons). What might you do to fix this? a) dope with more phosphorous b) dope with a different type of donor c) dope with an acceptor atom, like boron Adding more donors will only make the problem worse. Adding more acceptor atoms, we increase the number of holes. Since n e n h = constant, increasing the number of holes decreases the number of free electrons. This technique is called compensation. Lecture 17, p 12

13 Last Time Thumbnail review of free energy: Equilibrium corresponds to maximum S tot = S reservoir + S small system. When we calculate S, we only need to know the temperature of the reservoir. In minimizing F (equivalent to maximizing S tot ) we don t have to deal explicitly with S reservoir. Consider exchange of material (particles) between two containers. These are two small systems in equilibrium with a reservoir (not shown) at temperature T. In equilibrium, df/dn 1 = 0: df df df df df dn dn dn dn dn df dn = + = = df = dn The derivative of free energy with respect to particle number is so important that we define a special name and symbol for it: 0 N 1 N 2 F = F 1 +F 2 N 1 µ i dfi dn i The chemical potential of subsystem i For two subsystems exchanging particles, the equilibrium condition is: µ 1 = µ 2 Maximum Total Entropy Minimum Free Energy Equal chemical potentials Lecture 17, p 13

14 Why Bother with Yet Another Definition? Answer: It makes the various equilibrium conditions look the same: Exchange of: σ d 1 d 2 Volume: = p 1 = p 2 dv dv σ 1 2 d 1 d 2 Energy: = T 1 = T 2 du du df1 df2 Particles: = µ 1 = µ 2 dn dn σ σ System 1 System 2 The two systems can exchange volume, energy, or particles. Why does the last equation use df/dn, instead of dσ/dn? Remember that there is a thermal reservoir (not shown). When particles are exchanged, the reservoir s entropy might change. (It might gain or lose energy.) That s what F takes care of. Lecture 17, p 14

15 Physical Significance of µ Last time we looked at the chemical potential for an ideal (monatomic) gas: Consider the case of no external potential (u is a constant): µ = kt ln(n) - constant. Apply it to the free expansion problem: µ high µ low µ F n = u + kt ln N V, T nq Remove the piston: Diffusion: Particles move from high µ to low µ Some time later: In equilibrium, µ is the same everywhere. Lecture 17, p 15

16 Equilibrium and Chemical Potential Recall the situation when systems can exchange energy. The definition of temperature: 1/T = ds/du (holding V and N fixed) tells us that temperatures are equal in thermal equilibrium. Otherwise we could increase S by exchanging some energy. We also know what happens when the systems are out of equilibrium (unequal T). Because high T means a small derivative, energy flows from the hot system to the cold one. Let s look at the situation when we have particle exchange. From the definition of chemical potential, we have already seen that in thermal and particle equilibrium, the chemical potentials are equal: µ 1 = µ 2. Out of equilibrium (µ 1 > µ 2 ): The larger µ system has a larger df/dn, so particles flow from high µ to low µ. Note that dµ/dn (= d 2 F/dN 2 ) must be positive, or equilibrium isn t stable. F µ N 1 F V, T energy particles 2 N Lecture 17, p 16

17 Build Your Intuition A process will happen spontaneously if the free energy would be decreased. This is just another way of saying that, left on their own, systems will tend to thermal equilibrium, i.e., minimum free energy. If you have to do work on a system (the opposite of a spontaneous process), you are increasing the free energy of the system. Why do matches burn (after you strike them)? The burned state has less free energy than the unburned state. Why must you strike the match? There is an energy barrier - it needs help getting started. F A local minimum of F unburned burned Lecture 17, p 17

18 Next Monday Chemical equilibria - Law of mass action again Surface chemistry Phase equilibria and chemical potentials Lecture 17, p 18

Lecture 16. Equilibrium and Chemical Potential. Free Energy and Chemical Potential Simple defects in solids Intrinsic semiconductors

Lecture 16. Equilibrium and Chemical Potential. Free Energy and Chemical Potential Simple defects in solids Intrinsic semiconductors Lecture 16 Equilibrium and Chemical Potential Free Energy and Chemical Potential Simple defects in solids Intrinsic semiconductors Reference for this Lecture: Elements Ch 11 Reference for Lecture 12: Elements

