T n B(T n ) n n T n. n n. = lim

Size: px
Start display at page:

Download "T n B(T n ) n n T n. n n. = lim"

Transcription

1 Homework..7. (a). The relation T n T n 1 = T(B n ) shows that T n T n 1 is an identically sequence with common law as T. Notice that for any n 1, by Theorem.16 the Brownian motion B n (t) is independent of F + (T n 1 ). Consequently, T n T n 1 = T(B n ) is independent of T 1,,T n 1. Hence, T n T n 1 is an i.i.d. sequence. By The law of large numbers, So T n B(T n ) B(T n ) = ET and n T n T n B(T n ) = T n = 0 a.s. = 0 a.s. (b). Write By independence and stationarity of the Brownian increments, B(T n ) B(T n 1 is an i.i.d. sequence with common distribution as B(T). By the conclusion of part (a), By Borel-Cantelli lemma, B(T n ) B(T n 1 ) n=1 = 0 a.s. P B(T n ) B(T n 1 ) n < Or, n=1 P B(T) n < This leads to E B(T) <. By the representation B(T n ) = n k=1 B(T k ) B(T k 1 ) (Under the convention B(T 0 ) = 0) By the law of large numbers and part (b) B(T n ) Comparing this to Part (a), EB(T) = 0. = EB(T) a.s..10. Define the filtration A(t);t 0 as: A(t) = F + (e t ). Notice that for any s,t > 0, X(s+t) = e B(e (s+t) (s+t) ) B(e s ) +e t X(s) 1

2 Conditioning on A(s), X(s) is a constant and B(e (s+t) ) B(e s ) is a random variable with the same distribution as B(e (s+t) e s ) with B(t) starting at 0. Our job is reduce to find the distribution of e (s+t) B(e (s+t) e s )+e t x d = e (s+t) e (s+t) e s U +e t x where U N(0,1). It is easy (by checking the expectation and the variance) to see that the distribution is N(e t x, 1 e t ). Therefore, the transition density is p(t,x,y) = 1 π(1 e t ) exp (y e t x) (1 e t ) Prove do the second part, consider the Brownian motion B(t) = 0 t = 0 tb(1/t) t > 0 x,y R We have X( t) = e t B(e t ) = e t B(e t ) t 0 By what have been proved (with B(t) being replaced by B(t)), X( t); t 0 has the same distribution as X(t); t (a) Write X(t) = exp σb(t) σ t t 0 Clearly, X(t) is adaptive with respect to the filtration F + (t). Notice that X(t) 0 and For any 0 s < t, EX(t) = exp E [ X(t) F + (s) ] = exp = exp = exp So X(t) is a Martingale. σ t E exp σb(t) = 1 < σ t E σ t exp σb(s) σ t exp σb(s) exp [ ] F E exp σb(t) + (s) [ ] F exp σb(t) B(s) + (s) σ (t s) = X(s)

3 (b). Due to similarity, we only show that B(t) t is a martingale. For s < t, by part (a), [ E exp σb(t) σ t F (s)] + = exp σb(s) σ s Taking second derivatives with respective to σ on the both sides we have, respectively, [ (B(t) σt ) E t exp σb(t) σ t F (s)] + (B(t) σt ) = t exp σb(s) σ s To justify it, a usual way of dominated convergence is needed (as the differentiation is defined by it). Taking σ = 0 on the both sides, E [ B(t) t F + (s) ] = B(s) s This, together with the obvious integrability, shows that B(t) t is a martingale. (c). We consider the martingale X(t) = B(t) 4 6tB(t) +3t. Given N > 0, write T N = T N. By the fact that for any t > 0, B(t T N ) max a,b, we have that X(t T N ) max a 4,b 4 +6max a,b +3N By Proposition.4. (by the condition a < 0 < b, I believe that the authors consider the case B(0) = 0), EX(T N ) = E 0 X(0) = 0, or EB(T N ) 4 6ET N B(T N ) +3ET N = 0 We now let N. By the fact that B(T N ) max a,b and dominated convergence, EB(T N) 4 = EB(T) 4 = a 4 PB(T) = a+b 4 PB(T) = b = a 4 b a a +b +b4 a +b = a b( a 3 +b 3 ) a +b = a b( a a b+b ) where the third step follows from the calculation in the proof of Theorem.49. By the bound0 T N B(T N ) T max a,b,thefactthatet < (why?) andthedominated convergence, ET NB(T N ) = ETB(T) = a ET1 B(T)=a +b ET1 B(T)=b = a ET +(b a )ET1 B(T)=b = a 3 b+(b a )ET1 B(T)=b 3

