Dispersion relation (10 min)

Size: px
Start display at page:

Download "Dispersion relation (10 min)"

Transcription

1 Indiana chool lecture (black board); prepared by I.V.Danilkin (JLab, June, 5) Literature: [] M. E. Pekin and D. V. Schroeder. An Introduction to Quantum Field Theory. Wetview Pre, 995. [] Batian Kubi lecture [3] F. J. Yndurain. Low-energy pion phyic. arxiv: hep-ph/8,. Diperion relation ( min) Cauchy theorem d ' FH 'L FHL i () ' - G for holomorphic function FHL and G i a rectifiable path. We can alway deform the contour until the cloet ingularity. If FH L on the large emi-circle then d ' FH 'L FHL i d ' FH ' + i ΕL - d ' FH ' - i ΕL ' - i 4 m ' - i 4 m ' - d ' FH ' + i ΕL - FH ' - i ΕL d ' Dic FH 'L i 4 m ' - i 4 m ' - Dic FHL FH + i ΕL - FH - i ΕL G () Analyticity: FHL i 4 m d ' Dic FH 'L (3) ' - Reflection principle: F* H + i ΕL FH - i ΕL (4) allow to relate imaginary part of the amplitude (unitarity) to analytical continuation of the amplitude (i.e. diperion relation) Exercie: Dic FHL FH + i ΕL - FH - i ΕL FH + i ΕL - F* H + i ΕL i Im FHL Subtraction: In general, one can alway introduce ubtraction (5)

2 Documentation_Indiana_chool.nb FHL d ' ' Im FH 'L d ' Im FH 'L d ' Im FH 'L H - L d ' Im FH 'L + 4 m 4 m 4 m ' - ' - ' - ' - ' - ' - (6) A a reult we got an improved convergence at (due to additional power of ' in the denominator); um rule (when the integral converge) d ' Im FH 'L FH L 4 m (7) ' - Exercie: If the integral doe not converge ufficiently fat on the large emi-circle, derive diperive relation for (auming FH L i Real) FHL - FH L (8) - General formula. Note that by introducing ubtraction you improve the convergence at, however there are additional parameter to determine. n- FHL â i FHiL H L H - Li + i! H - Ln d ' Im FH 'L n H ' - L ' - (9) Calculation of the Dic ( min) Intead of making full loop calculation one can ue Cutkoky (cutting) rule: p - m + i Ε - i Ip - m M () Example: d4 l im 4 H L Il - m + i ΕM IHp - ll - m + i ΕM d4 l Dic M H-iL H L4 H- il Il - m M H- il IHp - ll - m M l + m l 4 d l d l l d l dw, Il - m M Il - l - m M IHp - ll - m M Ip + l - p l - m M I - p l p l - p l l l M, l, cm : p I, M, l Hl, ll ()

3 Documentation_Indiana_chool.nb p l p l - p l 4 l, cm : p I, M, l Hl, ll l d l i Dic M d W I - l l M Kl l dl l 3 - m l d l, I - l M 4 m i Dic M O - i Im M 8 Therefore 4 m Im M 6 ΡHL () 6 Pion vector form factor (5 min) We conider the proce of a tranition of a photon into a pair of pion. Thi i an important building block: repoible for a hadronic part of e+ e- + -, Τ- - ΝΤ,... The matrix element: Y+ HpL - HqL J Μ HL ] Hp - ql Μ FV HL (3) where J Μ i the EM current and FV HL i the pion vector form factor (normalized FV HL ). Thi proce doe not have any croed channel exchange and therefore no left-hand cut. Note alo, that the factor Hp - ql Μ inure gauge invariance when the two pion are on-hell (i.e. Hp - ql Μ Hp + ql Μ p - q m - m ). At very low energy the pion vector form factor can be calculated in Chiral Perturbation Theory (ΧPT). At NLO it read ()

