Semiconductors (Chất1bán1dẫn)

Size: px
Start display at page:

Download "Semiconductors (Chất1bán1dẫn)"

Transcription

1 To describe the properties of n-type and p-type semiconductors and how a pn jun formed To study a diode and the characteristics of diode 1-1 Atomic Structure Atomic1Structure An atom is the smallest particle of an element that contains three basic particles: (positive charge) and neutrons (uncharged particles) that make up the nucleus (core Atom1(nguyên1tử):1the1smallest1particle1of1an1element1that1 atom and electrons (negative charge) that orbit around the nucleus. Semiconductors (Chất1bán1dẫn) contains1three1basis1particles protons1(positive1charge) neutrons1(uncharged1particles) electrons1(negative1charge):1 orbit1around1the1nucleus. insulators in its ability to conduct electrical current. They are 2 characterized by atoms with four valence electrons. E.g.: silicon, germanium, and carbon! Energy bands Semiconductors,1Conductors,1and1Insulators When an electron acquires enough additional energy, leaves the valence shell, The difference in energy between the valence band and the conduction band is called become a free electron, and exists in conduction band. Semiconductors,1Conductors,1and1Insulators an energy gap. This is the amount of energy that a valence electron must have in Materials1can1be1classified1into131groups: Energy1bands: order to jump from the valence band to the conduction band Conductors:1have-one-valence-electron-(điện-tử-hóa-trị)-that1 loosely1bound1to1the1atom.1this1valence1electron1can1easily1 break1away1from1their1atoms1and1become1free1electron.1 E.g.:1copper,1silver,1aluminum,1gold Energy1gap:1amount1of1energy1that1a1valence1electron1must1 figure below shows the energy diagrams for insulators, semiconductors, and The have1in1order1to1jump1from1the1valence1band1(miền1hóa1trị)1to1 conductors. the1conduction1band1(miền1dẫn). Insulators:1material1that1does-not-conduct-electrical-current1 under1normal1conditions.1the1valence1electrons1are1tightly1 bound1to1the1atoms. Semiconductors:1material1that1is1between1conductors1and1 insulators1in1its1ability1to1conduct1electrical1current.1they1are1 characterized1by1atoms1with1four-valence-electrons. 3 4 Energy diagrams for the three types of materials a) insulators have a very wide energy gap

2 Atomic1Structure1of1Semiconductors Covalent1Bond1(liên1kết1hóa1trị) 8 (2)5/6 The Pure Silicon Crystal Each atom exchanges an electron with a neighbor to form a covalent bond. Each atom has four neighbors to bond with. Covalent Bond 1-4 Conduction in Semiconductors 1-3 Covalent Bonds When a valence electron has sufficient 5energy to jump to the conduction band, becoming free or conduction electron. When this happen, a vacancy is left in the valence band within the Figures below show how each silicon atom positions itself with four adjacent silicon crystal and this vacancy is known as hole. This creating an electron-hole pairs as shown below: atoms to form a silicon crystal. A silicon atom with its four valence electron shares an electron Conduction1in1Semiconductors with each of its four neighbors. This creates eight valence electron for each atom and produces a state of chemical stability and covalent bonds that hold the atoms together. 6 When a voltage is applied across the intrinsic silicon, there will be a movement of free Conduction1in1Semiconductors electrons, which are easily attracted toward the positive end. And this movement of free electron is called electron current. Whereas electrons that remain in the valence band are still attached to the atom and are not Two1current1types: free to move randomly as free electron. However, it can move into nearby hole thus leaving! An intrinsic crystal is one that has no impurities another where it comes from. It is seems like the hole has moved from one place to another Electron1current:1the1movement1of1free1electrons. hole in the crystal structure and is called as hole current Hole1current:1the1movement1of1holes1that1move1from1one1place1 to1another1in1the1crystal1structure. At1higher1temperatures,1thermal1energy1can1cause1an1electron1 to1leave1its1covalent1bond 1Pure1silicon1crystal1at1high1temperature1 1some1electrons1 are1freed1 1leave1behind1a1hole1 1conduction1current1may1 occur.occurs when a conduction- band electron loses energy and falls back into a Recombination hole in the valence band. There will be an equal number of holes in the valence band created 7 when these electrons jump into the conduction band. 8