4 where the last step follows from Theorem.49. By monotonic convergence, ET N = ET Therefore, we conclude that ) a b( a a b+b ) 6 ( a 3 b+(b a )ET1 B(T)=b +3ET = 0 ( ) With the same argument to the martingale B(t) 3 3tB(t), we have EB(T) 3 3ETB(T) = 0. Notice that EB(T) 3 = a 3 PB(T) = a+b 3 PB(T) = b = a3 b+b 3 a a +b = a b(b a ) ETB(T) = aet1 B(T)=a +bet1 B(T)=b Combine our computation, = aet +(b a)et1 B(T)=b = a b+(b+ a )ET1 B(T)=b ET1 B(T)=b = a b(b+ a ) 3(b+ a ) Bring this back to (*), ET = a b3 + a 3 b+3 a b Define the stopping time T = infs > 0; B(s) a+bt When Brownian motion starts at 0, there is positive chance that T =. By continuity of the Brownian curve, P 0 B(t) = a+bt for some t > 0 = P 0 T < Let N > 0 and write T N = T N and consider the process X(t) = expbb(t) b t t 0 4

5 Taking σ = b in Problem.15, X(t) is a martingale. WriteT N = N T forn > 0. Foranyt 0, B(t T N ) a+b(t T N ). Consequently, 0 X(t T N ) exp b ( a+b(t T N ) ) b (t T N ) expab By Proposition.4, therefore, E 0 expbb(t N ) b T N = E 0 X(T) = E 0 X(0) = 1 ( ) Write E 0 expbb(t N ) b T N = E 0 expbb(t N ) b T N 1 T< +E 0 expbb(t N ) b T N 1 T= On the event T <, bb(tn ) b T N = bb(t) b T = ab a.s. By the bound expbb(t N ) b T N expab and dominated convergence, E 0expbB(T N ) b T N 1 T< = expabp 0 T < In addition, E 0 expbb(t N ) b T N 1 T= = E 0 expbb(n) b N1 T= According to the law of large numbers, Consequently, B(N) N = 0 a.s. expbb(n) b N = 0 a.s. On the event T = we have the bound Hence, by dominated convergence, expbb(n) b N expab E 0expbB(N) b N1 T= = 0 ( ) 5

6 Summarizing our argument since (**), we have expabp 0 T < = 1 Warning. The argument for (***) collapses without the indicator of T =, as E 0 expbb(n) b N = 1 N > (a). Under the interpretation of this exercise, B(t) = B 1 (t) +ib (t), where B 1 (t) and B (t) are two independent linear Brownianmotions with B 1 (0) = 0 and B (0) = 1. Notice that the function f(x,y) = e λy cosλx and g(x,y) = e λy sinλx satisfies f(x,y) = 0and g(x,y) = 0. ByCorollary.53theprocessese λb (t) cosλb 1 (t) and e λb (t) sinλb 1 (t) are martingales. Hence, the requested conclusion follows from the relation e iλb(t) = e λb (t) cosλb 1 (t)+ie λb (t) sinλb 1 (t) (b). Extra assumption: We have to assume that λ 0. Indeed, B(T) = B 1 (T) is a real random variable. What we try to prove is the characteristic function of B 1 (T) is equal to e λ which would be greater than 1 when λ < 0. BydefinitionT = infs > 0; B (s) = 0. Ifweareallowedtouse Optional stopping theorem, Ee iλb(t) = Ee iλb(0) = e λ where the last step follows from the fact that B(0) = i. We now justify the use of Proposition.4 (Optional stopping rule). First notice that for any t > 0, e iλb(t t) e λb (T t) 1 where the last step follows from the assumption that λ 0 and the fact that B (T t) 0. Hence, Proposition.4 applies. Remark. First,B(T) = B 1 (T). Second, B 1 (0) = 0impliesthatB 1 (t)issymmetric. Third, by definition T is independent of B 1 (t). Therefore, B 1 (T) is symmetric. So the characteristic function of B 1 (T) is real and even function. Thus, for any λ R, Ee iλb(t) = Ee iλb 1(T) = e λ This result shows that the real random variable B 1 (T) obeys Cauchy distribution, as pointed out in Theorem.37. 6

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1

Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet 1 Stochastic Calculus and Black-Scholes Theory MTH772P Exercises Sheet. For ξ, ξ 2, i.i.d. with P(ξ i = ± = /2 define the discrete-time random walk W =, W n = ξ +... + ξ n. (i Formulate and prove the property