4 4 Documentation_Indiana_chool.nb L ~ i A Μ H+ Μ Μ L FV HL + 6 H4 f L HL6 - L + 6 f (4) - I - 4 m M J HL + OI M, L6» 6 Improvement: diperion relation need to calculate the Dicontinuity (Cutkoky rule again) Hp - ql Μ Dic FV HL d4 l H-iL H L4 H- il Il - m M H- il IHp - ll - m M TI* H, zl Hp - ll Μ FV HL (5) p p + q, Hp + ql, z co Θ i c.m. angle note alo that Hp + ql 9,, p q l, p q l ΡHL We obtain Hp - ql Μ Dic FV HL Hp - ql... Exercie: Show that dw TI* H, i 64 ΡHL FV HL dw TI* H, zl Hp - ll Μ zl Hp - ll Μ L Hp + ql Μ + L Hp - ql Μ... then contract with Hp + ql, (6)

5 Documentation_Indiana_chool.nb 5 * * dw TI H, zl Hp - ll Μ Hp - ql Μ â z z TI H, zl (7) - where TI H, zl i the amplitude TI H, zl 3 âh l + L tli HL Pl HzL l (8) l l' â z Pl HzL Pl' HzL - l+ Since Dic FV HL i Im FV HL, we get Im FV HL ΡHL FV HL t* HL ΘI > 4 m M (9) If we conider only elatic cattering: t HL in HL e i HL ΡHL t* HL in HL e -i HL, ΡHL () Waton final tate theorem: the phae of the form factor i determined by the two-particle cattering phae hift: FV HL FV HL e i HL FV HL FV HL e i HL () Arg IFV HLM HL The full Omne Mukhelihvili problem ( min) We want to find the mot general repreentation for a function, FHL, which i the analytic in the complex plane with the cut from A4 m, E, auming that we know it phae on the cut, Arg HFHLL HL, > 4 m () Solution i not unique, if F HL i a olution, then eα F HL i a olution too. Need to know the aymptotic information! We look for a olution in the from FHL PHL WHL HWH + i ΕL - WH - i ΕLL WH + i ΕL in HL e -i HL, i e i HL - e -i HL WH + i ΕL i i e -i HL WH + i ΕL e - i HL WH - i ΕL i W H + i ΕL e- i HL WH - i ΕL, ln W H + i ΕL - i ln W H + i ΕL DicHln WHLL i HL Diperion relation i (3)

6 6 Documentation_Indiana_chool.nb ln WHL d ' DicHln WH 'LL d ' H 'L, 4 m ' - ' - d ' H 'L d ' H 'L WHL Exp, WHL Exp a + 4 m ' - 4 m ' ' - i 4 m WHL Exp d ' H 'L 4 m ' ' -, WHL (4) (5) One ubtraction: normalization WHL. The function W() i known a the Omne function. Many application! Exercie: Show that Arg WHL HL if HL Α, how WH L (6) Α Ue f H 'L d ' - i Ε f H 'L d p.v. ± i f HL (7) ' - If one aume aymptotic: FHL, then FV HL WHL Numerical implementation (5 min) WHL Exp Tangent tretching Let now conider the integral d ' H 'L 4 m ' ' - (8)

7 Documentation_Indiana_chool.nb 7 f HyL â y a In order to account the whole region, the replacement i needed y yhxl, which change the integrating range (a,) into (,) f HyL â y f HyHxLL a dy â x, yhxl a + Cext tg dx dy Cext x ; dx coi xm n f HyL â y â f Hyi L wi. i If the integrand i mooth, it i convenient to ue Gauian weight for integration. Few word about Cext : A you can ee y Hx L a + Cext. It mean that n/ point will be accounted before a + Cext and n/ after. It i very ueful when you know the general behavior of your function. If you do not, jut put it equal to unity, Cext. Example : Ù e-y â y << NumericalDifferentialEquationAnalyi` n ; Cext ; wg GauianQuadratureWeight@n,, D; yn + Table@Cext * Tan@ * wg@@i, DDD, 8i, n<d; Cext wgn TableBwg@@i, DD, 8i, n<f; Co@ wg@@i, DDD ^ Sum@Exp@-yn@@iDD ^ D wgn@@idd, 8i,, n<d Integrate@Exp@-y ^ D, 8y,., Infinity<D If the integral contain a quare root ingularity Iomething like Ùa f Iy, dy yhxl a + Cext tg x ; Cext dx y - a M â ym it i ueful to introduce another replacement tg x coi xm Principle value integral Very often one ha to take integral of the following form FHL 4 m â' f H 'L ΘI < 4 m M ' ' - - i Ε â ' f H 'L 4 m ' ' - â' f H 'L +ΘI > 4 m M 4 m ' ' - - i Ε (9) The latter integral can be written a â' f H 'L p.v. ' ' - -i Ε â ' f H 'L f HL + i (3) ' ' - For the p.v. integral we ue the following trick: p.v. â ' f H 'L ' ' - p.v. â ' f H 'L - f HL + f HL 4 m ' ' - â ' f H 'L - f HL ' ' - 4 m f HL ln m (3)