More information

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material

Key Questions. ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I 9/10/12. Class Outline: Effective Mass Intrinsic Material 9/1/1 ECE 34 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Things you should know when you leave Key Questions What is the physical meaning of the effective mass What does a negative effective

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic LECTURE 23 Lecture 16-20 Digital Circuits, Logic 1 We need a smart switch, i.e., an electronically controlled switch 2 We need a gain element for example, to make comparators. The device of our dreams

More information

ECE 442. Spring, Lecture -2

ECE 442. Spring, Lecture -2 ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture -2 Semiconductor physics band structures and charge carriers 1. What are the types of

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 8/30/2007 Semiconductor Fundamentals Lecture 2 Read: Chapters 1 and 2 Last Lecture: Energy Band Diagram Conduction band E c E g Band gap E v Valence

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

The Periodic Table III IV V

The Periodic Table III IV V The Periodic Table III IV V Slide 1 Electronic Bonds in Silicon 2-D picture of perfect crystal of pure silicon; double line is a Si-Si bond with each line representing an electron Si ion (charge +4 q)

More information

Ga and P Atoms to Covalent Solid GaP

Ga and P Atoms to Covalent Solid GaP Ga and P Atoms to Covalent Solid GaP Band Gaps in Binary Group III-V Semiconductors Mixed Semiconductors Affect of replacing some of the As with P in GaAs Band Gap (ev) (nm) GaAs 1.35 919 (IR) GaP 2.24

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline:

ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: ECE 340 Lecture 6 : Intrinsic and Extrinsic Material I Class Outline: Effective Mass Intrinsic Material Extrinsic Material Things you should know when you leave Key Questions What is the physical meaning

More information

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration in Semiconductors - V 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Motion and Recombination of Electrons and

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

PHYS208 p-n junction. January 15, 2010

PHYS208 p-n junction. January 15, 2010 1 PHYS208 p-n junction January 15, 2010 List of topics (1) Density of states Fermi-Dirac distribution Law of mass action Doped semiconductors Dopinglevel p-n-junctions 1 Intrinsic semiconductors List of

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I Lecture (02) Introduction to Electronics II, PN Junction and Diodes I By: Dr. Ahmed ElShafee ١ Agenda Current in semiconductors/conductors N type, P type semiconductors N Type Semiconductor P Type Semiconductor

More information

3.7 Physical Operation of Diodes

3.7 Physical Operation of Diodes 10/4/2005 3_7 Physical Operation of Diodes blank.doc 1/2 3.7 Physical Operation of Diodes Reading Assignment: pp. 190200, 203205 A. Semiconductor Materials Q: So, what exactly is a junction diode made

More information

Semiconductor Physics. Lecture 3

Semiconductor Physics. Lecture 3 Semiconductor Physics Lecture 3 Intrinsic carrier density Intrinsic carrier density Law of mass action Valid also if we add an impurity which either donates extra electrons or holes the number of carriers

More information

Lecture (02) PN Junctions and Diodes

Lecture (02) PN Junctions and Diodes Lecture (02) PN Junctions and Diodes By: Dr. Ahmed ElShafee ١ I Agenda N type, P type semiconductors N Type Semiconductor P Type Semiconductor PN junction Energy Diagrams of the PN Junction and Depletion

More information

Lecture 2 Electrons and Holes in Semiconductors

Lecture 2 Electrons and Holes in Semiconductors EE 471: Transport Phenomena in Solid State Devices Spring 2018 Lecture 2 Electrons and Holes in Semiconductors Bryan Ackland Department of Electrical and Computer Engineering Stevens Institute of Technology

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1

EE 346: Semiconductor Devices. 02/08/2017 Tewodros A. Zewde 1 EE 346: Semiconductor Devices 02/08/2017 Tewodros A. Zewde 1 DOPANT ATOMS AND ENERGY LEVELS Without help the total number of carriers (electrons and holes) is limited to 2ni. For most materials, this is

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003 6.012 - Microelectronic Devices and Circuits - Spring 2003 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium February 13, 2003

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20

PH575 Spring Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp ; Ch. 20 PH575 Spring 2014 Lecture #19 Semiconductors: electrical & optical properties: Kittel Ch. 8 pp. 205-214; Ch. 20 Simplified diagram of the filling of electronic band structure in various types of material,