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

MA8109 Stochastic Processes in Systems Theory Autumn 2013

MA8109 Stochastic Processes in Systems Theory Autumn 2013 Norwegian University of Science and Technology Department of Mathematical Sciences MA819 Stochastic Processes in Systems Theory Autumn 213 1 MA819 Exam 23, problem 3b This is a linear equation of the form

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

I forgot to mention last time: in the Ito formula for two standard processes, putting

I forgot to mention last time: in the Ito formula for two standard processes, putting I forgot to mention last time: in the Ito formula for two standard processes, putting dx t = a t dt + b t db t dy t = α t dt + β t db t, and taking f(x, y = xy, one has f x = y, f y = x, and f xx = f yy

More information

1.1 Definition of BM and its finite-dimensional distributions

1.1 Definition of BM and its finite-dimensional distributions 1 Brownian motion Brownian motion as a physical phenomenon was discovered by botanist Robert Brown as he observed a chaotic motion of particles suspended in water. The rigorous mathematical model of BM

More information

Theoretical Tutorial Session 2

Theoretical Tutorial Session 2 1 / 36 Theoretical Tutorial Session 2 Xiaoming Song Department of Mathematics Drexel University July 27, 216 Outline 2 / 36 Itô s formula Martingale representation theorem Stochastic differential equations

More information

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion

IEOR 4701: Stochastic Models in Financial Engineering. Summer 2007, Professor Whitt. SOLUTIONS to Homework Assignment 9: Brownian motion IEOR 471: Stochastic Models in Financial Engineering Summer 27, Professor Whitt SOLUTIONS to Homework Assignment 9: Brownian motion In Ross, read Sections 1.1-1.3 and 1.6. (The total required reading there

More information

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have

Solution for Problem 7.1. We argue by contradiction. If the limit were not infinite, then since τ M (ω) is nondecreasing we would have 362 Problem Hints and Solutions sup g n (ω, t) g(ω, t) sup g(ω, s) g(ω, t) µ n (ω). t T s,t: s t 1/n By the uniform continuity of t g(ω, t) on [, T], one has for each ω that µ n (ω) as n. Two applications

More information

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions

1 Simulating normal (Gaussian) rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Copyright c 2007 by Karl Sigman 1 Simulating normal Gaussian rvs with applications to simulating Brownian motion and geometric Brownian motion in one and two dimensions Fundamental to many applications

More information

Stochastic integration. P.J.C. Spreij

Stochastic integration. P.J.C. Spreij Stochastic integration P.J.C. Spreij this version: April 22, 29 Contents 1 Stochastic processes 1 1.1 General theory............................... 1 1.2 Stopping times...............................

More information

Brownian Motion and Stochastic Calculus

Brownian Motion and Stochastic Calculus ETHZ, Spring 17 D-MATH Prof Dr Martin Larsson Coordinator A Sepúlveda Brownian Motion and Stochastic Calculus Exercise sheet 6 Please hand in your solutions during exercise class or in your assistant s

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes?

(b) What is the variance of the time until the second customer arrives, starting empty, assuming that we measure time in minutes? IEOR 3106: Introduction to Operations Research: Stochastic Models Fall 2006, Professor Whitt SOLUTIONS to Final Exam Chapters 4-7 and 10 in Ross, Tuesday, December 19, 4:10pm-7:00pm Open Book: but only

More information

A D VA N C E D P R O B A B I L - I T Y

A D VA N C E D P R O B A B I L - I T Y A N D R E W T U L L O C H A D VA N C E D P R O B A B I L - I T Y T R I N I T Y C O L L E G E T H E U N I V E R S I T Y O F C A M B R I D G E Contents 1 Conditional Expectation 5 1.1 Discrete Case 6 1.2

More information

Exercises in Extreme value theory

Exercises in Extreme value theory Exercises in Extreme value theory 2016 spring semester 1. Show that L(t) = logt is a slowly varying function but t ǫ is not if ǫ 0. 2. If the random variable X has distribution F with finite variance,

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications

The multidimensional Ito Integral and the multidimensional Ito Formula. Eric Mu ller June 1, 2015 Seminar on Stochastic Geometry and its applications The multidimensional Ito Integral and the multidimensional Ito Formula Eric Mu ller June 1, 215 Seminar on Stochastic Geometry and its applications page 2 Seminar on Stochastic Geometry and its applications

More information

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier.