8 8 Documentation_Indiana_chool.nb p.v. 4 m 4 m â' ln ' H ' - L - 4 m All together (Omne function) WHL Exp d ' H 'L 4 m ' ' - (3) Exit@D; << NumericalDifferentialEquationAnalyi` SetDirectory@NotebookDirectory@DD; StyleLit 8AboluteThickne@.D, AbolutePointSize@5D, ð< & 8Blue, Red, Green, Purple<; SetOption@Plot, Frame -> True, Axe -> 8True, Fale<, PlotStyle -> StyleLit, ApectRatio ->.8, FrameStyle -> Directive@3DD; << PiPi_Madrid.m; mpi.38; mk ; Mrho.77; Ε.; LamPhShift.3; OmneNInt@ig_D@_D : Exp@ Pi * NIntegrate@deltaFinal@D@bD Hb Hb - - I ig ΕLL, 8b, 4 mpi ^, 4 mk ^, Infinity<, AccuracyGoal 5, MaxRecurion DD; nomn ; Cx.; wg GauianQuadratureWeight@nOmn,, D; 4 mpi ^ ; n + Table@Cx * Tan@Pi * wg@@i, DDD ^, 8i, nomn<d; wgn Table@Cx * * Tan@Pi * wg@@i, DDD * wg@@i, DD * Pi HCo@Pi * wg@@i, DDD ^ L, 8i, nomn<d; Deltan Table@deltaFinal@D@n@@iDDD, 8i, nomn<d; Clear@deltaD; OmneTemp@_D Exp@ * Sum@Deltan@@iDD Hn@@iDD Hn@@iDD - LL * wgn@@idd, 8i,, nomn<dd; OmneTemp@_D Exp@ * Sum@HDeltan@@iDD - deltal Hn@@iDD Hn@@iDD - LL * wgn@@idd, 8i,, nomn<dd; Omne@ig_D@_D : Which@ig, OmneTemp@D, ig ÈÈ ig -, delta delta@d@d; Which@ 4 mpi ^, OmneTemp@D, > 4 mpi ^, Exp@I * ig * delta@d@dd * Exp@delta Log@ H - LDD * OmneTemp@DDD; (3)

9 Documentation_Indiana_chool.nb ^ D * 8 Pi, 8par, mpi,.<, PlotPoint 5, MaxRecurion, PlotStyle 8Black, Thick<, FrameLabel " HL">F, DeltaExp@D, ImageSize 85, 5<F HL 5 GraphicRowB:PlotBRe@Omne@D@par ^ DD, 8par, mpi,.<, PlotStyle 8Black<, MaxRecurion, PlotPoint, PlotRange All, ImageSize 85, 5<, FrameLabel "ReHWHLL">F, PlotB8Im@Omne@D@par ^ DD<, 8par, mpi,.<, PlotStyle 8Black<, MaxRecurion, PlotPoint, PlotRange All, ImageSize 85, 5<, FrameLabel "ImHWHLL">F>F ImHWHLL ReHWHLL Omne@D@D OmneNInt@D@D ä

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS

OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS FIELD THEORY, GRAVITATION AND PARTICLE PHYSICS OMNÈS REPRESENTATIONS WITH INELASTIC EFFECTS FOR HADRONIC FORM FACTORS IRINEL CAPRINI National Intitute of Phyic and Nuclear Engineering POB MG 6, Bucharet,

