Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Size: px
Start display at page:

Download "Overflow from last lecture: Ewald construction and Brillouin zones Structure factor"

Transcription

1 Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer and a 1, a 2, a 3 are primitive tranlation vector The reciprocal lattice i defined by (primitive) vector b 1, b 2, b 3 defined in the following way: b 1 = 2π a 2 a 3 a 1 a 2 a 3 b 2 = 2π a 3 a 1 a 1 a 2 a 3 b 3 = 2π a 1 a 2 a 1 a 2 a 3 The reciprocal lattice i alo a lattice, with all point acceed by reciprocal lattice vector G = ν 1 b 1 + ν 2 b 2 + ν 3 b 3 Where ν 1, ν 2, ν 3 are integer Another important property of the reciprocal lattice i that R G = 2πn where n i an integer. One important application of the reciprocal lattice i diffraction a type of experiment ued to determine the repeating tructure of a crytal by hining x-ray, neutron, or electron onto the crytal and invetigating how much the beam i deflected. In previou coure, you might have een the Bragg forula for diffraction: 2dinθ = nλ Where n i an integer, λ i the wavelength of light (or debroglie wavelength of particle), and d i the pacing between identical crytal plane. Any crytal can be ubdivided into plane (containing atom) in everal different way. There i another way to expre thi ame formula uing the reciprocal lattice. If a plane wave with wavevector k i incident on the crytal (~e ik r )and the outgoing wave ha wavevector k (~e ik r ), a diffraction peak will be een only if k k = G We can alo ue the reciprocal lattice to find pacting between identical lattice plane more eaily. If we have a plane decribed by miller indice (hkl) It turn out that d(hkl) = 2π/ G where G = hb 1 + kb 2 + lb 3. It alo turn out that G hkl i normal to the plane decribed by the (hkl) miller index Ewald contruction

2 The Ewald contruction i a way of viualizing a diffraction experiment, and alo illutrating that reciprocal pace i an empty pace. 1. Draw reciprocal lattice 2. Pick a point at the origin and draw the wavevector of the incident beam, k, the outgoing beam, k, and their difference, Δk 3. Remember, if Δk = G (a reciprocal lattice vector), we will get contructed interference and a finite diffraction ignal 4. The vector k and k define a phere, the Ewald phere. If thi phere interect another point on the reciprocal lattice, the laue condition (tated in tep 3) will apply. However, thi i very difficult to accomplih jut by chance becaue the reciprocal lattice i mainly empty pace. 5. There are three way to get around thi difficulty Note: in the image above the difference between k and k i called K, but in the ret of thee note it i called G Method 1: rotate the crytal (The direct lattice i defined relative to the crytal, o when we rotate the crytal, we rotate the direct lattice, and hence we rotate the reciprocal lattice)

3 Method 2: ue polychromatic x-ray (e.g. white light) o that many value of k are incorportated. Thi i called the Laue method, and it i frequently ued to find the orientation of ingle crytal pecimen. Method 3: powder diffraction. Thi method ue monochromatic x-ray, but intead of tudying a large ingle crytal it tudie a powder a collection of many many microcopic crytal oriented in random direction. From the tandpoint of olid tate phyic, a microcopic crytal i effectively infinite becaue

4 it ha o many unit cell that the boundarie do not change the propertie much. For a given incidence angle on thi powder, θ, there might be a crytallite that ha the correct orientation of crytal plane to produce a diffraction ignal. A θ i varied, one pick up all of the poible crytal-plane pacing (d) in that crytal. The erie of peak from a powder diffraction experiment give the fingerprint of a material. Laue pattern of NaCl (table alt) ingle crytal along 4-fold ymmetric axi Powder x-ray diffraction pattern of NaCl

5 Brillouin zone For a direct primitive lattice, there i often more than one way to define a primitive cell (the parallelogram defined by vector which can be ued to acce every point in the lattice). One way to do thi (thi i a HW quetion) i the Wigner-Seitz cell, which i defined by the following procedure: 1. Pick one lattice point and draw line to connect thi to all nearby lattice point 2. Draw perpendicular biector through all of thee line 3. The hape formed from the interection of the perpendicular biector i the Wigner-Seitz cell

