Additive Lévy Processes

Size: px
Start display at page:

Download "Additive Lévy Processes"

Transcription

1 Additive Lévy Processes Introduction Let X X N denote N independent Lévy processes on. We can construct an N-parameter stochastic process, indexed by N +, as follows: := X + + X N N for every := ( N ) N + We might also write := X X N And in this way, it follows that if N are independent additive Lévy processes, then N is an additive Lévy process as well, notation being more or less obvious. It is not hard to convince yourself that if Ψ Ψ N denote the respective Lévy exponents of X X N, then Ee ξ = e Ψ(ξ) for all N + and ξ where Ψ(ξ) := Ψ (ξ) Ψ N (ξ) And that Ψ determines uniquely the finite-ensional distributions of. Definition. The N-parameter stochastic process is called the additive Lévy process corresponding to X X N. The function Ψ is called the Lévy exponent of. I mention a simple example of additive Lévy process. Exercise 2 shows us how to create other types of additive Lévy processes from independent Lévy processes. 9

2 92 4. Additive Lévy Processes Example 2. Let X X N denote N independent -ensional Brownian motions. Then the N-parameter Gaussian process is called additive Brownian motion. More generally, if X X N are independent isotropic stable processes with the same index α (0 2], then is an additive stable process with index α. Note that Ψ(ξ) ξ α ( ) Let us define ( )() := E( + ) ( )() := N + e N = ( )() d [We could just as easily define λ for λ>0, or even λ N +, but there is no pressing need for doing this here.] You should check the following; it states that there are natural, and easy-to-understand, analogues of semigroups and resolvents in the present N-parameter setting. Lemma 3. If P P N denote the respective semigroups of X X N, then = P π() π() Pπ(N) π(n) for every permutation (π() π(n)) of ( ). And if N respectively denote the -resolvents of X X N, then = π() π(n). And, not surprisingly, we have also potential measures: Definition 4. The -potential measure of is defined as (A) := E e N = l A ( ) d for all A ( ). N + Lemma 5. If U UN denote the respective -potential measures of X X N, then = U UN. An addition theorem Theorem 6 (Khoshnevisan and Xiao, 2009; Khoshnevisan et al., 2003; Yang, 2007). Choose and fix a Borel set G +. N Then, E (+) N G > 0 if and only if there exists a Borel probability measure ρ on G such that = N +Ψ (ξ) ˆρ(ξ) 2 dξ< () I will prove the sufficiency of (); that is the easier half of Theorem 6;. You can find the details of the [much] more difficult half in Khoshnevisan and Xiao (2009).

3 An addition theorem 93 Define for all probability densities : and, (J)() := e N = ( + ) d N + Then, a careful computation, using Theorem 5 (page 86), reveals the following multiparameter analogue of Lemma 6 (page 88): Lemma 7. For all measurable probability densities : +, E (J)() d = E (J)() 2 d = (2π) N = +Ψ (ξ) ˆ(ξ) 2 dξ Proof of half of Theorem 6. If (J)() > 0 for some probability density, then certainly + X has hit the support of at some time. That is, P supp() X( + ) P {(J)() > 0} In particular, E supp() X( + ) P {(J)() > 0} d Lemma 7 and the Paley Zygmund inequality (page 89) together imply that E supp() X( + ) N (2π) ˆ(ξ) 2 dξ +Ψ (ξ) = where / := 0. Now we approximate G by the support of a probability density of the form := ρ, where ρ M (G) and is a bounded probability density with support in B(0 ). Since ˆ(ξ) ˆρ(ξ), the preceding shows that if there exists a probability measure ρ on G that satisfies (), then E X( + ) G = E G X( + ) > 0. Definition 8. We say that is absolutely continuous if (A) = A υ() d for some measurable υ. The function υ is called the -potential density of. It is not hard to see that υ can always be chosen to be a probability density. Moreover, if U U N have -potential densities N respectively, then υ = N. The following is proved similarly to Theorem 0 (page 82).