More information

PHYS208 P-N Junction. Olav Torheim. May 30, 2007

PHYS208 P-N Junction. Olav Torheim. May 30, 2007 1 PHYS208 P-N Junction Olav Torheim May 30, 2007 1 Intrinsic semiconductors The lower end of the conduction band is a parabola, just like in the quadratic free electron case (E = h2 k 2 2m ). The density

More information

Semiconductor-Detectors

Semiconductor-Detectors Semiconductor-Detectors 1 Motivation ~ 195: Discovery that pn-- junctions can be used to detect particles. Semiconductor detectors used for energy measurements ( Germanium) Since ~ 3 years: Semiconductor

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood ELECTRONIC I Lecture 1 Introduction to semiconductor By Asst. Prof Dr. Jassim K. Hmood SOLID-STATE ELECTRONIC MATERIALS Electronic materials generally can be divided into three categories: insulators,

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections

Lecture 3b. Bonding Model and Dopants. Reading: (Cont d) Notes and Anderson 2 sections Lecture 3b Bonding Model and Dopants Reading: (Cont d) Notes and Anderson 2 sections 2.3-2.7 The need for more control over carrier concentration Without help the total number of carriers (electrons and

More information

Lecture 18: Semiconductors - continued (Kittel Ch. 8)

Lecture 18: Semiconductors - continued (Kittel Ch. 8) Lecture 18: Semiconductors - continued (Kittel Ch. 8) + a - Donors and acceptors J U,e e J q,e Transport of charge and energy h E J q,e J U,h Physics 460 F 2006 Lect 18 1 Outline More on concentrations

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model Today MOS Structure Basic Idea Semiconductor Physics Metals, insulators Silicon lattice

More information

Doped Semiconductors *

Doped Semiconductors * OpenStax-CNX module: m1002 1 Doped Semiconductors * Bill Wilson This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 1.0 To see how we can make silicon a useful

More information

Semiconductors (Chất1bán1dẫn)

Semiconductors (Chất1bán1dẫn) To describe the properties of n-type and p-type semiconductors and how a pn jun formed To study a diode and the characteristics of diode 1-1 Atomic Structure Atomic1Structure An atom is the smallest particle

More information

EE 346: Semiconductor Devices

EE 346: Semiconductor Devices EE 346: Semiconductor Devices Lecture - 6 02/06/2017 Tewodros A. Zewde 1 DENSTY OF STATES FUNCTON Since current is due to the flow of charge, an important step in the process is to determine the number

More information

smal band gap Saturday, April 9, 2011

smal band gap Saturday, April 9, 2011 small band gap upper (conduction) band empty small gap valence band filled 2s 2p 2s 2p hybrid (s+p)band 2p no gap 2s (depend on the crystallographic orientation) extrinsic semiconductor semi-metal electron

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules.

From Last Time Important new Quantum Mechanical Concepts. Atoms and Molecules. Today. Symmetry. Simple molecules. Today From Last Time Important new Quantum Mechanical Concepts Indistinguishability: Symmetries of the wavefunction: Symmetric and Antisymmetric Pauli exclusion principle: only one fermion per state Spin

More information

Lecture 15. Available Work and Free Energy. Lecture 15, p 1

Lecture 15. Available Work and Free Energy. Lecture 15, p 1 Lecture 15 Available Work and Free Energy U F F U -TS Lecture 15, p 1 Helpful Hints in Dealing with Engines and Fridges Sketch the process (see figures below). Define and Q c and W by (or W on ) as positive

More information

Lecture 7: Extrinsic semiconductors - Fermi level

Lecture 7: Extrinsic semiconductors - Fermi level Lecture 7: Extrinsic semiconductors - Fermi level Contents 1 Dopant materials 1 2 E F in extrinsic semiconductors 5 3 Temperature dependence of carrier concentration 6 3.1 Low temperature regime (T < T

More information

Due to the quantum nature of electrons, one energy state can be occupied only by one electron.