Stochastic integral. Introduction. Ito integral. References. Appendices Stochastic Calculus I. Geneviève Gauthier. Ito 8-646-8 Calculus I Geneviève Gauthier HEC Montréal Riemann Ito The Ito The theories of stochastic and stochastic di erential equations have initially been developed by Kiyosi Ito around 194 (one of

More information

Brownian Motion. Chapter Definition of Brownian motion

Brownian Motion. Chapter Definition of Brownian motion Chapter 5 Brownian Motion Brownian motion originated as a model proposed by Robert Brown in 1828 for the phenomenon of continual swarming motion of pollen grains suspended in water. In 1900, Bachelier

More information

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1

Lecture 9. d N(0, 1). Now we fix n and think of a SRW on [0,1]. We take the k th step at time k n. and our increments are ± 1 Random Walks and Brownian Motion Tel Aviv University Spring 011 Lecture date: May 0, 011 Lecture 9 Instructor: Ron Peled Scribe: Jonathan Hermon In today s lecture we present the Brownian motion (BM).

More information

Stochastic Calculus (Lecture #3)

Stochastic Calculus (Lecture #3) Stochastic Calculus (Lecture #3) Siegfried Hörmann Université libre de Bruxelles (ULB) Spring 2014 Outline of the course 1. Stochastic processes in continuous time. 2. Brownian motion. 3. Itô integral:

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

Exercises. T 2T. e ita φ(t)dt.

Exercises. T 2T. e ita φ(t)dt. Exercises. Set #. Construct an example of a sequence of probability measures P n on R which converge weakly to a probability measure P but so that the first moments m,n = xdp n do not converge to m = xdp.

More information

1 Independent increments

1 Independent increments Tel Aviv University, 2008 Brownian motion 1 1 Independent increments 1a Three convolution semigroups........... 1 1b Independent increments.............. 2 1c Continuous time................... 3 1d Bad

More information

MA 8101 Stokastiske metoder i systemteori

MA 8101 Stokastiske metoder i systemteori MA 811 Stokastiske metoder i systemteori AUTUMN TRM 3 Suggested solution with some extra comments The exam had a list of useful formulae attached. This list has been added here as well. 1 Problem In this

More information

Universal examples. Chapter The Bernoulli process

Universal examples. Chapter The Bernoulli process Chapter 1 Universal examples 1.1 The Bernoulli process First description: Bernoulli random variables Y i for i = 1, 2, 3,... independent with P [Y i = 1] = p and P [Y i = ] = 1 p. Second description: Binomial

More information

JUSTIN HARTMANN. F n Σ.

JUSTIN HARTMANN. F n Σ. BROWNIAN MOTION JUSTIN HARTMANN Abstract. This paper begins to explore a rigorous introduction to probability theory using ideas from algebra, measure theory, and other areas. We start with a basic explanation

More information

BROWNIAN MOTION AND HAUSDORFF DIMENSION

BROWNIAN MOTION AND HAUSDORFF DIMENSION BROWNIAN MOTION AND HAUSDORFF DIMENSION PETER HANSEN Abstract. In this paper, we develop Brownian motion and discuss its basic properties. We then turn our attention to the size of Brownian motion by defining

More information

1 IEOR 6712: Notes on Brownian Motion I

1 IEOR 6712: Notes on Brownian Motion I Copyright c 005 by Karl Sigman IEOR 67: Notes on Brownian Motion I We present an introduction to Brownian motion, an important continuous-time stochastic process that serves as a continuous-time analog

More information

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

4 Sums of Independent Random Variables

4 Sums of Independent Random Variables 4 Sums of Independent Random Variables Standing Assumptions: Assume throughout this section that (,F,P) is a fixed probability space and that X 1, X 2, X 3,... are independent real-valued random variables

More information

ERRATA: Probabilistic Techniques in Analysis

ERRATA: Probabilistic Techniques in Analysis ERRATA: Probabilistic Techniques in Analysis ERRATA 1 Updated April 25, 26 Page 3, line 13. A 1,..., A n are independent if P(A i1 A ij ) = P(A 1 ) P(A ij ) for every subset {i 1,..., i j } of {1,...,

More information

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012

Bernardo D Auria Stochastic Processes /12. Notes. March 29 th, 2012 1 Stochastic Calculus Notes March 9 th, 1 In 19, Bachelier proposed for the Paris stock exchange a model for the fluctuations affecting the price X(t) of an asset that was given by the Brownian motion.