6 When thi ame procedure i done for the reciprocal lattice the name of the cell i the firt Brillouin zone. Thi concept will become important in later chapter when we add electron into the picture. The Brillouin zone contain all of the wavevector which can be Bragg reflected by the crytal. Structure factor The final piece for uing what we have learned about the reciprocal lattice and diffraction to learn about the repeating periodic tructure of crytalline olid i including the bai. Thu far, we have only been conidering the lattice, but a we learned in chapter 1, a unit cell in a crytal conit of a lattice and a bai. Conider a crytal of identical unit cell, each with electron denity inide them given by n(r), which i a function of poition inide the cell (later we will ubtitute atomic poition in there). We are hining an x-ray plane wave at thi crytal with wavefunction e ik r and meauring a diffracted beam with wavefunction e ik r, where k = k. Alo, we are getting a diffraction ignal, o k k = G where G i a vector of the reciprocal lattice. The diffraction amplitude for N unit cell may be given by N multiplied by the diffraction amplitude for a ingle cell: F G = N cell dv n(r)e ig r = NS G What thi integral phyically doe i it conider every poition r inide the unit cell and introduce a phae delay from that infiniteimal volume element. We are conidering a pecific G, o the um over all poible G (lat lecture) i omitted. S G i the tructure factor. n(r) can be decompoed into contribution from every atom inide the unit cell. For convenience, we alway put one of the atom at the origin. n(r) = n j (r r j ), where there are atom in the bai Plug thi into the expreion for the tructure factor above Define a new variable ρ = r r j S G = dvn j (r r j )e ig r = dvn j (r r j )e ig (r r j) e ig r j S G = e ig r j dvn j (r r j )e ig (r r j)

7 e ig r j dvn j (ρ)e ig ρ Define the atomic form factor f j = dvn j (ρ)e ig ρ. Thi number repreent the cattering power of the j-th atom in the cell. It will be equal for two atom of the ame type (e.g. two odium atom at two different poition in a unit cell). It will alo depend on what exactly i being cattered x-ray, neutron, or electron. S G = f j e ig r j The cattering intenity i proportional to S G 2 o it i ok if S G i not real. In term of primitive lattice vector, the poition of each of the atom in the bai i given by: r j = x j a 1 + y j a 2 + z j a 3 where x j, y j, z j are fractional G r j = (ν 1 b 1 + ν 2 b 2 + ν 3 b 3 ) (x j a 1 + y j a 2 + z j a 3 ) = 2π(ν 1 x j + ν 2 y j + ν 3 z j ) S G (ν 1 ν 2 ν 3 ) = f j e 2πi(ν 1x j +ν 2 y j +ν 3 z j ) Practice Structure factor of BCC lattice. For thi exercie, we will ue the conventional cubic unit cell of the BCC lattice, which a 2 atom per bai. Atom 1: r 1 = 0 Atom 2: r 2 = 1 2 ax ay az S G (ν 1 ν 2 ν 3 ) = f j e 2πi(ν 1x j +ν 2 y j +ν 3 z j ) = fe 0 + fe iπ(ν 1+ν 2 +ν 3 ) The ubcript ha been dropped on the f becaue two identical atom are ued in thi exercie, meaning they have the ame form factor. The econd term can be +f or f, depending if the integer in the exponent add up to a poitive or negative number 0 if ν S G,BCC (ν 1 ν 2 ν 3 ) = { 1 + ν 2 + ν 3 i odd 2f if 0 if ν 1 + ν 2 + ν 3 i even

8 According to thi calculation, the Bragg peak from ome plane will be miing. For example, the (100) and (111) peak will be miing (odd um of 3 miller indice), while (110) and (200) will be preent (even um). We can try to undertand thi by conidering the primitive lattice of the BCC tructure. a 1 = a ( x + y + z ) 2 a 2 = a (x y + z ) 2 a 3 = a (x + y z ) 2 Conider the (100) plane, referenced to the conventional unit cell. In term of the primitive vector, the miller indice would be: Interection coordinate along a 1, a 2, a 3 =(-2, 2, 2) Invere: ( 1 2, 1 2, 1 2 ) Miller indice of (100) cubic in term of primitive tranlation vector: (-111) But thi i equivalent to the (-111) plane which i parallel to the one we were originally conidering, but located a/2 along the x direction toward the origin. Thu, when we go to the primitive lattice vector of BCC, we can ee that there are no miing Bragg peak, we jut double counted ome of them initially by uing a cell with 2 atom inide it when 1 would have ufficed. Example 2: Structure factor of the face centered cubic lattice Again, we conider the conventional unit cell.