3 Intrinsic1semiconductor N[type1and1P[type1semiconductors Intrinsic1semiconductor1(bán1dẫn1thuần1[1bán1dẫn1nội1tại):1 N[type1semiconductor undoped1semiconductor1that1has1no1impurities. 1Pentavalent1impurity1atom1 In1intrinsic1semiconductor:1 covalent1bonds1with1four1 adjacent1silicon1atoms1 1leave1 Whereas in the p region, one1extra1electron1without1 bonds. minimum1energy1required1to1free1an1electron1(bandgap1energy) the1absolute1temperature covalent1bonds1with1four1 adjacent1silicon1atoms1 1result1 as the electrons from n region one1hole1since1four1electrons1 required. move a loses holes as the electron and holes in p region combine. T 1The1pentavalent1atom1gives1up1 1The1trivalent1atom1can1take1an1 Eg ni2 = kt 3 exp pentavalent To increase the number of conduction band electrons in intrinsic silicon, kt an1electron1 1donor1atom.ions) charges (trivalent impurity atom is added. When a pentavalent atom (five valence electron) impurity such as 1Majority1carriers:1electrons. electron. 1Minority1carriers:1holes. arsenic (As), phosphorus (P), bismuth (Bi) and antimony (Sb) are added, each pentavalent atom forms covalent bonds with four adjacent silicon atoms. And this will leave one extra electron without bonds and will become a conduction electron because 9 it is not attached to chất1nhóm13)1with1three1valence1 electrons1is1added. 1Each1pentavalent1atom1forms1 1Each1trivalent1atom1forms1 n = p = ni! N-Type semiconductor 1Trivalent1impurity1atom1(tạp1 (tạp1chất1nhóm15)1with1five1 valence1electrons1is1added. density1of1free1electrons1n1=1density1of1free1holes1p ni1depends1on: P[type1semiconductor electron1 1acceptor1atom. near the junction since the trivalent ato 1Majority1carriers:1holes. 1Minority1carriers:1electrons. 10 any atom. Because the pentavalent atom gives up an electron, it is called a donor atom This doping process, silicon or germanium doped with pentavalent atom will give n-type three of the boron atom are used in covalent bonds. Because the trivalent atom can take semiconductor because most of current carriers are electrons which are called the majority an electron, it is referred as acceptor atom. carriers and a few holes that are created in n-type materials are called minority carriers. N[type1and1P[type1semiconductors Since most of the current carriers are holes, it is called a p-type semiconductor and because of the absence of electrons, gives a net positive charge on the atom. And the majority carriers are holes and electrons in p-type are the minority carriers. These two layers of positive and negative charges form the deple quickly and is very thin compared to the n region and p region. When1N[type1and1P[type1dopants1are1introduced1side[by[side1 in1a1semiconductor,1a1pn1junction1is1formed.! P-Type semiconductors And in order to increase the number of holes in intrinsic silicon, trivalent atoms are added. When trivalent (three valence electrons) impurity atoms are added such as boron (B), indium (In), and gallium (Ga), each trivalent electron forms covalent bonds with The Diode four adjacent silicon atoms. This will result one hole since four electrons required and all Diode is created when we combine together a piece of N-type and P-type. For both types, 12

4 Whereas in the p region, as the electrons from n region move across the junction, the p region loses holes as the electron and holes in p region combine. This creates a layer of negative charges (trivalent ions) near the junction since the trivalent atoms in p region have gained an electron. In1the1n[region,1free1electrons1near1the1junction1begin1to1 diffuse1across1the1junction1into1p[region1where1they1combine1 These two layers of positive and negative charges form the depletion region that is formed very with1holes1near1the1junction1 1create1a1layer1of1positive1 quickly and is very thin compared to the n region and p region. charges. In1the1p[region,1as1the1electrons1from1n1region1move1across1the1 junction,1the1holes1in1the1p1region1are1lost1 1create1a1layer1of1 negative1charges. Electrons1continue1to1diffuse1to1holes1across1the1junction1 1create1 more1positive1and1negative1charges1near1the1depletion1region. Many1positive1and1negative1charges1on1opposite1sides1of1the1p[n1 junction1 1form1an1electric-field-(điện-trường-tiếp-xúc). Two1current1types: These1two1layers1form1 the1depletion-region (miền-nghèo).! At the point of there are no electrons left in n-region conduction band with enough energy to 13 Minority[carrier 1drift1current1(dòng1trôi):1caused1by1minority1 carriers1sweeping1across1the1junction1due1to1the1electric1field. The1potential1difference1of1the1electric1field1across1the1depletion1 region1is1called1barrier-potential-(hàng-rào-điện-thế). Equilibrium1is1established1when1there s1no1further1diffusion1of1 electrons Biasing The Diode Majority[carrier 1diffusion1current1(dòng1khuếch1tán):1caused1by1 majority1carriers1diffusing1into1other1region. across the junction, the junction is at equilibrium, where the depletion region is complete because diffusion has ceased As no electrons move through the pn junction at equilibrium, we need to bias the diode. Bias refers to the use of dc voltage to establish certain operating conditions for an electronic device. There are two bias conditions: As electrons continue to diffuse to condition holes across the junction, this will creates more positive Forward-biasIs the that allows current through the p-n junction. Figure below and Forward1bias:1the1condition1that1allows1current1through1the1 negative chargesshows near athe depletion region is formed. A point is direction reachedtowhere totalbias. negative dc voltage source connected across a diode in the producethe forward pn1junction. The external bias repels voltage any is designated VBIAS. The sideinto of VBIAS is connected to charge in the depletion region further as diffusion ofnegative electrons p-region and the The1negative1side1of1V the BIAS1is1connected1to1the1n1region. n region of the diode and positive side is connected to the p region. The bias voltage, V must be greater than the barrier potential. The resistor, R, limits the current to a value The1positive1side1of1V is1connected1to1the1p1region.1 BIAS11 will not damage the pn structure. The1bias1voltage1V that BIAS1must1be1greater1than1the1barrier1 diffusion stops, where equilibrium is established. BIAS As many positive and negative charges on opposite sides of the p-n junction, this will form a potential. field of forces called an electric field. This electric field is a barrier to the free electrons in the n-region and external energy must be applied to get the electrons to move across the barrier of the electric field in the depletion region. The potential difference of the electric field across the depletion region is the amount of voltage required to move the electrons through the electric The1negative1side1of1the1bias[voltage1source1pushes1the1free1electrons1 in1n1region1toward1the1junction1and1provides1a1continuous1flow1of1 electrons1through1the1external1connection1(conductor)1into1the1n1 region. The bias-voltage gives sufficient energy to the free electrons to overcome the barrier 10 The1positive1side1of1the1bias1voltage1source1anracts1the1valence1 potential electrons1toward1the1left1end1of1the1p1region.1the1holes1in1the1p1 of the depletion region and move on into the p region. Once in the p region, these conduction electrons have lost energy and combine with holes in the valence band region1move1to1the1right1toward1the1junction. 15 Refers the figure below, as the same charges repel, the negative side of the bias-voltage source pushes the free electrons in n region toward the junction. This flow of free electrons is 16 And as unlike charges attract, the positive side of the bias voltage source attracts the valence electrons toward the left end of the p region. The electrons move from one hole to the next