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 15. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010

Bernardo D Auria Stochastic Processes /10. Notes. Abril 13 th, 2010 1 Stochastic Calculus Notes Abril 13 th, 1 As we have seen in previous lessons, the stochastic integral with respect to the Brownian motion shows a behavior different from the classical Riemann-Stieltjes

More information

Branching Brownian motion seen from the tip

Branching Brownian motion seen from the tip Branching Brownian motion seen from the tip J. Berestycki 1 1 Laboratoire de Probabilité et Modèles Aléatoires, UPMC, Paris 09/02/2011 Joint work with Elie Aidekon, Eric Brunet and Zhan Shi J Berestycki

More information

BROWNIAN MOTION AND LIOUVILLE S THEOREM

BROWNIAN MOTION AND LIOUVILLE S THEOREM BROWNIAN MOTION AND LIOUVILLE S THEOREM CHEN HUI GEORGE TEO Abstract. Probability theory has many deep and surprising connections with the theory of partial differential equations. We explore one such

More information

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS

PROBABILITY: LIMIT THEOREMS II, SPRING HOMEWORK PROBLEMS PROBABILITY: LIMIT THEOREMS II, SPRING 218. HOMEWORK PROBLEMS PROF. YURI BAKHTIN Instructions. You are allowed to work on solutions in groups, but you are required to write up solutions on your own. Please

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Exercises in stochastic analysis

Exercises in stochastic analysis Exercises in stochastic analysis Franco Flandoli, Mario Maurelli, Dario Trevisan The exercises with a P are those which have been done totally or partially) in the previous lectures; the exercises with

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI

STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI STOCHASTIC CALCULUS JASON MILLER AND VITTORIA SILVESTRI Contents Preface 1 1. Introduction 1 2. Preliminaries 4 3. Local martingales 1 4. The stochastic integral 16 5. Stochastic calculus 36 6. Applications

More information

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity

µ (X) := inf l(i k ) where X k=1 I k, I k an open interval Notice that is a map from subsets of R to non-negative number together with infinity A crash course in Lebesgue measure theory, Math 317, Intro to Analysis II These lecture notes are inspired by the third edition of Royden s Real analysis. The Jordan content is an attempt to extend the

More information

(A n + B n + 1) A n + B n

(A n + B n + 1) A n + B n 344 Problem Hints and Solutions Solution for Problem 2.10. To calculate E(M n+1 F n ), first note that M n+1 is equal to (A n +1)/(A n +B n +1) with probability M n = A n /(A n +B n ) and M n+1 equals

More information

1 Math 285 Homework Problem List for S2016

1 Math 285 Homework Problem List for S2016 1 Math 85 Homework Problem List for S016 Note: solutions to Lawler Problems will appear after all of the Lecture Note Solutions. 1.1 Homework 1. Due Friay, April 8, 016 Look at from lecture note exercises:

More information

Stochastic Analysis. Prof. Dr. Andreas Eberle

Stochastic Analysis. Prof. Dr. Andreas Eberle Stochastic Analysis Prof. Dr. Andreas Eberle March 13, 212 Contents Contents 2 1 Lévy processes and Poisson point processes 6 1.1 Lévy processes.............................. 7 Characteristic exponents.........................

More information

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem Definition: Lévy Process Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes David Applebaum Probability and Statistics Department, University of Sheffield, UK July

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

n E(X t T n = lim X s Tn = X s

n E(X t T n = lim X s Tn = X s Stochastic Calculus Example sheet - Lent 15 Michael Tehranchi Problem 1. Let X be a local martingale. Prove that X is a uniformly integrable martingale if and only X is of class D. Solution 1. If If direction:

More information

Lecture 11. Multivariate Normal theory

Lecture 11. Multivariate Normal theory 10. Lecture 11. Multivariate Normal theory Lecture 11. Multivariate Normal theory 1 (1 1) 11. Multivariate Normal theory 11.1. Properties of means and covariances of vectors Properties of means and covariances

More information

FE 5204 Stochastic Differential Equations

FE 5204 Stochastic Differential Equations Instructor: Jim Zhu e-mail:zhu@wmich.edu http://homepages.wmich.edu/ zhu/ January 20, 2009 Preliminaries for dealing with continuous random processes. Brownian motions. Our main reference for this lecture

More information

1. Stochastic Processes and filtrations

1. Stochastic Processes and filtrations 1. Stochastic Processes and 1. Stoch. pr., A stochastic process (X t ) t T is a collection of random variables on (Ω, F) with values in a measurable space (S, S), i.e., for all t, In our case X t : Ω S