Due to the quantum nature of electrons, one energy state can be occupied only by one electron. In crystalline solids, not all values of the electron energy are possible. The allowed intervals of energy are called allowed bands (shown as blue and chess-board blue). The forbidden intervals are called

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR A semiconductor in which the impurity atoms are added by doping process is called Extrinsic semiconductor. The addition of impurities increases the carrier

More information

Semiconductor Device Physics

Semiconductor Device Physics 1 Semiconductor Device Physics Lecture 3 http://zitompul.wordpress.com 2 0 1 3 Semiconductor Device Physics 2 Three primary types of carrier action occur inside a semiconductor: Drift: charged particle

More information

n i exp E g 2kT lnn i E g 2kT

n i exp E g 2kT lnn i E g 2kT HOMEWORK #10 12.19 For intrinsic semiconductors, the intrinsic carrier concentration n i depends on temperature as follows: n i exp E g 2kT (28.35a) or taking natural logarithms, lnn i E g 2kT (12.35b)

More information

Lecture 4. Density of States and Fermi Energy Concepts. Reading: (Cont d) Pierret

Lecture 4. Density of States and Fermi Energy Concepts. Reading: (Cont d) Pierret C 3040 Dr. Alan Doolittle Lecture 4 Density of States and Fermi nergy Concepts Reading: (Cont d Pierret 2.1-2.6 C 3040 Dr. Alan Doolittle Density of States Concept Quantum Mechanics tells us that the number

More information

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01

Nature of Lesson (Lecture/Tutorial) H3 WK No. Day/ Date. Remarks. Duration. 4.00pm 6.30pm ALL. 2.5 hours. Introduction to Semiconductors Lecture 01 JANUARY 2018 INTAKE Subject : Semiconductor Physics & Devices Venue : HCI Schedule : Mondays for Tutorial (3pm 5pm / 5pm 7pm) or Tuesdays for Tutorial (3pm 5pm / 5pm 7pm) and Thursdays for Lecture (4pm-6.30

More information

The Semiconductor in Equilibrium

The Semiconductor in Equilibrium Lecture 6 Semiconductor physics IV The Semiconductor in Equilibrium Equilibrium, or thermal equilibrium No external forces such as voltages, electric fields. Magnetic fields, or temperature gradients are

More information

EECS130 Integrated Circuit Devices

EECS130 Integrated Circuit Devices EECS130 Integrated Circuit Devices Professor Ali Javey 9/18/2007 P Junctions Lecture 1 Reading: Chapter 5 Announcements For THIS WEEK OLY, Prof. Javey's office hours will be held on Tuesday, Sept 18 3:30-4:30

More information

Lecture 2 - Carrier Statistics in Equilibrium. September 5, 2002

Lecture 2 - Carrier Statistics in Equilibrium. September 5, 2002 6.720J/3.43J Integrated Microelectronic Devices Fall 2002 Lecture 21 Lecture 2 Carrier Statistics in Equilibrium Contents: September 5, 2002 1. Conduction and valence bands, bandgap, holes 2. Intrinsic

More information

Chem 481 Lecture Material 3/20/09

Chem 481 Lecture Material 3/20/09 Chem 481 Lecture Material 3/20/09 Radiation Detection and Measurement Semiconductor Detectors The electrons in a sample of silicon are each bound to specific silicon atoms (occupy the valence band). If

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative

Chem 241. Lecture 24. UMass Amherst Biochemistry... Teaching Initiative Chem 241 Lecture 24 UMass Amherst Biochemistry... Teaching Initiative Announcement Mistake we have class on the 3 rd not 4 th Exam 3 Originally scheduled April 23 rd (Friday) What about April 26 th (Next

More information

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor

ESE 372 / Spring 2013 / Lecture 5 Metal Oxide Semiconductor Field Effect Transistor Metal Oxide Semiconductor Field Effect Transistor V G V G 1 Metal Oxide Semiconductor Field Effect Transistor We will need to understand how this current flows through Si What is electric current? 2 Back

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

Recitation 2: Equilibrium Electron and Hole Concentration from Doping

Recitation 2: Equilibrium Electron and Hole Concentration from Doping Recitation : Equilibrium Electron and Hole Concentration from Doping Here is a list of new things we learned yesterday: 1. Electrons and Holes. Generation and Recombination 3. Thermal Equilibrium 4. Law

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

Chapter 1 Semiconductor basics

Chapter 1 Semiconductor basics Chapter 1 Semiconductor basics ELEC-H402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and hole-electron pair Intrinsic silicon properties Doped