4 94 4. Additive Lévy Processes Theorem 9. Suppose is absolutely continuous with a -potential density υ such that υ(0) > 0. Then, for all G ( ), P{( N +) G = } > 0 if and only if there exists a probability measure ρ on G that satisfies (). Example 0. Let be an additive stable process on with N parameters and index α (0 2]. Then, P (+) N ˆρ(ξ) 2 G = > 0 iff +ξ Nα dξ < for some ρ M (G) When α =2, this says something about additive Brownian motion. A connection to Hausdorff ension Definition. The Hausdorff ension G of a Borel set G is defined as G := inf (0 ): ˆρ(ξ) 2 ρ M (G) such that dξ < +ξ [The preceding is well defined, provided that we set inf :=.] [This is not the usual definition, rather the consequence of a famous theorem called Frostman s theorem of classical potential theory.] In particular, Example 0 tells us the following. Proposition 2. If is an M-parameter additive stable process with index α (0 2], then for all G ( ): () If G> Mα, then P{( M + ) G = } > 0; whereas (2) If G< Mα, then P{( M + ) G = } =0. Now let be an N-parameter additive Lévy process on with Lévy exponent Ψ := (Ψ Ψ N ), independent from. Then, := is an (N + M)-parameter additive Lévy process on. It follows from Theorem 9 that P 0 (+ N+M ) > 0 iff N = +Ψ (ξ) dξ < +ξnα But 0 is in the closure of the range of if and only if the closures of the ranges of and intersect! Therefore, Proposition 2 implies the following: Theorem 3 (Khoshnevisan et al., 2003; Yang, 2007). With probability one, N ( +) N dξ = sup (0 ): +Ψ (ξ) ξ < =

5 An application to subordinators 95 where sup := 0. [Why can we replace ( + ξ ) by ξ +?] It is not hard to see that if C is at most countable, then (G C) = G for all G ( ). Therefore, one can use the fact that the X s are cadlag [hence have denumerably-many jumps] to prove that the closure sign of the preceding theorem can be removed. An application to subordinators Let us now apply Theorem 3 to the case where X := T is a subordinator with a Lévy exponent Φ [and Lévy exponent Ψ, still]. Theorem 4 (Horowitz, 968). With probability one, T( + ) = sup (0 ) : + Φ(λ) where sup := 0. 0 dλ λ < The following is a convenient method by which we can transform a Lévy exponent to a Laplace exponent. Proposition 5. For every λ>0, + Φ(λ) = πλ + Ψ() d +(/λ) 2 Proof. Define {C λ } λ>0 to be an independent linear Cauchy process, normalized so that E exp(c λ ) = exp( λ ) for and λ>0. By independence, e Φ(λ) = Ee λt = Ee C λt = Ee Ψ(C λ) But the probability density of C λ is () =(πλ) ( + (/λ) 2 ). Therefore, e Φ(λ) = πλ e Ψ() +(/λ) 2 d Multiply both sides by exp( ) and integrate [d] to finish. Proof of Theorem 4. Here is how we can apply Proposition 5. First, note that if 0 <θ<2 and, then 0 dλ λ +θ +(/λ) 2 θ