More information

Stochastic Calculus for Finance II - some Solutions to Chapter VII

Stochastic Calculus for Finance II - some Solutions to Chapter VII Stochastic Calculus for Finance II - some Solutions to Chapter VII Matthias hul Last Update: June 9, 25 Exercise 7 Black-Scholes-Merton Equation for the up-and-out Call) i) We have ii) We first compute

More information

Insert your Booktitle, Subtitle, Edition

Insert your Booktitle, Subtitle, Edition C. Landim Insert your Booktitle, Subtitle, Edition SPIN Springer s internal project number, if known Monograph October 23, 2018 Springer Page: 1 job: book macro: svmono.cls date/time: 23-Oct-2018/15:27

More information

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales

Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Fundamental Inequalities, Convergence and the Optional Stopping Theorem for Continuous-Time Martingales Prakash Balachandran Department of Mathematics Duke University April 2, 2008 1 Review of Discrete-Time

More information

Homework # , Spring Due 14 May Convergence of the empirical CDF, uniform samples

Homework # , Spring Due 14 May Convergence of the empirical CDF, uniform samples Homework #3 36-754, Spring 27 Due 14 May 27 1 Convergence of the empirical CDF, uniform samples In this problem and the next, X i are IID samples on the real line, with cumulative distribution function

More information

NAN WANG and KOSTAS POLITIS

NAN WANG and KOSTAS POLITIS THE MEAN TIME FOR A NET PROFIT AND THE PROBABILITY OF RUIN PRIOR TO THAT PROFIT IN THE CLASSICAL RISK MODEL NAN WANG and KOSTAS POLITIS Department of Social Statistics, University of Southampton Southampton

More information

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1

ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 ADVANCED PROBABILITY: SOLUTIONS TO SHEET 1 Last compiled: November 6, 213 1. Conditional expectation Exercise 1.1. To start with, note that P(X Y = P( c R : X > c, Y c or X c, Y > c = P( c Q : X > c, Y

More information

Stochastic Calculus February 11, / 33

Stochastic Calculus February 11, / 33 Martingale Transform M n martingale with respect to F n, n =, 1, 2,... σ n F n (σ M) n = n 1 i= σ i(m i+1 M i ) is a Martingale E[(σ M) n F n 1 ] n 1 = E[ σ i (M i+1 M i ) F n 1 ] i= n 2 = σ i (M i+1 M

More information

Verona Course April Lecture 1. Review of probability

Verona Course April Lecture 1. Review of probability Verona Course April 215. Lecture 1. Review of probability Viorel Barbu Al.I. Cuza University of Iaşi and the Romanian Academy A probability space is a triple (Ω, F, P) where Ω is an abstract set, F is

More information

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales.

Lecture 2. We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. Lecture 2 1 Martingales We now introduce some fundamental tools in martingale theory, which are useful in controlling the fluctuation of martingales. 1.1 Doob s inequality We have the following maximal

More information

Solution: The process is a compound Poisson Process with E[N (t)] = λt/p by Wald's equation.

Solution: The process is a compound Poisson Process with E[N (t)] = λt/p by Wald's equation. Solutions Stochastic Processes and Simulation II, May 18, 217 Problem 1: Poisson Processes Let {N(t), t } be a homogeneous Poisson Process on (, ) with rate λ. Let {S i, i = 1, 2, } be the points of the

More information

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6

Thus f is continuous at x 0. Matthew Straughn Math 402 Homework 6 Matthew Straughn Math 402 Homework 6 Homework 6 (p. 452) 14.3.3, 14.3.4, 14.3.5, 14.3.8 (p. 455) 14.4.3* (p. 458) 14.5.3 (p. 460) 14.6.1 (p. 472) 14.7.2* Lemma 1. If (f (n) ) converges uniformly to some

More information

Lecture 19 : Brownian motion: Path properties I

Lecture 19 : Brownian motion: Path properties I Lecture 19 : Brownian motion: Path properties I MATH275B - Winter 2012 Lecturer: Sebastien Roch References: [Dur10, Section 8.1], [Lig10, Section 1.5, 1.6], [MP10, Section 1.1, 1.2]. 1 Invariance We begin

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 22 12/09/2013. Skorokhod Mapping Theorem. Reflected Brownian Motion MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.7J Fall 213 Lecture 22 12/9/213 Skorokhod Mapping Theorem. Reflected Brownian Motion Content. 1. G/G/1 queueing system 2. One dimensional reflection mapping