More information

March 18, 2014 Academic Year 2013/14

March 18, 2014 Academic Year 2013/14 POLITONG - SHANGHAI BASIC AUTOMATIC CONTROL Exam grade March 8, 4 Academic Year 3/4 NAME (Pinyin/Italian)... STUDENT ID Ue only thee page (including the back) for anwer. Do not ue additional heet. Ue of

More information

arxiv: v3 [hep-ph] 8 Oct 2015

arxiv: v3 [hep-ph] 8 Oct 2015 Diperive approache for three-particle final tate interaction Peng Guo,,,, I. V. Danilkin,,, and Adam P. Szczepaniak Phyic Department, Indiana Univerity, Bloomington, IN 4745, USA Center For Exploration

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

Lecture 23 Date:

Lecture 23 Date: Lecture 3 Date: 4.4.16 Plane Wave in Free Space and Good Conductor Power and Poynting Vector Wave Propagation in Loy Dielectric Wave propagating in z-direction and having only x-component i given by: E

More information

Linear System Fundamentals

Linear System Fundamentals Linear Sytem Fundamental MEM 355 Performance Enhancement of Dynamical Sytem Harry G. Kwatny Department of Mechanical Engineering & Mechanic Drexel Univerity Content Sytem Repreentation Stability Concept

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE POLITONG SHANGHAI BASIC AUTOMATIC CONTROL June Academic Year / Exam grade NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE Ue only thee page (including the bac) for anwer. Do not ue additional

More information

PoS(WC2004)043. arxiv:hep-ph/ v1 30 Nov Derivative Dispersion Relations. Regina Fonseca Ávila

PoS(WC2004)043. arxiv:hep-ph/ v1 30 Nov Derivative Dispersion Relations. Regina Fonseca Ávila arxiv:hep-ph/0411401v1 30 Nov 004 Intituto de Matemática, Etatítica e Computação Científica Univeridade Etadual de Campina, UNICAMP 13083-970 Campina, SP, Brazil E-mail: rfa@ifi.unicamp.br Márcio Joé Menon

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE5 - Fall 5 Microelectronic Device and ircuit Lecture 9 Second-Order ircuit Amplifier Frequency Repone Announcement Homework 8 due tomorrow noon Lab 7 next week Reading: hapter.,.3. Lecture Material Lat

More information

Finite volume effects for masses and decay constants

Finite volume effects for masses and decay constants Finite volume effects for masses and decay constants Christoph Haefeli University of Bern Exploration of Hadron Structure and Spectroscopy using Lattice QCD Seattle, March 27th, 2006 Introduction/Motivation

More information

Lie series An old concept going back to Sophus Lie, but already used by Newton and made rigorous by Cauchy. Widely exploited, e.g.

Lie series An old concept going back to Sophus Lie, but already used by Newton and made rigorous by Cauchy. Widely exploited, e.g. ÄÁ Ë ÊÁ Ë Æ ÄÁ ÌÊ ÆË ÇÊÅË Lie erie An old concept going back to Sophu Lie, but already ued by Newton and made rigorou by Cauchy Widely exploited, eg, in differential geometry Ued a a method for numerical

More information

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1

Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Calculus I Homework: The Derivatives of Polynomials and Exponential Functions Page 1 Questions Example Differentiate the function y = ae v + b v + c v 2. Example Differentiate the function y = A + B x

More information

FY3464 Quantum Field Theory Exercise sheet 10

FY3464 Quantum Field Theory Exercise sheet 10 Exercie heet 10 Scalar QED. a. Write down the Lagrangian of calar QED, i.e. a complex calar field coupled to the photon via D µ = µ + iqa µ. Derive the Noether current and the current to which the photon

More information

Lecture 6: Resonance II. Announcements

Lecture 6: Resonance II. Announcements EES 5 Spring 4, Lecture 6 Lecture 6: Reonance II EES 5 Spring 4, Lecture 6 Announcement The lab tart thi week You mut how up for lab to tay enrolled in the coure. The firt lab i available on the web ite,

More information

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is

CONTROL SYSTEMS. Chapter 5 : Root Locus Diagram. GATE Objective & Numerical Type Solutions. The transfer function of a closed loop system is CONTROL SYSTEMS Chapter 5 : Root Locu Diagram GATE Objective & Numerical Type Solution Quetion 1 [Work Book] [GATE EC 199 IISc-Bangalore : Mark] The tranfer function of a cloed loop ytem i T () where i