5 Reverse1Bias1(phân1cực1ngược) Reverse1Bias:1the1condition1that1essentially1prevents1current1! Reverse Bias-through1the1diode.1 is the condition that essentially prevents current through the diode. The external bias VBIAS, is connectedbias that1is1connected1to1the1n1region the positive side of VBIAS is connected to the n The1positive1side1of1V voltage BIAS1 The1depletion1region1is1much1wider1than1in1forward1bias region of the The1negative1side1of1V diode and the negative side is connected to the p region. The depletion region is is1connected1to1the1p1region.1 much wider than in forward bias 17! Reverse Bias- is the condition that essentially prevents current through the diode. The 18 As unlike charges attract, the positive side of the bias-voltage source pulls the free external bias voltage VBIAS, is connected that the positive side of VBIAS is electrons connected to nthe n away from the p-n junction. As the electrons flow toward the positive in the region, of the voltage region of the diode and the negative side is connected to the p region. Theside depletion regionsource, is additional positive ions are created. It also happen in the p region, Voltage[Current1Characteristics1 (Đặc1tuyến1Vol[Ampe) much wider than in forward bias electrons from the negative side of the voltage source enter as valence electrons and move from 14 he condition that essentially prevents current through the diode. The ge VBIAS, is connected that the positive side of VBIAS is connected to the n e and the negative side is connected to the p region. The depletion region is n forward bias As unlike charges attract, the positive side of the bias-voltage source pulls the free electrons in the n region, away from the p-n junction. As the electrons flow toward the positive side of the voltage source, additional positive ions are created. It also happen in the p region, 19 electrons from the negative side of the voltage source enter as valence electrons and move from For both forward and reverse currents, as the temperature is increased, both currents will also increase.

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I Lecture (02) Introduction to Electronics II, PN Junction and Diodes I By: Dr. Ahmed ElShafee ١ Agenda Current in semiconductors/conductors N type, P type semiconductors N Type Semiconductor P Type Semiconductor

More information

Lecture (02) PN Junctions and Diodes

Lecture (02) PN Junctions and Diodes Lecture (02) PN Junctions and Diodes By: Dr. Ahmed ElShafee ١ I Agenda N type, P type semiconductors N Type Semiconductor P Type Semiconductor PN junction Energy Diagrams of the PN Junction and Depletion

More information

ITT Technical Institute ET215 Devices I Unit 1

ITT Technical Institute ET215 Devices I Unit 1 ITT Technical Institute ET215 Devices I Unit 1 Chapter 1 Chapter 2, Sections 2.1-2.4 Chapter 1 Basic Concepts of Analog Circuits Recall ET115 & ET145 Ohms Law I = V/R If voltage across a resistor increases

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA Lesson 1: Diodes and Applications Semiconductors Figure 1-1 The Bohr model of an atom showing electrons in orbits

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Page 10-1 Atomic Theory It is necessary to know what goes on at the atomic level of a semiconductor so the characteristics of the semiconductor can be understood. In many cases a

More information

Atoms? All matters on earth made of atoms (made up of elements or combination of elements).

Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Chapter 1 Atoms? All matters on earth made of atoms (made up of elements or combination of elements). Atomic Structure Atom is the smallest particle of an element that can exist in a stable or independent

More information

CLASS 12th. Semiconductors

CLASS 12th. Semiconductors CLASS 12th Semiconductors 01. Distinction Between Metals, Insulators and Semi-Conductors Metals are good conductors of electricity, insulators do not conduct electricity, while the semiconductors have

More information

Chapter 1 INTRODUCTION SEMICONDUCTORS MATERIAL

Chapter 1 INTRODUCTION SEMICONDUCTORS MATERIAL Chapter 1 INTRODUCTION TO SEMICONDUCTORS MATERIAL Objectives Discuss basic structures of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the conductions

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 2 Semiconductors Topics Covered in Chapter 2 Conductors Semiconductors Silicon crystals Intrinsic semiconductors Two types of flow Doping a

More information

3C3 Analogue Circuits

3C3 Analogue Circuits Department of Electronic & Electrical Engineering Trinity College Dublin, 2014 3C3 Analogue Circuits Prof J K Vij jvij@tcd.ie Lecture 1: Introduction/ Semiconductors & Doping 1 Course Outline (subject

More information

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1 Concept of Core Conductivity of conductor and semiconductor can also be explained by concept of Core. Core: Core is a part of an atom other than its valence electrons. Core consists of all inner shells

More information

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1) Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 Electronic (Semiconductor) Devices P-N Junctions (Diodes): Physical

More information

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the

SEMICONDUCTORS. Conductivity lies between conductors and insulators. The flow of charge in a metal results from the SEMICONDUCTORS Conductivity lies between conductors and insulators The flow of charge in a metal results from the movement of electrons Electros are negatively charged particles (q=1.60x10-19 C ) The outermost

More information

ECE 335: Electronic Engineering Lecture 2: Semiconductors

ECE 335: Electronic Engineering Lecture 2: Semiconductors Faculty of Engineering ECE 335: Electronic Engineering Lecture 2: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors

More information

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1 Lecture 2 Semiconductor Physics Sunday 4/10/2015 Semiconductor Physics 1-1 Outline Intrinsic bond model: electrons and holes Charge carrier generation and recombination Intrinsic semiconductor Doping:

More information

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

EE 446/646 Photovoltaic Devices I. Y. Baghzouz EE 446/646 Photovoltaic Devices I Y. Baghzouz What is Photovoltaics? First used in about 1890, the word has two parts: photo, derived from the Greek word for light, volt, relating to electricity pioneer

More information

1 1 THE ATOM. The Bohr Model HISTORY NOTE. Atomic Number

1 1 THE ATOM. The Bohr Model HISTORY NOTE. Atomic Number 2 INTRODUCTION TO ELECTRONICS 11 THE ATOM All matter is composed of atoms; all atoms consist of electrons, protons, and neutrons except normal hydrogen, which does not have a neutron. Each element in the

More information

A SEMICONDUCTOR DIODE. P-N Junction

A SEMICONDUCTOR DIODE. P-N Junction A SEMICONDUCTOR DIODE P-N Junction Analog Electronics Pujianto Department of Physics Edu. State University of Yogyakarta A Semiconductor Devices A Semiconductor devices can be defined as a unit which consists,

More information

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd

CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS. Reference: Electronic Devices by Floyd CLASS 1 & 2 REVISION ON SEMICONDUCTOR PHYSICS Reference: Electronic Devices by Floyd 1 ELECTRONIC DEVICES Diodes, transistors and integrated circuits (IC) are typical devices in electronic circuits. All

More information

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations

Lecture 1. OUTLINE Basic Semiconductor Physics. Reading: Chapter 2.1. Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Lecture 1 OUTLINE Basic Semiconductor Physics Semiconductors Intrinsic (undoped) silicon Doping Carrier concentrations Reading: Chapter 2.1 EE105 Fall 2007 Lecture 1, Slide 1 What is a Semiconductor? Low

More information

Electronics The basics of semiconductor physics

Electronics The basics of semiconductor physics Electronics The basics of semiconductor physics Prof. Márta Rencz, Gergely Nagy BME DED September 16, 2013 The basic properties of semiconductors Semiconductors conductance is between that of conductors

More information

n N D n p = n i p N A

n N D n p = n i p N A Summary of electron and hole concentration in semiconductors Intrinsic semiconductor: E G n kt i = pi = N e 2 0 Donor-doped semiconductor: n N D where N D is the concentration of donor impurity Acceptor-doped

More information

ECE 250 Electronic Devices 1. Electronic Device Modeling

ECE 250 Electronic Devices 1. Electronic Device Modeling ECE 250 Electronic Devices 1 ECE 250 Electronic Device Modeling ECE 250 Electronic Devices 2 Introduction to Semiconductor Physics You should really take a semiconductor device physics course. We can only