More information

Random Process Lecture 1. Fundamentals of Probability

Random Process Lecture 1. Fundamentals of Probability Random Process Lecture 1. Fundamentals of Probability Husheng Li Min Kao Department of Electrical Engineering and Computer Science University of Tennessee, Knoxville Spring, 2016 1/43 Outline 2/43 1 Syllabus

More information

Weak solutions of mean-field stochastic differential equations

Weak solutions of mean-field stochastic differential equations Weak solutions of mean-field stochastic differential equations Juan Li School of Mathematics and Statistics, Shandong University (Weihai), Weihai 26429, China. Email: juanli@sdu.edu.cn Based on joint works

More information

(B(t i+1 ) B(t i )) 2

(B(t i+1 ) B(t i )) 2 ltcc5.tex Week 5 29 October 213 Ch. V. ITÔ (STOCHASTIC) CALCULUS. WEAK CONVERGENCE. 1. Quadratic Variation. A partition π n of [, t] is a finite set of points t ni such that = t n < t n1

More information

Probability Theory. Richard F. Bass

Probability Theory. Richard F. Bass Probability Theory Richard F. Bass ii c Copyright 2014 Richard F. Bass Contents 1 Basic notions 1 1.1 A few definitions from measure theory............. 1 1.2 Definitions............................. 2

More information

Convergence of the long memory Markov switching model to Brownian motion

Convergence of the long memory Markov switching model to Brownian motion Convergence of the long memory Marov switching model to Brownian motion Changryong Bae Sungyunwan University Natércia Fortuna CEF.UP, Universidade do Porto Vladas Pipiras University of North Carolina February

More information

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1

A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Chapter 3 A Change of Variable Formula with Local Time-Space for Bounded Variation Lévy Processes with Application to Solving the American Put Option Problem 1 Abstract We establish a change of variable

More information

Useful Probability Theorems

Useful Probability Theorems Useful Probability Theorems Shiu-Tang Li Finished: March 23, 2013 Last updated: November 2, 2013 1 Convergence in distribution Theorem 1.1. TFAE: (i) µ n µ, µ n, µ are probability measures. (ii) F n (x)

More information

P ( N m=na c m) (σ-additivity) exp{ P (A m )} (1 x e x for x 0) m=n P (A m ) 0

P ( N m=na c m) (σ-additivity) exp{ P (A m )} (1 x e x for x 0) m=n P (A m ) 0 MA414 STOCHASTIC ANALYSIS: EXAMINATION SOLUTIONS, 211 Q1.(i) Firt Borel-Cantelli Lemma). A = lim up A n = n m=n A m, o A m=na m for each n. So P (A) P ( m=na m ) m=n P (A m ) (n ) (tail of a convergent

More information

Jump Processes. Richard F. Bass

Jump Processes. Richard F. Bass Jump Processes Richard F. Bass ii c Copyright 214 Richard F. Bass Contents 1 Poisson processes 1 1.1 Definitions............................. 1 1.2 Stopping times.......................... 3 1.3 Markov

More information

Self-normalized laws of the iterated logarithm

Self-normalized laws of the iterated logarithm Journal of Statistical and Econometric Methods, vol.3, no.3, 2014, 145-151 ISSN: 1792-6602 print), 1792-6939 online) Scienpress Ltd, 2014 Self-normalized laws of the iterated logarithm Igor Zhdanov 1 Abstract

More information

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt.

The concentration of a drug in blood. Exponential decay. Different realizations. Exponential decay with noise. dc(t) dt. The concentration of a drug in blood Exponential decay C12 concentration 2 4 6 8 1 C12 concentration 2 4 6 8 1 dc(t) dt = µc(t) C(t) = C()e µt 2 4 6 8 1 12 time in minutes 2 4 6 8 1 12 time in minutes

More information

The strictly 1/2-stable example

The strictly 1/2-stable example The strictly 1/2-stable example 1 Direct approach: building a Lévy pure jump process on R Bert Fristedt provided key mathematical facts for this example. A pure jump Lévy process X is a Lévy process such

More information

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006 Unless otherwise stated, for the remainder of the solutions, define F m = σy 0,..., Y m We will show EY m = EY 0 using induction. m = 0 is obviously true. For base case m = : EY = EEY Y 0 = EY 0. Now assume

More information

Stochastic Differential Equations.