More information

Chapter 7. Root Locus Analysis

Chapter 7. Root Locus Analysis Chapter 7 Root Locu Analyi jw + KGH ( ) GH ( ) - K 0 z O 4 p 2 p 3 p Root Locu Analyi The root of the cloed-loop characteritic equation define the ytem characteritic repone. Their location in the complex

More information

Digital Control System

Digital Control System Digital Control Sytem Summary # he -tranform play an important role in digital control and dicrete ignal proceing. he -tranform i defined a F () f(k) k () A. Example Conider the following equence: f(k)

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

c = ω k = 1 v = ω k = 1 ²µ

c = ω k = 1 v = ω k = 1 ²µ 3. Electromagtic Wave 3.5. Plama wave A plama i an ionized ga coniting of charged particle (e.g., electron and ion). Variou wave can be excited eaily in a plama. Wave phenomena have been an important ubject

More information

6. KALMAN-BUCY FILTER

6. KALMAN-BUCY FILTER 6. KALMAN-BUCY FILTER 6.1. Motivation and preliminary. A wa hown in Lecture 2, the optimal control i a function of all coordinate of controlled proce. Very often, it i not impoible to oberve a controlled

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

LECTURE 12: LAPLACE TRANSFORM

LECTURE 12: LAPLACE TRANSFORM LECTURE 12: LAPLACE TRANSFORM 1. Definition and Quetion The definition of the Laplace tranform could hardly be impler: For an appropriate function f(t), the Laplace tranform of f(t) i a function F () which

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

Introduction to chiral perturbation theory II Higher orders, loops, applications

Introduction to chiral perturbation theory II Higher orders, loops, applications Introduction to chiral perturbation theory II Higher orders, loops, applications Gilberto Colangelo Zuoz 18. July 06 Outline Introduction Why loops? Loops and unitarity Renormalization of loops Applications

More information

4. Three-body properties Φ(s,m 2 ) = M(s)+

4. Three-body properties Φ(s,m 2 ) = M(s)+ . Three-body propertie Φ(,m 2 ) = M() 2M() (m 1) 2 1 (,m 2,)Φ(,m 2 ) Intereted in m 2 behaviour.1 Three-body unitarity Γ (m 1) 2 = Γ (m 1) 2 dic m 2 =9 Φ(,m 2 ) = Φ(,m 2 ) Φ(,m 2 ) = 2M( ) (m 1) 2 1 [Φ(,m2

More information

4.6 Principal trajectories in terms of amplitude and phase function

4.6 Principal trajectories in terms of amplitude and phase function 4.6 Principal trajectorie in term of amplitude and phae function We denote with C() and S() the coinelike and inelike trajectorie relative to the tart point = : C( ) = S( ) = C( ) = S( ) = Both can be

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

ME2142/ME2142E Feedback Control Systems

ME2142/ME2142E Feedback Control Systems Root Locu Analyi Root Locu Analyi Conider the cloed-loop ytem R + E - G C B H The tranient repone, and tability, of the cloed-loop ytem i determined by the value of the root of the characteritic equation

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Non-Maxwell-Boltzmann statistics in spin-torque devices: calculating switching rates and oscillator linewidths

Non-Maxwell-Boltzmann statistics in spin-torque devices: calculating switching rates and oscillator linewidths Non-axwell-Boltzmann tatitic in pin-torque device: calculating witching rate and ocillator linewidth P. B.Vicher and D.. Apalkov Department of Phyic and Atronomy Thi project wa upported by NSF grant #

More information

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab

Chapter #4 EEE8013. Linear Controller Design and State Space Analysis. Design of control system in state space using Matlab EEE83 hapter #4 EEE83 Linear ontroller Deign and State Space nalyi Deign of control ytem in tate pace uing Matlab. ontrollabilty and Obervability.... State Feedback ontrol... 5 3. Linear Quadratic Regulator