6 96 4. Additive Lévy Processes Therefore, if we multiply the equation in Proposition 5 by λ θ and integrate [dλ], then we obtain dλ 0 + Φ(λ) λ θ d + Ψ() θ This and Theorem 3 together prove the theorem. Let us conclude this section by applying Horowitz s theorem to the set of increase times of linear Brownian motion. Proposition 6 (Lévy XXX). If B denotes standard Brownian motion, then 0: B = sup B = a.s. [0] 2 Proof. Define T := inf { >0: B = } for all >0 Then, T is a stable subordinator with index α =/2; see Exercise 2 [page 5]. And Horowitz s theorem [ with Φ(λ) λ] tells us that the Hausdorff ension of the range of T is a.s. /2. On the other hand, it is a realvariable fact that T( + )= 0: B = sup B [0] (Check!) Therefore, the proposition follows. There is a theorem of Lévy which implies that { 0: B = sup [0] B} has the same law as the zero set { 0: B =0} of Brownian motion. Therefore, the preceding implies that the Hausdorff ension of the zero set of B is almost surely /2. ather than study this particular problem in greater depth, we study the zero set of a more general Lévy process in the next lecture. Problems for Chapter 4. Let {P } denote the two-sided semigroup of a two-sided Lévy process. () Is it true that P + = P P for all? [In other words, is {P } a semigroup of linear operators?] (2) Define linear operators P := P P for all. Prove that { P } is a semigroup of linear operators. 2. Let X and X 2 denote two independent Lévy processes on with respective exponents Ψ and Ψ 2.

7 Problems for Chapter 4 97 () Verify that := X Y defines a 2-parameter additive Lévy process on ; compute its Lévy exponent. (2) Verify that := (X Y ) defines a 2-parameter additive Lévy process on ( ) 2 ; compute its Lévy exponent. 3. Derive Lemma Let X denote an isotropic stable process on with index α (0 2]. Compute (X( + )). Indicate the changes to your formula if X( + ) is replaced by ( + ), where is an additive stable process on with index α (0 2] and N parameters. Or more generally still if := X X N, where X s are independent symmetric stable processes on the line with respective indices α α (0 2]. 5. Compute the Hausdorff ension of the range of Y := (B ), where B denotes -ensional Brownian motion. The range of Y is called the graph of Brownian motion. Indicate the changes made to your formula if we replace Brownian motion by isotropic stable process on with index α (0 2].

Lecture 21 Representations of Martingales

Lecture 21 Representations of Martingales Lecture 21: Representations of Martingales 1 of 11 Course: Theory of Probability II Term: Spring 215 Instructor: Gordan Zitkovic Lecture 21 Representations of Martingales Right-continuous inverses Let

More information

Convergence of Feller Processes

Convergence of Feller Processes Chapter 15 Convergence of Feller Processes This chapter looks at the convergence of sequences of Feller processes to a iting process. Section 15.1 lays some ground work concerning weak convergence of processes

More information

The Codimension of the Zeros of a Stable Process in Random Scenery

The Codimension of the Zeros of a Stable Process in Random Scenery The Codimension of the Zeros of a Stable Process in Random Scenery Davar Khoshnevisan The University of Utah, Department of Mathematics Salt Lake City, UT 84105 0090, U.S.A. davar@math.utah.edu http://www.math.utah.edu/~davar

More information

Building Infinite Processes from Finite-Dimensional Distributions

Building Infinite Processes from Finite-Dimensional Distributions Chapter 2 Building Infinite Processes from Finite-Dimensional Distributions Section 2.1 introduces the finite-dimensional distributions of a stochastic process, and shows how they determine its infinite-dimensional

More information

Level sets of the stochastic wave equation driven by a symmetric Lévy noise

Level sets of the stochastic wave equation driven by a symmetric Lévy noise Level sets of the stochastic wave equation driven by a symmetric Lévy noise Davar Khoshnevisan 1,3 and Eulalia Nualart 2 Abstract We consider the solution {ut, x), t 0, x R} of a system of d linear stochastic

More information

The strictly 1/2-stable example

The strictly 1/2-stable example The strictly 1/2-stable example 1 Direct approach: building a Lévy pure jump process on R Bert Fristedt provided key mathematical facts for this example. A pure jump Lévy process X is a Lévy process such

More information

Holomorphic functions which preserve holomorphic semigroups

Holomorphic functions which preserve holomorphic semigroups Holomorphic functions which preserve holomorphic semigroups University of Oxford London Mathematical Society Regional Meeting Birmingham, 15 September 2016 Heat equation u t = xu (x Ω R d, t 0), u(t, x)