9 Putting the origin at the back left corner and having z point up and y to the right, we have atom at the following fractional coordinate (factor of a i omitted): (0,0,0); ( 1 2, 0, 1 2 ) ; (0, 1 2, 1 2 ) ; (1 2, 1 2, 0) (When atom are hared with adjacent cell we count only enough of thoe atom to get the total number contained in one cell. For example, we counted all of the back corner atom (0,0,0) and left the other 7 to other unit cell becaue there are 8*1/8=1 corner atom; ditto for the face-centered atom which are each hared with 2 other cell, only count 3 of them) The tructure factor for the conventional FCC cell i given by: S G (ν 1 ν 2 ν 3 ) = f j e 2πi(ν 1x j +ν 2 y j +ν 3 z j ) = f[1 + e iπ(ν 1+ν 3 ) + e iπ(ν 2+ν 3 ) + e iπ(ν 1+ν 2 ) 0 if one index i odd and other two even or if two are odd and one i even = { 4f if all indice are odd or all are even Again, the atomic form factor i the ame for all term in our ummation becaue all atom are identical. Similar to what we aw in the BCC lattice, only ¼ of the miller indice in FCC lattice will yield Bragg peak (there are 2 way to elect all odd or all even indice, but 6 way to elect a mixture of odd and even) becaue the conventional unit cell contain 4 atom. Example 3: NaCl tructure The NaCl tructure can be thought of a two interweaving FCC lattice (one for Na, one for Cl)

10 To avoid having to write a um over 8 different term, let expre the coordinate in term of the primitive lattice vector. Set the origin at the Cl atom in the back left corner (000) The fractional coordinate of the Na atom next to it can be expreed a: 1 2 (a 1 + a 3 a 2 ) Thu, G r j = (ν 1 b 1 + ν 2 b 2 + ν 3 b 3 ) (x j a 1 + y j a 2 + z j a 3 ) = 2π(ν 1 x j + ν 2 y j + ν 3 z j ) S G,NaCl = f Cl + f Na e iπ(ν 1 ν 2 +ν 3 ) We cannot make the ame implification a before becaue the atomic form factor are different, but we can make general tatement:

11 If indice are all even or two odd and one even, the 2 nd term will give a poitive contribution to the um If indice are all odd or two even and one off, the 2 nd term will give a negative contribution to the um, likely making S G 2 (which we meaure) maller. Comparing to the powder x-ray diffraction image we can ee that the 111 peak i very mall compared to the nearby 200 and ditto for the 311 v 222. In general, we expect peak to get maller a we move to higher angle becaue higher-index plane contain fewer atom, but the analyi we did above allow u to gain further inight into why ome Bragg peak are larger than other nearby. If we are uing x-ray to do our diffraction experiment, the form factor i proportional to Z (the atomic number). Thi i derived ketchily in your textbook, but we will take it a a given for thi lecture. To be more pecific, it i electron which do the cattering o the number of electron on each pecie of atom i what matter. Thi might not be the ame a the atomic number for ionic olid like NaCl, where the crytal tructure i made up of charged pecie. To ummarize: Z Na = 11 Z Cl = 17 Electron on Na + = 10 Electron on Cl = 18

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering

Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Tomi Johnson Keble College - Hilary 2012 Section VI: Condensed matter physics Tutorial 2 - Lattices and scattering Please leave your work in the Clarendon laboratory s J pigeon hole by 5pm on Monday of

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

Physics 2212 G Quiz #2 Solutions Spring 2018

Physics 2212 G Quiz #2 Solutions Spring 2018 Phyic 2212 G Quiz #2 Solution Spring 2018 I. (16 point) A hollow inulating phere ha uniform volume charge denity ρ, inner radiu R, and outer radiu 3R. Find the magnitude of the electric field at a ditance

More information

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices

Chapter 2. X-ray X. Diffraction and Reciprocal Lattice. Scattering from Lattices Chapter. X-ray X Diffraction and Reciprocal Lattice Diffraction of waves by crystals Reciprocal Lattice Diffraction of X-rays Powder diffraction Single crystal X-ray diffraction Scattering from Lattices

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

Social Studies 201 Notes for March 18, 2005

Social Studies 201 Notes for March 18, 2005 1 Social Studie 201 Note for March 18, 2005 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

Lecture 3 Basic radiometric quantities.

Lecture 3 Basic radiometric quantities. Lecture 3 Baic radiometric quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation.. Baic introduction to electromagnetic field: Definition,

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å)

Crystal planes. Neutrons: magnetic moment - interacts with magnetic materials or nuclei of non-magnetic materials. (in Å) Crystallography: neutron, electron, and X-ray scattering from periodic lattice, scattering of waves by periodic structures, Miller indices, reciprocal space, Ewald construction. Diffraction: Specular,

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004

Lecture 21. The Lovasz splitting-off lemma Topics in Combinatorial Optimization April 29th, 2004 18.997 Topic in Combinatorial Optimization April 29th, 2004 Lecture 21 Lecturer: Michel X. Goeman Scribe: Mohammad Mahdian 1 The Lovaz plitting-off lemma Lovaz plitting-off lemma tate the following. Theorem

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Social Studies 201 Notes for November 14, 2003