More information

Isolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands

Isolated atoms Hydrogen Energy Levels. Neuromorphic Engineering I. Solids Energy bands. Metals, semiconductors and insulators Energy bands Isolated atoms Hydrogen Energy Levels Neuromorphic Engineering I INI-404 227-1033-00 Electron in atoms have quantized energy levels Material courtesy of Elisabetta Chicca Bielefeld University, Germany

More information

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002

Introduction into defect studies. in ceramic materials(iii) Structure, Defects and Defect Chemistry. Z. Wang. January 18, 2002 Introduction into defect studies in ceramic materials(iii) Structure, Defects and Defect Chemistry Z. Wang January 18, 2002 1. Mass, Charge and Site Balance The Schottky reactions for NaCl and MgO, respectively,

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 23, 2018 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2018 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Being virtually killed by a virtual laser in a virtual space is just as effective as the real thing, because you are as dead as you think you are. -Douglas Adams, Mostly Harmless David J. Starling Penn

More information

Fundamentals of Semiconductor Devices Prof. Digbijoy N. Nath Centre for Nano Science and Engineering Indian Institute of Science, Bangalore

Fundamentals of Semiconductor Devices Prof. Digbijoy N. Nath Centre for Nano Science and Engineering Indian Institute of Science, Bangalore Fundamentals of Semiconductor Devices Prof. Digbijoy N. Nath Centre for Nano Science and Engineering Indian Institute of Science, Bangalore Lecture - 05 Density of states Welcome back. So, today is the

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes

Qualitative Picture of the Ideal Diode. G.R. Tynan UC San Diego MAE 119 Lecture Notes Qualitative Picture of the Ideal Diode G.R. Tynan UC San Diego MAE 119 Lecture Notes Band Theory of Solids: From Single Attoms to Solid Crystals Isolated Li atom (conducting metal) Has well-defined, isolated

More information

Intrinsic Semiconductors

Intrinsic Semiconductors Technische Universität Graz Institute of Solid State Physics Intrinsic Semiconductors ermi function f(e) is the probability that a state at energy E is occupied. f( E) 1 E E 1 exp kt B ermi energy The

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 24, 2017 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2017 Khanna Lecture Outline! Semiconductor Physics " Band gaps "

More information

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Chemistry Instrumental Analysis Lecture 8. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 8 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 4-1 Contents: Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

More information

213 Midterm coming up

213 Midterm coming up 213 Midterm coming up Monday April 8 @ 7 pm (conflict exam @ 5:15pm) Covers: Lectures 1-12 (not including thermal radiation) HW 1-4 Discussion 1-4 Labs 1-2 Review Session Sunday April 7, 3-5 PM, 141 Loomis

More information

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 4: January 29, 2019 MOS Transistor Theory, MOS Model Penn ESE 570 Spring 2019 Khanna Lecture Outline! CMOS Process Enhancements! Semiconductor

More information

Semiconductor Physics Problems 2015

Semiconductor Physics Problems 2015 Semiconductor Physics Problems 2015 Page and figure numbers refer to Semiconductor Devices Physics and Technology, 3rd edition, by SM Sze and M-K Lee 1. The purest semiconductor crystals it is possible

More information

EE3901 A2001. Semiconductor Devices. Exam 1

EE3901 A2001. Semiconductor Devices. Exam 1 Name ECE Box # Problem Score Points 1 10 2 30 3 35 4 25 EE3901 A2001 Semiconductor Devices Exam 1 This is a closed book test! You are allowed one sheet (both sides) of notes. Note: Potentially useful reference

More information

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carrier Mobility and Hall Effect. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carrier Mobility and Hall Effect 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 calculation Calculate the hole and electron densities

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination

Lecture 8. Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Lecture 8 Equations of State, Equilibrium and Einstein Relationships and Generation/Recombination Reading: (Cont d) Notes and Anderson 2 sections 3.4-3.11 Energy Equilibrium Concept Consider a non-uniformly

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester

Physics 121, April 24. Heat and the First Law of Thermodynamics. Department of Physics and Astronomy, University of Rochester Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information

Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, Physics 121. April 24, Course Information Physics 121, April 24. Heat and the First Law of Thermodynamics. Physics 121. April 24, 2008. Course Information Topics to be discussed today: Heat First law of thermodynamics Second law of thermodynamics

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information