More information

Davar Khoshnevisan. Topics in Probability: Lévy Processes Math ; Spring 2011

Davar Khoshnevisan. Topics in Probability: Lévy Processes Math ; Spring 2011 Topics in Probability: Lévy Processes Math 788-1; Spring 211 Davar Khoshnevisan 155 SOUTH 14 EAST JWB 233, DEPARTMENT OF MATHEMATICS, UNI- VERSITY OF UTAH, SALT LAKE CITY UT 84112 9 E-mail address: davar@math.utah.edu

More information

Some Examples. Uniform motion. Poisson processes on the real line

Some Examples. Uniform motion. Poisson processes on the real line Some Examples Our immeiate goal is to see some examples of Lévy processes, an/or infinitely-ivisible laws on. Uniform motion Choose an fix a nonranom an efine X := for all (1) Then, {X } is a [nonranom]

More information

Lecture 22 Girsanov s Theorem

Lecture 22 Girsanov s Theorem Lecture 22: Girsanov s Theorem of 8 Course: Theory of Probability II Term: Spring 25 Instructor: Gordan Zitkovic Lecture 22 Girsanov s Theorem An example Consider a finite Gaussian random walk X n = n

More information

Wiener Measure and Brownian Motion

Wiener Measure and Brownian Motion Chapter 16 Wiener Measure and Brownian Motion Diffusion of particles is a product of their apparently random motion. The density u(t, x) of diffusing particles satisfies the diffusion equation (16.1) u

More information

Potential theory of subordinate killed Brownian motions

Potential theory of subordinate killed Brownian motions Potential theory of subordinate killed Brownian motions Renming Song University of Illinois AMS meeting, Indiana University, April 2, 2017 References This talk is based on the following paper with Panki

More information

A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand

A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand Carl Mueller 1 and Zhixin Wu Abstract We give a new representation of fractional

More information

Metric spaces and metrizability

Metric spaces and metrizability 1 Motivation Metric spaces and metrizability By this point in the course, this section should not need much in the way of motivation. From the very beginning, we have talked about R n usual and how relatively

More information

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION

PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION PACKING-DIMENSION PROFILES AND FRACTIONAL BROWNIAN MOTION DAVAR KHOSHNEVISAN AND YIMIN XIAO Abstract. In order to compute the packing dimension of orthogonal projections Falconer and Howroyd 997) introduced

More information

2. The Concept of Convergence: Ultrafilters and Nets

2. The Concept of Convergence: Ultrafilters and Nets 2. The Concept of Convergence: Ultrafilters and Nets NOTE: AS OF 2008, SOME OF THIS STUFF IS A BIT OUT- DATED AND HAS A FEW TYPOS. I WILL REVISE THIS MATE- RIAL SOMETIME. In this lecture we discuss two

More information

Packing Dimension Profiles and Lévy Processes

Packing Dimension Profiles and Lévy Processes Packing Dimension Profiles and Lévy Processes D. Khoshnevisan, R.L. Schilling and Y. Xiao Abstract We extend the concept of packing dimension profiles, due to Falconer and Howroyd (997 and Howroyd (200,

More information

FRACTAL BEHAVIOR OF MULTIVARIATE OPERATOR-SELF-SIMILAR STABLE RANDOM FIELDS

FRACTAL BEHAVIOR OF MULTIVARIATE OPERATOR-SELF-SIMILAR STABLE RANDOM FIELDS Communications on Stochastic Analysis Vol. 11, No. 2 2017) 233-244 Serials Publications www.serialspublications.com FRACTAL BEHAVIOR OF MULTIVARIATE OPERATOR-SELF-SIMILAR STABLE RANDOM FIELDS ERCAN SÖNMEZ*

More information

Hardy-Stein identity and Square functions

Hardy-Stein identity and Square functions Hardy-Stein identity and Square functions Daesung Kim (joint work with Rodrigo Bañuelos) Department of Mathematics Purdue University March 28, 217 Daesung Kim (Purdue) Hardy-Stein identity UIUC 217 1 /