Social Studies 201 Notes for November 14, 2003 1 Social Studie 201 Note for November 14, 2003 Etimation of a mean, mall ample ize Section 8.4, p. 501. When a reearcher ha only a mall ample ize available, the central limit theorem doe not apply to the

More information

0 of the same magnitude. If we don t use an OA and ignore any damping, the CTF is

0 of the same magnitude. If we don t use an OA and ignore any damping, the CTF is 1 4. Image Simulation Influence of C Spherical aberration break the ymmetry that would otherwie exit between overfocu and underfocu. One reult i that the fringe in the FT of the CTF are generally farther

More information

9 Lorentz Invariant phase-space

9 Lorentz Invariant phase-space 9 Lorentz Invariant phae-space 9. Cro-ection The cattering amplitude M q,q 2,out p, p 2,in i the amplitude for a tate p, p 2 to make a tranition into the tate q,q 2. The tranition probability i the quare

More information

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2)

Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Solid State Physics 460- Lecture 5 Diffraction and the Reciprocal Lattice Continued (Kittel Ch. 2) Ewald Construction 2θ k out k in G Physics 460 F 2006 Lect 5 1 Recall from previous lectures Definition

More information

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis

Source slideplayer.com/fundamentals of Analytical Chemistry, F.J. Holler, S.R.Crouch. Chapter 6: Random Errors in Chemical Analysis Source lideplayer.com/fundamental of Analytical Chemitry, F.J. Holler, S.R.Crouch Chapter 6: Random Error in Chemical Analyi Random error are preent in every meaurement no matter how careful the experimenter.

More information

Lecture 9: Shor s Algorithm

Lecture 9: Shor s Algorithm Quantum Computation (CMU 8-859BB, Fall 05) Lecture 9: Shor Algorithm October 7, 05 Lecturer: Ryan O Donnell Scribe: Sidhanth Mohanty Overview Let u recall the period finding problem that wa et up a a function

More information

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL

Crystal Structure SOLID STATE PHYSICS. Lecture 5. A.H. Harker. thelecture thenextlecture. Physics and Astronomy UCL Crystal Structure thelecture thenextlecture SOLID STATE PHYSICS Lecture 5 A.H. Harker Physics and Astronomy UCL Structure & Diffraction Crystal Diffraction (continued) 2.4 Experimental Methods Notes: examples

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Lecture 3. January 9, 2018

Lecture 3. January 9, 2018 Lecture 3 January 9, 208 Some complex analyi Although you might have never taken a complex analyi coure, you perhap till know what a complex number i. It i a number of the form z = x + iy, where x and

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space We have seen that diffraction occurs when, in reciprocal space, Let us now plot this information. Let us designate

More information

Chap 3 Scattering and structures

Chap 3 Scattering and structures Chap 3 Scattering and structures Dept of Phys M.C. Chang Von Laue was struck in 1912 by the intuition that X-ray might scatter off crystals in the way that ordinary light scatters off a diffraction grating.

More information

Handout 7 Reciprocal Space

Handout 7 Reciprocal Space Handout 7 Reciprocal Space Useful concepts for the analysis of diffraction data http://homepages.utoledo.edu/clind/ Concepts versus reality Reflection from lattice planes is just a concept that helps us

More information

p. (The electron is a point particle with radius r = 0.)

p. (The electron is a point particle with radius r = 0.) - pin ½ Recall that in the H-atom olution, we howed that the fact that the wavefunction Ψ(r) i ingle-valued require that the angular momentum quantum nbr be integer: l = 0,,.. However, operator algebra

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Wave diffraction and the reciprocal lattice

Wave diffraction and the reciprocal lattice Wave diffraction and the reciprocal lattice Dept of Phys M.C. Chang Braggs theory of diffraction Reciprocal lattice von Laue s theory of diffraction Braggs view of the diffraction (1912, father and son)

More information

Problem Set 8 Solutions

Problem Set 8 Solutions Deign and Analyi of Algorithm April 29, 2015 Maachuett Intitute of Technology 6.046J/18.410J Prof. Erik Demaine, Srini Devada, and Nancy Lynch Problem Set 8 Solution Problem Set 8 Solution Thi problem

More information

USPAS Course on Recirculated and Energy Recovered Linear Accelerators

USPAS Course on Recirculated and Energy Recovered Linear Accelerators USPAS Coure on Recirculated and Energy Recovered Linear Accelerator G. A. Krafft and L. Merminga Jefferon Lab I. Bazarov Cornell Lecture 6 7 March 005 Lecture Outline. Invariant Ellipe Generated by a Unimodular

More information

Automatic Control Systems. Part III: Root Locus Technique

Automatic Control Systems. Part III: Root Locus Technique www.pdhcenter.com PDH Coure E40 www.pdhonline.org Automatic Control Sytem Part III: Root Locu Technique By Shih-Min Hu, Ph.D., P.E. Page of 30 www.pdhcenter.com PDH Coure E40 www.pdhonline.org VI. Root

More information

Geometry of Crystal Lattice

Geometry of Crystal Lattice 0 Geometry of Crystal Lattice 0.1 Translational Symmetry The crystalline state of substances is different from other states (gaseous, liquid, amorphous) in that the atoms are in an ordered and symmetrical

More information

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?)