More information

Jul 4, 2005 turbo_code_primer Revision 0.0. Turbo Code Primer

Jul 4, 2005 turbo_code_primer Revision 0.0. Turbo Code Primer Jul 4, 5 turbo_code_primer Reviion. Turbo Code Primer. Introduction Thi document give a quick tutorial on MAP baed turbo coder. Section develop the background theory. Section work through a imple numerical

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

region 0 μ 0, ε 0 d/2 μ 1, ε 1 region 1 d/2 region 2 μ 2, ε 2

region 0 μ 0, ε 0 d/2 μ 1, ε 1 region 1 d/2 region 2 μ 2, ε 2 W.C.Chew ECE 35 Lecture Note 4. Dielectric Waveguie (Slab). When a wave i incient from a meium with higher ielectric contant at an interface of two ielectric meia, total internal reection occur when the

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Flat Paband/Stopband Filter T j T j Lowpa Bandpa T j T j Highpa Bandreject Review from Lat

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

7-5-S-Laplace Transform Issues and Opportunities in Mathematica

7-5-S-Laplace Transform Issues and Opportunities in Mathematica 7-5-S-Laplace Tranform Iue and Opportunitie in Mathematica The Laplace Tranform i a mathematical contruct that ha proven very ueful in both olving and undertanding differential equation. We introduce it

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN

Introduction to the physics of hard probes in hadron collisions: lecture I. Michelangelo Mangano TH Division, CERN Introduction to the physics of hard probes in hadron collisions: lecture I Michelangelo Mangano TH Division, CERN michelangelo.mangano@cern.ch Contents The structure of the proton the initial-state : parton

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

Solving Radical Equations

Solving Radical Equations 10. Solving Radical Equation Eential Quetion How can you olve an equation that contain quare root? Analyzing a Free-Falling Object MODELING WITH MATHEMATICS To be proficient in math, you need to routinely

More information

arxiv:nucl-th/ v1 24 Oct 2003

arxiv:nucl-th/ v1 24 Oct 2003 J/ψ-kaon cro ection in meon exchange model R.S. Azevedo and M. Nielen Intituto de Fíica, Univeridade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil Abtract arxiv:nucl-th/0310061v1 24 Oct 2003

More information

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins

DIFFERENTIAL EQUATIONS Laplace Transforms. Paul Dawkins DIFFERENTIAL EQUATIONS Laplace Tranform Paul Dawkin Table of Content Preface... Laplace Tranform... Introduction... The Definition... 5 Laplace Tranform... 9 Invere Laplace Tranform... Step Function...

More information

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005.

SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuits II. Solutions to Assignment 3 February 2005. SIMON FRASER UNIVERSITY School of Engineering Science ENSC 320 Electric Circuit II Solution to Aignment 3 February 2005. Initial Condition Source 0 V battery witch flip at t 0 find i 3 (t) Component value:

More information

Hybrid Control and Switched Systems. Lecture #6 Reachability

Hybrid Control and Switched Systems. Lecture #6 Reachability Hbrid Control and Switched Stem Lecture #6 Reachabilit João P. Hepanha Univerit of California at Santa Barbara Summar Review of previou lecture Reachabilit tranition tem reachabilit algorithm backward

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 151 Lecture 7 Scattering Problem (Chapter 3) What We Did Lat Time Dicued Central Force Problem l Problem i reduced to one equation mr = + f () r 3 mr Analyzed qualitative behavior Unbounded,

More information

Charles Masenas Balancing the Segway

Charles Masenas   Balancing the Segway Charle Maena cmaena@alum.rpi.edu http://nxtotherway.web.com Balancing the Segway 2 Segway Slidehow.nb Objective To demontrate that uing available oftware to olve ytem of differential equation, it i not

More information

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R

Suggestions - Problem Set (a) Show the discriminant condition (1) takes the form. ln ln, # # R R Suggetion - Problem Set 3 4.2 (a) Show the dicriminant condition (1) take the form x D Ð.. Ñ. D.. D. ln ln, a deired. We then replace the quantitie. 3ß D3 by their etimate to get the proper form for thi

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor T o T T o T F o, Q o F T m,q m T m T m T mo Aumption: 1. Homogeneou Sytem 2. Single Reaction 3. Steady State Two type of problem: 1. Given deired