More information

Packing-Dimension Profiles and Fractional Brownian Motion

Packing-Dimension Profiles and Fractional Brownian Motion Under consideration for publication in Math. Proc. Camb. Phil. Soc. 1 Packing-Dimension Profiles and Fractional Brownian Motion By DAVAR KHOSHNEVISAN Department of Mathematics, 155 S. 1400 E., JWB 233,

More information

Statistics and Probability Letters

Statistics and Probability Letters Statistics and Probability Letters 83 (23) 83 93 Contents lists available at SciVerse ScienceDirect Statistics and Probability Letters journal homepage: www.elsevier.com/locate/stapro Fractal dimension

More information

MATH 6605: SUMMARY LECTURE NOTES

MATH 6605: SUMMARY LECTURE NOTES MATH 6605: SUMMARY LECTURE NOTES These notes summarize the lectures on weak convergence of stochastic processes. If you see any typos, please let me know. 1. Construction of Stochastic rocesses A stochastic

More information

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main

Path Decomposition of Markov Processes. Götz Kersting. University of Frankfurt/Main Path Decomposition of Markov Processes Götz Kersting University of Frankfurt/Main joint work with Kaya Memisoglu, Jim Pitman 1 A Brownian path with positive drift 50 40 30 20 10 0 0 200 400 600 800 1000-10

More information

Multiple points of the Brownian sheet in critical dimensions

Multiple points of the Brownian sheet in critical dimensions Multiple points of the Brownian sheet in critical dimensions Robert C. Dalang Ecole Polytechnique Fédérale de Lausanne Based on joint work with: Carl Mueller Multiple points of the Brownian sheet in critical

More information

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij

Weak convergence and Brownian Motion. (telegram style notes) P.J.C. Spreij Weak convergence and Brownian Motion (telegram style notes) P.J.C. Spreij this version: December 8, 2006 1 The space C[0, ) In this section we summarize some facts concerning the space C[0, ) of real

More information

Math 209B Homework 2

Math 209B Homework 2 Math 29B Homework 2 Edward Burkard Note: All vector spaces are over the field F = R or C 4.6. Two Compactness Theorems. 4. Point Set Topology Exercise 6 The product of countably many sequentally compact

More information

From fractals and probability to Lévy processes and stochastic PDEs

From fractals and probability to Lévy processes and stochastic PDEs From fractals and probability to Lévy processes and stochastic PDEs Davar Khoshnevisan In memory of Oded Schramm 1961 28) Abstract. We present a few choice examples that showcase how the topics in the

More information

Gaussian Random Fields: Geometric Properties and Extremes

Gaussian Random Fields: Geometric Properties and Extremes Gaussian Random Fields: Geometric Properties and Extremes Yimin Xiao Michigan State University Outline Lecture 1: Gaussian random fields and their regularity Lecture 2: Hausdorff dimension results and

More information

Brownian motion and thermal capacity

Brownian motion and thermal capacity Brownian motion and thermal capacity Davar Khoshnevisan University of Utah Yimin Xiao Michigan State University September 5, 2012 Abstract Let W denote d-dimensional Brownian motion. We find an explicit

More information

Random Fractals and Markov Processes

Random Fractals and Markov Processes Proceedings of Symposia in Pure Mathematics Random Fractals and Markov Processes Yimin Xiao Abstract. This is a survey on the sample path properties of Markov processes, especially fractal properties of

More information

Brownian Motion. Chapter Stochastic Process

Brownian Motion. Chapter Stochastic Process Chapter 1 Brownian Motion 1.1 Stochastic Process A stochastic process can be thought of in one of many equivalent ways. We can begin with an underlying probability space (Ω, Σ,P and a real valued stochastic