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?) High-field behavior: the law of approach to aturation (I there an equation for the magnetization at high field? In the high-field region the magnetization approache aturation. The firt attempt to give

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 151 Lecture 7 Scattering Problem (Chapter 3) What We Did Lat Time Dicued Central Force Problem l Problem i reduced to one equation mr = + f () r 3 mr Analyzed qualitative behavior Unbounded,

More information

Chapter K - Problems

Chapter K - Problems Chapter K - Problem Blinn College - Phyic 2426 - Terry Honan Problem K. A He-Ne (helium-neon) laer ha a wavelength of 632.8 nm. If thi i hot at an incident angle of 55 into a gla block with index n =.52

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Notes on the geometry of curves, Math 210 John Wood

Notes on the geometry of curves, Math 210 John Wood Baic definition Note on the geometry of curve, Math 0 John Wood Let f(t be a vector-valued function of a calar We indicate thi by writing f : R R 3 and think of f(t a the poition in pace of a particle

More information

The use of connected masks for reconstructing the single particle image from X-ray diffraction data

The use of connected masks for reconstructing the single particle image from X-ray diffraction data Mathematical Biology and Bioinformatic 2015. V. 10. Suppl. P. t1 t19. doi: 10.17537/2015.10.t1 The tranlation of original article Lunin V.Y., Lunina N.L., Petrova T.E. Matematichekaya biologiya i bioinformatika.

More information

Experimental Determination of Crystal Structure

Experimental Determination of Crystal Structure Experimental Determination of Crystal Structure Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. PHYS 624: Introduction to Solid State Physics http://www.physics.udel.edu/~bnikolic/teaching/phys624/phys624.html

More information

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1.

The continuous time random walk (CTRW) was introduced by Montroll and Weiss 1. 1 I. CONTINUOUS TIME RANDOM WALK The continuou time random walk (CTRW) wa introduced by Montroll and Wei 1. Unlike dicrete time random walk treated o far, in the CTRW the number of jump n made by the walker

More information

Constant Force: Projectile Motion

Constant Force: Projectile Motion Contant Force: Projectile Motion Abtract In thi lab, you will launch an object with a pecific initial velocity (magnitude and direction) and determine the angle at which the range i a maximum. Other tak,

More information

Pythagorean Triple Updated 08--5 Drlnoordzij@leennoordzijnl wwwleennoordzijme Content A Roadmap for generating Pythagorean Triple Pythagorean Triple 3 Dicuion Concluion 5 A Roadmap for generating Pythagorean

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES

III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SUBSTANCES III.9. THE HYSTERESIS CYCLE OF FERROELECTRIC SBSTANCES. Work purpoe The analyi of the behaviour of a ferroelectric ubtance placed in an eternal electric field; the dependence of the electrical polariation

More information

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall

Suggested Answers To Exercises. estimates variability in a sampling distribution of random means. About 68% of means fall Beyond Significance Teting ( nd Edition), Rex B. Kline Suggeted Anwer To Exercie Chapter. The tatitic meaure variability among core at the cae level. In a normal ditribution, about 68% of the core fall

More information

Lecture 10 Filtering: Applied Concepts

Lecture 10 Filtering: Applied Concepts Lecture Filtering: Applied Concept In the previou two lecture, you have learned about finite-impule-repone (FIR) and infinite-impule-repone (IIR) filter. In thee lecture, we introduced the concept of filtering

More information

Question 1 Equivalent Circuits

Question 1 Equivalent Circuits MAE 40 inear ircuit Fall 2007 Final Intruction ) Thi exam i open book You may ue whatever written material you chooe, including your cla note and textbook You may ue a hand calculator with no communication

More information

Control Systems Analysis and Design by the Root-Locus Method

Control Systems Analysis and Design by the Root-Locus Method 6 Control Sytem Analyi and Deign by the Root-Locu Method 6 1 INTRODUCTION The baic characteritic of the tranient repone of a cloed-loop ytem i cloely related to the location of the cloed-loop pole. If

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK

Math Skills. Scientific Notation. Uncertainty in Measurements. Appendix A5 SKILLS HANDBOOK ppendix 5 Scientific Notation It i difficult to work with very large or very mall number when they are written in common decimal notation. Uually it i poible to accommodate uch number by changing the SI