More information

First-Hand Investigation: Modeling of Semiconductors

First-Hand Investigation: Modeling of Semiconductors perform an investigation to model the behaviour of semiconductors, including the creation of a hole or positive charge on the atom that has lost the electron and the movement of electrons and holes in

More information

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood

ELECTRONIC I Lecture 1 Introduction to semiconductor. By Asst. Prof Dr. Jassim K. Hmood ELECTRONIC I Lecture 1 Introduction to semiconductor By Asst. Prof Dr. Jassim K. Hmood SOLID-STATE ELECTRONIC MATERIALS Electronic materials generally can be divided into three categories: insulators,

More information

Electronics EC /2/2012. * In-class exams: 40% 7 th week exam 25% 12 th week exam 15%

Electronics EC /2/2012. * In-class exams: 40% 7 th week exam 25% 12 th week exam 15% Arab Academy for Science, Technology and Maritime Transport Electronics EC 331 Dr. Mohamed Hassan Course Assessment * In-class exams: 40% 7 th week exam 25% 12 th week exam 15% *Tutorial exams and activities:

More information

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Introduction to Semiconductor Physics. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Introduction to Semiconductor Physics 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/cmp2013 Review of Semiconductor Physics Semiconductor fundamentals

More information

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices Physics 233 Experiment 48 Introduction to Semiconductor Devices References 1. G.W. Neudeck, The PN Junction Diode, Addison-Wesley MA 1989 2. Background notes (Appendix A) 3. Specification sheet for Diode

More information

Introduction to Electronics and Semiconductor

Introduction to Electronics and Semiconductor Introduction to Electronics and Semiconductor 1 Chapter Objectives To study and understand basic electronics. To study and understand semiconductor principles. 2 Definition Electronics is the branch of

More information

ECE 142: Electronic Circuits Lecture 3: Semiconductors

ECE 142: Electronic Circuits Lecture 3: Semiconductors Faculty of Engineering ECE 142: Electronic Circuits Lecture 3: Semiconductors Agenda Intrinsic Semiconductors Extrinsic Semiconductors N-type P-type Carrier Transport Drift Diffusion Semiconductors A semiconductor

More information

Introduction to Semiconductor Devices

Introduction to Semiconductor Devices Physics 233 Experiment 48 Introduction to Semiconductor Devices References 1. G.W. Neudeck, The PN Junction Diode, Addison-Wesley MA 1989 2. Background notes (Appendix A) 3. Specification sheet for Diode

More information

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering

SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering SRI VIDYA COLLEGE OF ENGINEERING AND TECHNOLOGY VIRUDHUNAGAR Department of Electronics and Communication Engineering Class/Sem:I ECE/II Question Bank for EC6201-ELECTRONIC DEVICES 1.What do u meant by

More information

EE301 Electronics I , Fall

EE301 Electronics I , Fall EE301 Electronics I 2018-2019, Fall 1. Introduction to Microelectronics (1 Week/3 Hrs.) Introduction, Historical Background, Basic Consepts 2. Rewiev of Semiconductors (1 Week/3 Hrs.) Semiconductor materials

More information

Introduction to Transistors. Semiconductors Diodes Transistors

Introduction to Transistors. Semiconductors Diodes Transistors Introduction to Transistors Semiconductors Diodes Transistors 1 Semiconductors Typical semiconductors, like silicon and germanium, have four valence electrons which form atomic bonds with neighboring atoms

More information

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Carriers Concentration in Semiconductors - V. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Carriers Concentration in Semiconductors - V 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Motion and Recombination of Electrons and

More information

PN Junction

PN Junction P Junction 2017-05-04 Definition Power Electronics = semiconductor switches are used Analogue amplifier = high power loss 250 200 u x 150 100 u Udc i 50 0 0 50 100 150 200 250 300 350 400 i,u dc i,u u

More information

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013. Diodes EE223 Digital & Analogue Electronics Derek Molloy 2012/2013 Derek.Molloy@dcu.ie Diodes: A Semiconductor? Conductors Such as copper, aluminium have a cloud of free electrons weak bound valence electrons

More information

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1 Engineering 2000 Chapter 8 Semiconductors ENG2000: R.I. Hornsey Semi: 1 Overview We need to know the electrical properties of Si To do this, we must also draw on some of the physical properties and we

More information

Chapter 1 Overview of Semiconductor Materials and Physics

Chapter 1 Overview of Semiconductor Materials and Physics Chapter 1 Overview of Semiconductor Materials and Physics Professor Paul K. Chu Conductivity / Resistivity of Insulators, Semiconductors, and Conductors Semiconductor Elements Period II III IV V VI 2 B

More information

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS

BASIC ELECTRONICS CONDUCTION IN SEMICONDUCTORS BASIC ELECTRONICS Subject Code: ELN-15/5 IA marks: 5 Hours per week : 04 Exam Hours 03 Total Hrs: 5 Exam Marks: 100 CHAPTER 1 CONDUCTION IN SEMICONDUCTORS Electrons and holes in an intrinsic semiconductors,