More information

HAUSDORFF DIMENSION AND ITS APPLICATIONS

HAUSDORFF DIMENSION AND ITS APPLICATIONS HAUSDORFF DIMENSION AND ITS APPLICATIONS JAY SHAH Abstract. The theory of Hausdorff dimension provides a general notion of the size of a set in a metric space. We define Hausdorff measure and dimension,

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence

Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence Introduction to Empirical Processes and Semiparametric Inference Lecture 08: Stochastic Convergence Michael R. Kosorok, Ph.D. Professor and Chair of Biostatistics Professor of Statistics and Operations

More information

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm

Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm Chapter 13 Radon Measures Recall that if X is a compact metric space, C(X), the space of continuous (real-valued) functions on X, is a Banach space with the norm (13.1) f = sup x X f(x). We want to identify

More information

Measurable Choice Functions

Measurable Choice Functions (January 19, 2013) Measurable Choice Functions Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/fun/choice functions.pdf] This note

More information

Hölder regularity for operator scaling stable random fields

Hölder regularity for operator scaling stable random fields Stochastic Processes and their Applications 119 2009 2222 2248 www.elsevier.com/locate/spa Hölder regularity for operator scaling stable random fields Hermine Biermé a, Céline Lacaux b, a MAP5 Université

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

1 Independent increments

1 Independent increments Tel Aviv University, 2008 Brownian motion 1 1 Independent increments 1a Three convolution semigroups........... 1 1b Independent increments.............. 2 1c Continuous time................... 3 1d Bad

More information

9 Brownian Motion: Construction

9 Brownian Motion: Construction 9 Brownian Motion: Construction 9.1 Definition and Heuristics The central limit theorem states that the standard Gaussian distribution arises as the weak limit of the rescaled partial sums S n / p n of

More information

4th Preparation Sheet - Solutions

4th Preparation Sheet - Solutions Prof. Dr. Rainer Dahlhaus Probability Theory Summer term 017 4th Preparation Sheet - Solutions Remark: Throughout the exercise sheet we use the two equivalent definitions of separability of a metric space

More information

Fractals at infinity and SPDEs (Large scale random fractals)

Fractals at infinity and SPDEs (Large scale random fractals) Fractals at infinity and SPDEs (Large scale random fractals) Kunwoo Kim (joint with Davar Khoshnevisan and Yimin Xiao) Department of Mathematics University of Utah May 18, 2014 Frontier Probability Days

More information

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539

Brownian motion. Samy Tindel. Purdue University. Probability Theory 2 - MA 539 Brownian motion Samy Tindel Purdue University Probability Theory 2 - MA 539 Mostly taken from Brownian Motion and Stochastic Calculus by I. Karatzas and S. Shreve Samy T. Brownian motion Probability Theory

More information

Stochastic integration. P.J.C. Spreij

Stochastic integration. P.J.C. Spreij Stochastic integration P.J.C. Spreij this version: April 22, 29 Contents 1 Stochastic processes 1 1.1 General theory............................... 1 1.2 Stopping times...............................

More information

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3

1 Topology Definition of a topology Basis (Base) of a topology The subspace topology & the product topology on X Y 3 Index Page 1 Topology 2 1.1 Definition of a topology 2 1.2 Basis (Base) of a topology 2 1.3 The subspace topology & the product topology on X Y 3 1.4 Basic topology concepts: limit points, closed sets,

More information

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem

Definition: Lévy Process. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes. Theorem Definition: Lévy Process Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 2: Lévy Processes David Applebaum Probability and Statistics Department, University of Sheffield, UK July

More information

Gaussian Processes. 1. Basic Notions

Gaussian Processes. 1. Basic Notions Gaussian Processes 1. Basic Notions Let T be a set, and X : {X } T a stochastic process, defined on a suitable probability space (Ω P), that is indexed by T. Definition 1.1. We say that X is a Gaussian

More information

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM

GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM GAUSSIAN PROCESSES; KOLMOGOROV-CHENTSOV THEOREM STEVEN P. LALLEY 1. GAUSSIAN PROCESSES: DEFINITIONS AND EXAMPLES Definition 1.1. A standard (one-dimensional) Wiener process (also called Brownian motion)