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.014.108 Supplementary Information "Spin angular momentum and tunable polarization in high harmonic generation" Avner Fleicher, Ofer Kfir, Tzvi Dikin, Pavel Sidorenko, and Oren Cohen

More information

Revisiting Phase Diagrams of Two-Mode Phase-Field Crystal Models

Revisiting Phase Diagrams of Two-Mode Phase-Field Crystal Models Reviiting Phae Diagram of Two-Mode Phae-Field Crytal Model Arezoo Emdadi, Mohen Ale Zaeem * and Ebrahim Aadi Department of Material Science and Engineering, Miouri Univerity of Science and Technology,

More information

Supplementary information. Dendritic optical antennas: scattering properties and fluorescence enhancement

Supplementary information. Dendritic optical antennas: scattering properties and fluorescence enhancement Supplementary information Dendritic optical antenna: cattering propertie and fluorecence enhancement Ke Guo 1, Aleandro Antoncecchi 1, Xuezhi Zheng 2, Mai Sallam 2,3, Ezzeldin A. Soliman 3, Guy A. E. andenboch

More information

Learning Multiplicative Interactions

Learning Multiplicative Interactions CSC2535 2011 Lecture 6a Learning Multiplicative Interaction Geoffrey Hinton Two different meaning of multiplicative If we take two denity model and multiply together their probability ditribution at each

More information

Changing the properties of polymers and plastics

Changing the properties of polymers and plastics 58 Inpirational chemitry Changing the propertie of polymer and platic Index 3.1.5 7 heet Equipment required The propertie of polymer and platic can be changed in a number of way. One way i of coure to

More information

Design of Digital Filters

Design of Digital Filters Deign of Digital Filter Paley-Wiener Theorem [ ] ( ) If h n i a caual energy ignal, then ln H e dω< B where B i a finite upper bound. One implication of the Paley-Wiener theorem i that a tranfer function

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

3.012 Fund of Mat Sci: Structure Lecture 18

3.012 Fund of Mat Sci: Structure Lecture 18 3.012 Fund of Mat Sci: Structure Lecture 18 X-RAYS AT WORK An X-ray diffraction image for the protein myoglobin. Source: Wikipedia. Model of helical domains in myoglobin. Image courtesy of Magnus Manske

More information

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas)

Lecture 17: Analytic Functions and Integrals (See Chapter 14 in Boas) Lecture 7: Analytic Function and Integral (See Chapter 4 in Boa) Thi i a good point to take a brief detour and expand on our previou dicuion of complex variable and complex function of complex variable.

More information

AP Physics Charge Wrap up

AP Physics Charge Wrap up AP Phyic Charge Wrap up Quite a few complicated euation for you to play with in thi unit. Here them babie i: F 1 4 0 1 r Thi i good old Coulomb law. You ue it to calculate the force exerted 1 by two charge

More information

The Hand of God, Building the Universe and Multiverse

The Hand of God, Building the Universe and Multiverse 1.0 Abtract What i the mathematical bai for the contruction of the univere? Thi paper intend to how a tart of how the univere i contructed. It alo anwer the quetion, did the hand of God build the univere?

More information

EE Control Systems LECTURE 6

EE Control Systems LECTURE 6 Copyright FL Lewi 999 All right reerved EE - Control Sytem LECTURE 6 Updated: Sunday, February, 999 BLOCK DIAGRAM AND MASON'S FORMULA A linear time-invariant (LTI) ytem can be repreented in many way, including:

More information

SOLID STATE 18. Reciprocal Space

SOLID STATE 18. Reciprocal Space SOLID STATE 8 Reciprocal Space Wave vectors and the concept of K-space can simplify the explanation of several properties of the solid state. They will be introduced to provide more information on diffraction

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure Page 1 of 22 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: 2 p h E = where p = 2m λ h 1 E = ( ) 2m λ hc E = hυ = ( photons) λ ( matter wave) He atoms: [E (ev)]

More information

Vector-Space Methods and Kirchhoff Graphs for Reaction Networks

Vector-Space Methods and Kirchhoff Graphs for Reaction Networks Vector-Space Method and Kirchhoff Graph for Reaction Network Joeph D. Fehribach Fuel Cell Center WPI Mathematical Science and Chemical Engineering 00 Intitute Rd. Worceter, MA 0609-2247 Thi article preent

More information

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2)

Solid State Physics Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Solid State Physics 460 - Lecture 3 Diffraction and the Reciprocal Lattice (Kittel Ch. 2) Diffraction (Bragg Scattering) from a powder of crystallites - real example of image at right from http://www.uni-wuerzburg.de/mineralogie/crystal/teaching/pow.html