More information

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r

( 7) ( 9) ( 8) Applying Thermo: an Example of Kinetics - Diffusion. Applying Thermo: an Example of Kinetics - Diffusion. dw = F dr = dr (6) r Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

Lecture 7: Testing Distributions

Lecture 7: Testing Distributions CSE 5: Sublinear (and Streaming) Algorithm Spring 014 Lecture 7: Teting Ditribution April 1, 014 Lecturer: Paul Beame Scribe: Paul Beame 1 Teting Uniformity of Ditribution We return today to property teting

More information

11.5 MAP Estimator MAP avoids this Computational Problem!

11.5 MAP Estimator MAP avoids this Computational Problem! .5 MAP timator ecall that the hit-or-mi cot function gave the MAP etimator it maimize the a oteriori PDF Q: Given that the MMS etimator i the mot natural one why would we conider the MAP etimator? A: If

More information

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that

Problem 1. Construct a filtered probability space on which a Brownian motion W and an adapted process X are defined and such that Stochatic Calculu Example heet 4 - Lent 5 Michael Tehranchi Problem. Contruct a filtered probability pace on which a Brownian motion W and an adapted proce X are defined and uch that dx t = X t t dt +

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

B physics results from the Tevatron mixing and CP violation

B physics results from the Tevatron mixing and CP violation phyic reult from the Tevatron mixing and CP violation for the CDF and DØD collaboration Moriond EW 2009 La Thuile, Italy 1 Introduction Mixing meaurement M (DØ & CDF) Semileptonic aymmetry A l Mixing interference

More information

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S - 6302 Feedback ytem Recitation 6: teadytate Error Prof Joel L Dawon A valid performance metric for any control ytem center around the final error when the ytem reache teadytate That i, after all initial

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr

Lecture #5: Introduction to Continuum Mechanics Three-dimensional Rate-independent Plasticity. by Dirk Mohr Lecture #5: 5-0735: Dynamic behavior of material and tructure Introduction to Continuum Mechanic Three-dimenional Rate-indeendent Platicity by Dirk Mohr ETH Zurich, Deartment of Mechanical and Proce Engineering,

More information

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1. 1 I. CONTINUOUS TIME RANDOM WALK The continuou time random walk (CTRW) wa introduced by Montroll and Wei 1. Unlike dicrete time random walk treated o far, in the CTRW the number of jump n made by the walker

More information

EE Control Systems LECTURE 14

EE Control Systems LECTURE 14 Updated: Tueday, March 3, 999 EE 434 - Control Sytem LECTURE 4 Copyright FL Lewi 999 All right reerved ROOT LOCUS DESIGN TECHNIQUE Suppoe the cloed-loop tranfer function depend on a deign parameter k We

More information

Standard Model. Overview

Standard Model. Overview Standard Model Quark mixing and CP violation Overview Quark weak and trong eigentate generation review K 0 mixing 3 generation review K 0 mixing, B 0 mixing CP violation Alternative parametriation of CKM

More information

Lecture 10: Forward and Backward equations for SDEs

Lecture 10: Forward and Backward equations for SDEs Miranda Holme-Cerfon Applied Stochatic Analyi, Spring 205 Lecture 0: Forward and Backward equation for SDE Reading Recommended: Pavlioti [204] 2.2-2.6, 3.4, 4.-4.2 Gardiner [2009] 5.-5.3 Other ection are

More information

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples

Root Locus Contents. Root locus, sketching algorithm. Root locus, examples. Root locus, proofs. Root locus, control examples Root Locu Content Root locu, ketching algorithm Root locu, example Root locu, proof Root locu, control example Root locu, influence of zero and pole Root locu, lead lag controller deign 9 Spring ME45 -

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

Quantum Field Theory 2011 Solutions

Quantum Field Theory 2011 Solutions Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki

More information

Class 4: More Pendulum results

Class 4: More Pendulum results Class 4: More Pendulum results The pendulum is a mechanical problem with a long and interesting history, from Galileo s first ansatz that the period was independent of the amplitude based on watching priests