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

Homework #6 : final examination Due on March 22nd : individual work

Homework #6 : final examination Due on March 22nd : individual work Université de ennes Année 28-29 Master 2ème Mathématiques Modèles stochastiques continus ou à sauts Homework #6 : final examination Due on March 22nd : individual work Exercise Warm-up : behaviour of characteristic

More information

Weak nonmild solutions to some SPDEs

Weak nonmild solutions to some SPDEs Weak nonmild solutions to some SPDEs Daniel Conus University of Utah Davar Khoshnevisan University of Utah April 15, 21 Abstract We study the nonlinear stochastic heat equation driven by spacetime white

More information

1 Complex numbers and the complex plane

1 Complex numbers and the complex plane L1: Complex numbers and complex-valued functions. Contents: The field of complex numbers. Real and imaginary part. Conjugation and modulus or absolute valued. Inequalities: The triangular and the Cauchy.

More information

On semilinear elliptic equations with measure data

On semilinear elliptic equations with measure data On semilinear elliptic equations with measure data Andrzej Rozkosz (joint work with T. Klimsiak) Nicolaus Copernicus University (Toruń, Poland) Controlled Deterministic and Stochastic Systems Iasi, July

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 7 9/25/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.65/15.070J Fall 013 Lecture 7 9/5/013 The Reflection Principle. The Distribution of the Maximum. Brownian motion with drift Content. 1. Quick intro to stopping times.

More information

ECE353: Probability and Random Processes. Lecture 2 - Set Theory

ECE353: Probability and Random Processes. Lecture 2 - Set Theory ECE353: Probability and Random Processes Lecture 2 - Set Theory Xiao Fu School of Electrical Engineering and Computer Science Oregon State University E-mail: xiao.fu@oregonstate.edu January 10, 2018 Set

More information

The Brownian graph is not round

The Brownian graph is not round The Brownian graph is not round Tuomas Sahlsten The Open University, Milton Keynes, 16.4.2013 joint work with Jonathan Fraser and Tuomas Orponen Fourier analysis and Hausdorff dimension Fourier analysis

More information

Poisson random measure: motivation

Poisson random measure: motivation : motivation The Lévy measure provides the expected number of jumps by time unit, i.e. in a time interval of the form: [t, t + 1], and of a certain size Example: ν([1, )) is the expected number of jumps

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

MA677 Assignment #3 Morgan Schreffler Due 09/19/12 Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1:

MA677 Assignment #3 Morgan Schreffler Due 09/19/12 Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1: Exercise 1 Using Hölder s inequality, prove Minkowski s inequality for f, g L p (R d ), p 1: f + g p f p + g p. Proof. If f, g L p (R d ), then since f(x) + g(x) max {f(x), g(x)}, we have f(x) + g(x) p

More information

HITTING PROBABILITIES FOR GENERAL GAUSSIAN PROCESSES

HITTING PROBABILITIES FOR GENERAL GAUSSIAN PROCESSES HITTING PROBABILITIES FOR GENERAL GAUSSIAN PROCESSES EULALIA NUALART AND FREDERI VIENS Abstract. For a scalar Gaussian process B on R + with a prescribed general variance function γ 2 r = Var B r and a

More information

Part 2 Continuous functions and their properties

Part 2 Continuous functions and their properties Part 2 Continuous functions and their properties 2.1 Definition Definition A function f is continuous at a R if, and only if, that is lim f (x) = f (a), x a ε > 0, δ > 0, x, x a < δ f (x) f (a) < ε. Notice

More information

6 Cosets & Factor Groups

6 Cosets & Factor Groups 6 Cosets & Factor Groups The course becomes markedly more abstract at this point. Our primary goal is to break apart a group into subsets such that the set of subsets inherits a natural group structure.