More information

An estimation approach for autotuning of event-based PI control systems

An estimation approach for autotuning of event-based PI control systems Acta de la XXXIX Jornada de Automática, Badajoz, 5-7 de Septiembre de 08 An etimation approach for autotuning of event-baed PI control ytem Joé Sánchez Moreno, María Guinaldo Loada, Sebatián Dormido Departamento

More information

The machines in the exercise work as follows:

The machines in the exercise work as follows: Tik-79.148 Spring 2001 Introduction to Theoretical Computer Science Tutorial 9 Solution to Demontration Exercie 4. Contructing a complex Turing machine can be very laboriou. With the help of machine chema

More information

PROBING CRYSTAL STRUCTURE

PROBING CRYSTAL STRUCTURE PROBING CRYSTAL STRUCTURE Andrew Baczewski PHY 491, October 10th, 2011 OVERVIEW First - we ll briefly discuss Friday s quiz. Today, we will answer the following questions: How do we experimentally probe

More information

THE BICYCLE RACE ALBERT SCHUELLER

THE BICYCLE RACE ALBERT SCHUELLER THE BICYCLE RACE ALBERT SCHUELLER. INTRODUCTION We will conider the ituation of a cyclit paing a refrehent tation in a bicycle race and the relative poition of the cyclit and her chaing upport car. The

More information

Dimensional Analysis A Tool for Guiding Mathematical Calculations

Dimensional Analysis A Tool for Guiding Mathematical Calculations Dimenional Analyi A Tool for Guiding Mathematical Calculation Dougla A. Kerr Iue 1 February 6, 2010 ABSTRACT AND INTRODUCTION In converting quantitie from one unit to another, we may know the applicable

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog

Chapter 2 Sampling and Quantization. In order to investigate sampling and quantization, the difference between analog Chapter Sampling and Quantization.1 Analog and Digital Signal In order to invetigate ampling and quantization, the difference between analog and digital ignal mut be undertood. Analog ignal conit of continuou

More information

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays

Gain and Phase Margins Based Delay Dependent Stability Analysis of Two- Area LFC System with Communication Delays Gain and Phae Margin Baed Delay Dependent Stability Analyi of Two- Area LFC Sytem with Communication Delay Şahin Sönmez and Saffet Ayaun Department of Electrical Engineering, Niğde Ömer Halidemir Univerity,

More information

Digital Control System

Digital Control System Digital Control Sytem - A D D A Micro ADC DAC Proceor Correction Element Proce Clock Meaurement A: Analog D: Digital Continuou Controller and Digital Control Rt - c Plant yt Continuou Controller Digital

More information

FROM DIFFRACTION TO STRUCTURE

FROM DIFFRACTION TO STRUCTURE 3.012 Fund of Mat Sci: Structure Lecture 19 FROM DIFFRACTION TO STRUCTURE Images removed for copyright reasons. 3-fold symmetry in silicon along the [111] direction. Forward (left) and backward (right)

More information

2. Diffraction as a means to determine crystal structure

2. Diffraction as a means to determine crystal structure 2. Diffraction as a means to determine crystal structure Recall de Broglie matter waves: He atoms: [E (ev)] 1/2 = 0.14 / (Å) E 1Å = 0.0196 ev Neutrons: [E (ev)] 1/2 = 0.28 / (Å) E 1Å = 0.0784 ev Electrons:

More information

AP Physics Quantum Wrap Up

AP Physics Quantum Wrap Up AP Phyic Quantum Wrap Up Not too many equation in thi unit. Jut a few. Here they be: E hf pc Kmax hf Thi i the equation for the energy of a photon. The hf part ha to do with Planck contant and frequency.

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecture 1 Root Locu Emam Fathy Department of Electrical and Control Engineering email: emfmz@aat.edu http://www.aat.edu/cv.php?dip_unit=346&er=68525 1 Introduction What i root locu?

More information

Introduction to Materials Science Graduate students (Applied Physics)

Introduction to Materials Science Graduate students (Applied Physics) Introduction to Materials Science Graduate students (Applied Physics) Prof. Michael Roth Chapter Reciprocal Lattice and X-ray Diffraction Reciprocal Lattice - 1 The crystal can be viewed as made up of

More information

The Hassenpflug Matrix Tensor Notation

The Hassenpflug Matrix Tensor Notation The Haenpflug Matrix Tenor Notation D.N.J. El Dept of Mech Mechatron Eng Univ of Stellenboch, South Africa e-mail: dnjel@un.ac.za 2009/09/01 Abtract Thi i a ample document to illutrate the typeetting of

More information

Assignment for Mathematics for Economists Fall 2016

Assignment for Mathematics for Economists Fall 2016 Due date: Mon. Nov. 1. Reading: CSZ, Ch. 5, Ch. 8.1 Aignment for Mathematic for Economit Fall 016 We now turn to finihing our coverage of concavity/convexity. There are two part: Jenen inequality for concave/convex

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Stochastic Neoclassical Growth Model

Stochastic Neoclassical Growth Model Stochatic Neoclaical Growth Model Michael Bar May 22, 28 Content Introduction 2 2 Stochatic NGM 2 3 Productivity Proce 4 3. Mean........................................ 5 3.2 Variance......................................