Stochastic Differential Equations. Chapter 3 Stochastic Differential Equations. 3.1 Existence and Uniqueness. One of the ways of constructing a Diffusion process is to solve the stochastic differential equation dx(t) = σ(t, x(t)) dβ(t)

More information

Probability Theory I: Syllabus and Exercise

Probability Theory I: Syllabus and Exercise Probability Theory I: Syllabus and Exercise Narn-Rueih Shieh **Copyright Reserved** This course is suitable for those who have taken Basic Probability; some knowledge of Real Analysis is recommended( will

More information

Stochastic Differential Equations

Stochastic Differential Equations CHAPTER 1 Stochastic Differential Equations Consider a stochastic process X t satisfying dx t = bt, X t,w t dt + σt, X t,w t dw t. 1.1 Question. 1 Can we obtain the existence and uniqueness theorem for

More information

Additive Lévy Processes

Additive Lévy Processes Additive Lévy Processes Introduction Let X X N denote N independent Lévy processes on. We can construct an N-parameter stochastic process, indexed by N +, as follows: := X + + X N N for every := ( N )

More information

4 Expectation & the Lebesgue Theorems

4 Expectation & the Lebesgue Theorems STA 205: Probability & Measure Theory Robert L. Wolpert 4 Expectation & the Lebesgue Theorems Let X and {X n : n N} be random variables on a probability space (Ω,F,P). If X n (ω) X(ω) for each ω Ω, does

More information

Part III Stochastic Calculus and Applications

Part III Stochastic Calculus and Applications Part III Stochastic Calculus and Applications Based on lectures by R. Bauerschmidt Notes taken by Dexter Chua Lent 218 These notes are not endorsed by the lecturers, and I have modified them often significantly

More information

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1)

Question 1. The correct answers are: (a) (2) (b) (1) (c) (2) (d) (3) (e) (2) (f) (1) (g) (2) (h) (1) Question 1 The correct answers are: a 2 b 1 c 2 d 3 e 2 f 1 g 2 h 1 Question 2 a Any probability measure Q equivalent to P on F 2 can be described by Q[{x 1, x 2 }] := q x1 q x1,x 2, 1 where q x1, q x1,x

More information

P (A G) dp G P (A G)

P (A G) dp G P (A G) First homework assignment. Due at 12:15 on 22 September 2016. Homework 1. We roll two dices. X is the result of one of them and Z the sum of the results. Find E [X Z. Homework 2. Let X be a r.v.. Assume

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

Stochastic Models (Lecture #4)

Stochastic Models (Lecture #4) Stochastic Models (Lecture #4) Thomas Verdebout Université libre de Bruxelles (ULB) Today Today, our goal will be to discuss limits of sequences of rv, and to study famous limiting results. Convergence

More information

Propp-Wilson Algorithm (and sampling the Ising model)

Propp-Wilson Algorithm (and sampling the Ising model) Propp-Wilson Algorithm (and sampling the Ising model) Danny Leshem, Nov 2009 References: Haggstrom, O. (2002) Finite Markov Chains and Algorithmic Applications, ch. 10-11 Propp, J. & Wilson, D. (1996)

More information

Stochastic Analysis I S.Kotani April 2006

Stochastic Analysis I S.Kotani April 2006 Stochastic Analysis I S.Kotani April 6 To describe time evolution of randomly developing phenomena such as motion of particles in random media, variation of stock prices and so on, we have to treat stochastic

More information

An essay on the general theory of stochastic processes

An essay on the general theory of stochastic processes Probability Surveys Vol. 3 (26) 345 412 ISSN: 1549-5787 DOI: 1.1214/1549578614 An essay on the general theory of stochastic processes Ashkan Nikeghbali ETHZ Departement Mathematik, Rämistrasse 11, HG G16

More information

Stability of Stochastic Differential Equations

Stability of Stochastic Differential Equations Lyapunov stability theory for ODEs s Stability of Stochastic Differential Equations Part 1: Introduction Department of Mathematics and Statistics University of Strathclyde Glasgow, G1 1XH December 2010

More information

A PECULIAR COIN-TOSSING MODEL

A PECULIAR COIN-TOSSING MODEL A PECULIAR COIN-TOSSING MODEL EDWARD J. GREEN 1. Coin tossing according to de Finetti A coin is drawn at random from a finite set of coins. Each coin generates an i.i.d. sequence of outcomes (heads or

More information

Notes 15 : UI Martingales

Notes 15 : UI Martingales Notes 15 : UI Martingales Math 733 - Fall 2013 Lecturer: Sebastien Roch References: [Wil91, Chapter 13, 14], [Dur10, Section 5.5, 5.6, 5.7]. 1 Uniform Integrability We give a characterization of L 1 convergence.

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information