More information

FREQUENTLY ASKED QUESTIONS February 21, 2017

FREQUENTLY ASKED QUESTIONS February 21, 2017 FREQUENTLY ASKED QUESTIONS February 21, 2017 Content Questions How do you place a single arsenic atom with the ratio 1 in 100 million? Sounds difficult to get evenly spread throughout. Yes, techniques

More information

Semiconductor Detectors

Semiconductor Detectors Semiconductor Detectors Summary of Last Lecture Band structure in Solids: Conduction band Conduction band thermal conductivity: E g > 5 ev Valence band Insulator Charge carrier in conductor: e - Charge

More information

EXTRINSIC SEMICONDUCTOR

EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR EXTRINSIC SEMICONDUCTOR A semiconductor in which the impurity atoms are added by doping process is called Extrinsic semiconductor. The addition of impurities increases the carrier

More information

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors:

Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. Intrinsic semiconductors: Semiconductors 1. Explain different types of semiconductors in detail with necessary bond diagrams. There are two types of semi conductors. 1. Intrinsic semiconductors 2. Extrinsic semiconductors Intrinsic

More information

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced.

A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Semiconductor A semiconductor is an almost insulating material, in which by contamination (doping) positive or negative charge carriers can be introduced. Page 2 Semiconductor materials Page 3 Energy levels

More information

Semiconductor Physics and Devices

Semiconductor Physics and Devices The pn Junction 1) Charge carriers crossing the junction. 3) Barrier potential Semiconductor Physics and Devices Chapter 8. The pn Junction Diode 2) Formation of positive and negative ions. 4) Formation

More information

Basic Semiconductor Physics

Basic Semiconductor Physics 6 Basic Semiconductor Physics 6.1 Introduction With this chapter we start with the discussion of some important concepts from semiconductor physics, which are required to understand the operation of solar

More information

Ga and P Atoms to Covalent Solid GaP

Ga and P Atoms to Covalent Solid GaP Ga and P Atoms to Covalent Solid GaP Band Gaps in Binary Group III-V Semiconductors Mixed Semiconductors Affect of replacing some of the As with P in GaAs Band Gap (ev) (nm) GaAs 1.35 919 (IR) GaP 2.24

More information

Contents CONTENTS. Page 2 of 47

Contents CONTENTS. Page 2 of 47 J. A. Hargreaves Lockerbie Academy June 2015 Contents CONTENTS Contents... 2 CHAPTER 7 CONDUCTORS, SEMICONDUCTORS AND INSULATORS... 4 Summary of Content... 4 Summary of this chapter- notes from column

More information

KATIHAL FİZİĞİ MNT-510

KATIHAL FİZİĞİ MNT-510 KATIHAL FİZİĞİ MNT-510 YARIİLETKENLER Kaynaklar: Katıhal Fiziği, Prof. Dr. Mustafa Dikici, Seçkin Yayıncılık Katıhal Fiziği, Şakir Aydoğan, Nobel Yayıncılık, Physics for Computer Science Students: With

More information

David J. Starling Penn State Hazleton PHYS 214

David J. Starling Penn State Hazleton PHYS 214 Being virtually killed by a virtual laser in a virtual space is just as effective as the real thing, because you are as dead as you think you are. -Douglas Adams, Mostly Harmless David J. Starling Penn

More information

Review of Semiconductor Fundamentals

Review of Semiconductor Fundamentals ECE 541/ME 541 Microelectronic Fabrication Techniques Review of Semiconductor Fundamentals Zheng Yang (ERF 3017, email: yangzhen@uic.edu) Page 1 Semiconductor A semiconductor is an almost insulating material,

More information

CEMTool Tutorial. Semiconductor physics

CEMTool Tutorial. Semiconductor physics EMTool Tutorial Semiconductor physics Overview This tutorial is part of the EMWARE series. Each tutorial in this series will teach you a specific topic of common applications by explaining theoretical

More information

The photovoltaic effect occurs in semiconductors where there are distinct valence and

The photovoltaic effect occurs in semiconductors where there are distinct valence and How a Photovoltaic Cell Works The photovoltaic effect occurs in semiconductors where there are distinct valence and conduction bands. (There are energies at which electrons can not exist within the solid)

More information

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

ELECTRONIC DEVICES AND CIRCUITS SUMMARY ELECTRONIC DEVICES AND CIRCUITS SUMMARY Classification of Materials: Insulator: An insulator is a material that offers a very low level (or negligible) of conductivity when voltage is applied. Eg: Paper,

More information

3.7 Physical Operation of Diodes

3.7 Physical Operation of Diodes 10/4/2005 3_7 Physical Operation of Diodes blank.doc 1/2 3.7 Physical Operation of Diodes Reading Assignment: pp. 190200, 203205 A. Semiconductor Materials Q: So, what exactly is a junction diode made