More information

η ηππ in unitarized Resonance Chiral Theory

η ηππ in unitarized Resonance Chiral Theory η η in unitarized Resonance Chiral Theory Sergi Gonzàlez-Solís 1 Emilie Passemar 2 1 Institute of Theoretical Physics (Beijing) Chinese Academy of Sciences 2 Indiana University JLab (USA), 7 may 2018 Outline

More information

arxiv: v1 [hep-th] 10 Oct 2008

arxiv: v1 [hep-th] 10 Oct 2008 The boundary tate from open tring field arxiv:0810.1737 MIT-CTP-3990 UT-Komaba/08-14 IPMU 08-0074 arxiv:0810.1737v1 [hep-th] 10 Oct 2008 Michael Kiermaier 1,2, Yuji Okawa 3 and Barton Zwiebach 1 1 Center

More information

Applied Mathematics Letters

Applied Mathematics Letters Applied Mathematic Letter 24 (2 26 264 Content lit available at ScienceDirect Applied Mathematic Letter journal homepage: www.elevier.com/locate/aml Polynomial integration over the unit phere Yamen Othmani

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

LECTURE 22. Collective effects in multi-particle beams: Parasitic Losses. Longitudinal impedances in accelerators (continued)

LECTURE 22. Collective effects in multi-particle beams: Parasitic Losses. Longitudinal impedances in accelerators (continued) LECTURE Collective effect in multi-particle beam: Longitudinal impedance in accelerator Tranvere impedance in accelerator Paraitic Loe /7/0 USPAS Lecture Longitudinal impedance in accelerator (continued)

More information

Problems for SM/Higgs (I)

Problems for SM/Higgs (I) Problems for SM/Higgs (I) 1 Draw all possible Feynman diagrams (at the lowest level in perturbation theory) for the processes e + e µ + µ, ν e ν e, γγ, ZZ, W + W. Likewise, draw all possible Feynman diagrams

More information

Physics 220. Exam #1. April 22, 2016

Physics 220. Exam #1. April 22, 2016 Phyic 0 Exam #1 April, 016 Name Pleae read and follow thee intruction carefully: Read all problem carefully before attempting to olve them. Your work mut be legible, and the organization clear. You mut

More information

Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron

Measurements of the Masses, Mixing, and Lifetimes, of B Hadrons at the Tevatron Meaurement of the Mae, Mixing, and Lifetime, of Hadron at the Tevatron Mike Strau The Univerity of Oklahoma for the CDF and DØ Collaboration 5 th Rencontre du Vietnam Hanoi, Vietnam Augut 5-11, 2004 Outline

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

QED Vertex Correction: Working through the Algebra

QED Vertex Correction: Working through the Algebra QED Vertex Correction: Working through the Algebra At the one-loop level of QED, the PI vertex correction comes from a single Feynman diagram thus ieγ µ loop p,p = where reg = e 3 d 4 k π 4 reg ig νλ k

More information

Fundamental Physics of Force and Energy/Work:

Fundamental Physics of Force and Energy/Work: Fundamental Phyic of Force and Energy/Work: Energy and Work: o In general: o The work i given by: dw = F dr (5) (One can argue that Eqn. 4 and 5 are really one in the ame.) o Work or Energy are calar potential

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

Problem 1 (4 5 points)

Problem 1 (4 5 points) ACM95/b Problem Set 3 Solution /7/4 Problem (4 5 point) The following (trivial once you 'get it') problem i deigned to help thoe of you who had trouble with Problem Set ' problem 7c. It will alo help you

More information

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS SOLVING THE KONDO POBLEM FO COMPLEX MESOSCOPIC SYSTEMS V. DINU and M. ÞOLEA National Intitute of Material Phyic, Bucharet-Magurele P.O. Box MG-7, omania eceived February 21, 2005 Firt we preent the calculation

More information

arxiv:nucl-th/ v1 7 Jan 2003

arxiv:nucl-th/ v1 7 Jan 2003 Sytematic Regge theory analyi of omega photoproduction A. Sibirtev 1, K. Tuhima 1;;3 and S. Krewald 1; 1 Intitut für Kernphyik, Forchungzentrum Jülich, D-545 Jülich Special Reearch Center for the Subatomic

More information