More information

1 t year n0te chemitry new CHAPTER 6 CHEMICAL BONDING MCQ Q.1 An ionic compound A+ B i mot likely to be formed when (a) The ionization energy of A i high and electron affinity of B i low (b) The ionization

More information

THE SPLITTING SUBSPACE CONJECTURE

THE SPLITTING SUBSPACE CONJECTURE THE SPLITTING SUBSPAE ONJETURE ERI HEN AND DENNIS TSENG Abtract We anwer a uetion by Niederreiter concerning the enumeration of a cla of ubpace of finite dimenional vector pace over finite field by proving

More information

PI control system design for Electromagnetic Molding Machine based on Linear Programing

PI control system design for Electromagnetic Molding Machine based on Linear Programing PI control ytem deign for Electromagnetic Molding Machine baed on Linear Programing Takayuki Ihizaki, Kenji Kahima, Jun-ichi Imura*, Atuhi Katoh and Hirohi Morita** Abtract In thi paper, we deign a PI

More information

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems

Mathematical modeling of control systems. Laith Batarseh. Mathematical modeling of control systems Chapter two Laith Batareh Mathematical modeling The dynamic of many ytem, whether they are mechanical, electrical, thermal, economic, biological, and o on, may be decribed in term of differential equation

More information

Weber Schafheitlin-type integrals with exponent 1

Weber Schafheitlin-type integrals with exponent 1 Integral Tranform and Special Function Vol., No., February 9, 47 53 Weber Schafheitlin-type integral with exponent Johanne Kellendonk* and Serge Richard Univerité de Lyon, Univerité Lyon, Intitut Camille

More information

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document.

SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU. I will collect my solutions to some of the exercises in this book in this document. SOLUTIONS TO ALGEBRAIC GEOMETRY AND ARITHMETIC CURVES BY QING LIU CİHAN BAHRAN I will collect my olution to ome of the exercie in thi book in thi document. Section 2.1 1. Let A = k[[t ]] be the ring of

More information

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011

NCAAPMT Calculus Challenge Challenge #3 Due: October 26, 2011 NCAAPMT Calculu Challenge 011 01 Challenge #3 Due: October 6, 011 A Model of Traffic Flow Everyone ha at ome time been on a multi-lane highway and encountered road contruction that required the traffic

More information

Streaming Calculations using the Point-Kernel Code RANKERN

Streaming Calculations using the Point-Kernel Code RANKERN Streaming Calculation uing the Point-Kernel Code RANKERN Steve CHUCAS, Ian CURL AEA Technology, Winfrith Technology Centre, Dorcheter, Doret DT2 8DH, UK RANKERN olve the gamma-ray tranport equation in

More information

FRTN10 Exercise 3. Specifications and Disturbance Models

FRTN10 Exercise 3. Specifications and Disturbance Models FRTN0 Exercie 3. Specification and Diturbance Model 3. A feedback ytem i hown in Figure 3., in which a firt-order proce if controlled by an I controller. d v r u 2 z C() P() y n Figure 3. Sytem in Problem

More information

arxiv: v2 [nucl-th] 3 May 2018

arxiv: v2 [nucl-th] 3 May 2018 DAMTP-207-44 An Alpha Particle Model for Carbon-2 J. I. Rawlinon arxiv:72.05658v2 [nucl-th] 3 May 208 Department of Applied Mathematic and Theoretical Phyic, Univerity of Cambridge, Wilberforce Road, Cambridge

More information

Convective Heat Transfer

Convective Heat Transfer Convective Heat Tranfer Example 1. Melt Spinning of Polymer fiber 2. Heat tranfer in a Condener 3. Temperature control of a Re-entry vehicle Fiber pinning The fiber pinning proce preent a unique engineering

More information

Physics 111. Exam #3. March 4, 2011

Physics 111. Exam #3. March 4, 2011 Phyic Exam #3 March 4, 20 Name Multiple Choice /6 Problem # /2 Problem #2 /2 Problem #3 /2 Problem #4 /2 Total /00 PartI:Multiple Choice:Circlethebetanwertoeachquetion.Anyothermark willnotbegivencredit.eachmultiple

More information