More information

Semiconductor physics I. The Crystal Structure of Solids

Semiconductor physics I. The Crystal Structure of Solids Lecture 3 Semiconductor physics I The Crystal Structure of Solids 1 Semiconductor materials Types of solids Space lattices Atomic Bonding Imperfection and doping in SOLIDS 2 Semiconductor Semiconductors

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

ECE 442. Spring, Lecture -2

ECE 442. Spring, Lecture -2 ECE 442 Power Semiconductor Devices and Integrated circuits Spring, 2006 University of Illinois at Chicago Lecture -2 Semiconductor physics band structures and charge carriers 1. What are the types of

More information

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors

More information

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017

Misan University College of Engineering Electrical Engineering Department. Exam: Final semester Date: 17/6/2017 Misan University College of Engineering Electrical Engineering Department Subject: Electronic I Class: 1 st stage Exam: Final semester Date: 17/6/2017 Examiner: Dr. Baqer. O. TH. Time: 3 hr. Note: Answer

More information

Chapter 7. The pn Junction

Chapter 7. The pn Junction Chapter 7 The pn Junction Chapter 7 PN Junction PN junction can be fabricated by implanting or diffusing donors into a P-type substrate such that a layer of semiconductor is converted into N type. Converting

More information

Unit IV Semiconductors Engineering Physics

Unit IV Semiconductors Engineering Physics Introduction A semiconductor is a material that has a resistivity lies between that of a conductor and an insulator. The conductivity of a semiconductor material can be varied under an external electrical

More information

Determination of properties in semiconductor materials by applying Matlab

Determination of properties in semiconductor materials by applying Matlab Determination of properties in semiconductor materials by applying Matlab Carlos Figueroa. 1, Raúl Riera A. 2 1 Departamento de Ingeniería Industrial. Universidad de Sonora A.P. 5-088, Hermosillo, Sonora.

More information

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile

Electric Fields. Basic Concepts of Electricity. Ohm s Law. n An electric field applies a force to a charge. n Charges move if they are mobile Basic Concepts of Electricity oltage E Current I Ohm s Law Resistance R E = I R Electric Fields An electric field applies a force to a charge Force on positive charge is in direction of electric field,

More information

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136 CHAPTER 3 Semiconductors Introduction 135 3.1 Intrinsic Semiconductors 136 3.2 Doped Semiconductors 139 3.3 Current Flow in Semiconductors 142 3.4 The pn Junction 148 3.5 The pn Junction with an Applied

More information

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09 CLASS 6&7 p-n junction biasing, p-n I-V characteristics, p-n currents 1 p-n junction biasing Unbiased p-n junction: the potential barrier is 0.7 V for Si and 0.3 V for Ge. Nett current across the p-n junction

More information

Semiconductor Physics fall 2012 problems

Semiconductor Physics fall 2012 problems Semiconductor Physics fall 2012 problems 1. An n-type sample of silicon has a uniform density N D = 10 16 atoms cm -3 of arsenic, and a p-type silicon sample has N A = 10 15 atoms cm -3 of boron. For each

More information

Session 6: Solid State Physics. Diode

Session 6: Solid State Physics. Diode Session 6: Solid State Physics Diode 1 Outline A B C D E F G H I J 2 Definitions / Assumptions Homojunction: the junction is between two regions of the same material Heterojunction: the junction is between

More information

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications.

Semiconductors. Semiconductors also can collect and generate photons, so they are important in optoelectronic or photonic applications. Semiconductors Semiconducting materials have electrical properties that fall between true conductors, (like metals) which are always highly conducting and insulators (like glass or plastic or common ceramics)

More information

SEMICONDUCTOR DIODE. Unbiased (non-polarized) PN junction

SEMICONDUCTOR DIODE. Unbiased (non-polarized) PN junction SEMICONDUCTOR DIODE Semiconductor diode is an electronic element made of different types of extrinsic semiconductor: N-type semiconductor doped by donor impurities and P-type semiconductor doped by acceptor

More information

Chapter 1 Semiconductor basics

Chapter 1 Semiconductor basics Chapter 1 Semiconductor basics ELEC-H402/CH1: Semiconductor basics 1 Basic semiconductor concepts Semiconductor basics Semiconductors, silicon and hole-electron pair Intrinsic silicon properties Doped

More information

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr. Semiconductor Devices and Circuits Fall 2003 Midterm Exam Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering Name: Mat. -Nr.: Guidelines: Duration of the Midterm: 1 hour The exam is a closed

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today MOS MOS. Capacitor. Idea ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model Today MOS Structure Basic Idea Semiconductor Physics Metals, insulators Silicon lattice

More information

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor: 16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE Energy bands in Intrinsic and Extrinsic silicon: Energy Band Diagram of Conductor, Insulator and Semiconductor: 1 2 Carrier transport: Any motion

More information

SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS

SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS SOLID STATE ELECTRONICS DIGITAL ELECTRONICS SOFT CONDENSED MATTER PHYSICS The energy band occupied by the valence electrons is called valence band and is the highest filled band. Bnd occupied by the electrons

More information

SEMICONDUCTOR PHYSICS

SEMICONDUCTOR PHYSICS SEMICONDUCTOR PHYSICS by Dibyendu Chowdhury Semiconductors The materials whose electrical conductivity lies between those of conductors and insulators, are known as semiconductors. Silicon Germanium Cadmium

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur

Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Processing of Semiconducting Materials Prof. Pallab Banerji Department of Material Science Indian Institute of Technology, Kharagpur Lecture - 4 Doping in Semiconductors Good morning. Let us start with

More information

5. Semiconductors and P-N junction

5. Semiconductors and P-N junction 5. Semiconductors and P-N junction Thomas Zimmer, University of Bordeaux, France Summary Learning Outcomes... 2 Physical background of semiconductors... 2 The silicon crystal... 2 The energy bands... 3

More information

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic

LECTURE 23. MOS transistor. 1 We need a smart switch, i.e., an electronically controlled switch. Lecture Digital Circuits, Logic LECTURE 23 Lecture 16-20 Digital Circuits, Logic 1 We need a smart switch, i.e., an electronically controlled switch 2 We need a gain element for example, to make comparators. The device of our dreams

More information

Lecture 0. EE206 Electronics I

Lecture 0. EE206 Electronics I Lecture 0 Course Overview EE206 Electronics I Course description: Theory, characteristics and operation of diodes, bipolar junction transistors and MOSFET transistors. When: Tue Thu 10:30-12:20 (Lectures)

More information

! Previously: simple models (0 and 1 st order) " Comfortable with basic functions and circuits. ! This week and next (4 lectures)

! Previously: simple models (0 and 1 st order)  Comfortable with basic functions and circuits. ! This week and next (4 lectures) ESE370: CircuitLevel Modeling, Design, and Optimization for Digital Systems Lec 6: September 14, 2015 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Lec 6: September 18, 2017 MOS Model You are Here: Transistor Edition! Previously: simple models (0 and 1 st order) " Comfortable

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1 Diodes mplest nonlinear circuit element Basic operation sets the foundation for Bipolar Junction Transistors (BJTs) Also present in Field Effect Transistors (FETs) Ideal diode characteristic anode cathode

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Literature Glen F. Knoll, Radiation

More information

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it. Benha University Faculty of Engineering Shoubra Electrical Engineering Department First Year communications. Answer all the following questions Illustrate your answers with sketches when necessary. The

More information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor Lecture 2 Introduction to semiconductors Structures and characteristics in semiconductors Semiconductor p-n junction Metal Oxide Silicon structure Semiconductor contact Fabrication of semiconductor sensor

More information

ENERGY BANDS AND GAPS IN SEMICONDUCTOR. Muhammad Hafeez Javed

ENERGY BANDS AND GAPS IN SEMICONDUCTOR. Muhammad Hafeez Javed ENERGY BANDS AND GAPS IN SEMICONDUCTOR Muhammad Hafeez Javed www.rmhjaved.com rmhjaved@gmail.com Out Line Introduction Energy band Classification of materials Direct and indirect band gap of SC Classification

More information

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is CHAPTER 7 The PN Junction Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is uniformly doped with donor atoms.

More information

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature 1.9. Temperature Dependence of Semiconductor Conductivity Such dependence is one most important in semiconductor. In metals, Conductivity decreases by increasing temperature due to greater frequency of

More information

Semiconductor-Detectors

Semiconductor-Detectors Semiconductor-Detectors 1 Motivation ~ 195: Discovery that pn-- junctions can be used to detect particles. Semiconductor detectors used for energy measurements ( Germanium) Since ~ 3 years: Semiconductor

More information

Impurity Content of a Semiconductor Crystal

Impurity Content of a Semiconductor Crystal Impurity Content of a Semiconductor Crystal Experiment F1/3 Contents Impurity Content of a Semiconductor Crystal... 2 1 Aims... 2 Background... 3 Doping... 3 Crystal Growth... 4 The 4-point probe... 6

More information

ISSUES TO ADDRESS...

ISSUES TO ADDRESS... Chapter 12: Electrical Properties School of Mechanical Engineering Choi, Hae-Jin Materials Science - Prof. Choi, Hae-Jin Chapter 12-1 ISSUES TO ADDRESS... How are electrical conductance and resistance

More information

Chap. 11 Semiconductor Diodes

Chap. 11 Semiconductor Diodes Chap. 11 Semiconductor Diodes Semiconductor diodes provide the best resolution for energy measurements, silicon based devices are generally used for charged-particles, germanium for photons. Scintillators

More information

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006 Junction Diodes Most elementary solid state junction electronic devices. They conduct in one direction (almost correct). Useful when one converts from AC to DC (rectifier). But today diodes have a wide

More information