More information

4 Countability axioms

4 Countability axioms 4 COUNTABILITY AXIOMS 4 Countability axioms Definition 4.1. Let X be a topological space X is said to be first countable if for any x X, there is a countable basis for the neighborhoods of x. X is said

More information

GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE)

GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE) GEOMETRIC AND FRACTAL PROPERTIES OF SCHRAMM-LOEWNER EVOLUTION (SLE) Triennial Ahlfors-Bers Colloquium Gregory F. Lawler Department of Mathematics Department of Statistics University of Chicago 5734 S.

More information

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction

ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES. 1. Introduction ON ADDITIVE TIME-CHANGES OF FELLER PROCESSES ALEKSANDAR MIJATOVIĆ AND MARTIJN PISTORIUS Abstract. In this note we generalise the Phillips theorem [1] on the subordination of Feller processes by Lévy subordinators

More information

Stochastic Processes

Stochastic Processes Stochastic Processes A very simple introduction Péter Medvegyev 2009, January Medvegyev (CEU) Stochastic Processes 2009, January 1 / 54 Summary from measure theory De nition (X, A) is a measurable space

More information

Self-similar Markov processes

Self-similar Markov processes Self-similar Markov processes Andreas E. Kyprianou 1 1 Unversity of Bath Which are our favourite stochastic processes? Markov chains Diffusions Brownian motion Cts-time Markov processes with jumps Lévy

More information

The Chaotic Character of the Stochastic Heat Equation

The Chaotic Character of the Stochastic Heat Equation The Chaotic Character of the Stochastic Heat Equation March 11, 2011 Intermittency The Stochastic Heat Equation Blowup of the solution Intermittency-Example ξ j, j = 1, 2,, 10 i.i.d. random variables Taking

More information

Information and Credit Risk

Information and Credit Risk Information and Credit Risk M. L. Bedini Université de Bretagne Occidentale, Brest - Friedrich Schiller Universität, Jena Jena, March 2011 M. L. Bedini (Université de Bretagne Occidentale, Brest Information

More information

CTRW Limits: Governing Equations and Fractal Dimensions

CTRW Limits: Governing Equations and Fractal Dimensions CTRW Limits: Governing Equations and Fractal Dimensions Erkan Nane DEPARTMENT OF MATHEMATICS AND STATISTICS AUBURN UNIVERSITY August 19-23, 2013 Joint work with Z-Q. Chen, M. D Ovidio, M.M. Meerschaert,

More information

Lecture 17 Brownian motion as a Markov process

Lecture 17 Brownian motion as a Markov process Lecture 17: Brownian motion as a Markov process 1 of 14 Course: Theory of Probability II Term: Spring 2015 Instructor: Gordan Zitkovic Lecture 17 Brownian motion as a Markov process Brownian motion is

More information

Stable Process. 2. Multivariate Stable Distributions. July, 2006

Stable Process. 2. Multivariate Stable Distributions. July, 2006 Stable Process 2. Multivariate Stable Distributions July, 2006 1. Stable random vectors. 2. Characteristic functions. 3. Strictly stable and symmetric stable random vectors. 4. Sub-Gaussian random vectors.

More information

Integral representations in models with long memory

Integral representations in models with long memory Integral representations in models with long memory Georgiy Shevchenko, Yuliya Mishura, Esko Valkeila, Lauri Viitasaari, Taras Shalaiko Taras Shevchenko National University of Kyiv 29 September 215, Ulm

More information

Selected Exercises on Expectations and Some Probability Inequalities

Selected Exercises on Expectations and Some Probability Inequalities Selected Exercises on Expectations and Some Probability Inequalities # If E(X 2 ) = and E X a > 0, then P( X λa) ( λ) 2 a 2 for 0 < λ

More information

Convergence of a Generalized Midpoint Iteration

Convergence of a Generalized Midpoint Iteration J. Able, D. Bradley, A.S. Moon under the supervision of Dr. Xingping Sun REU Final Presentation July 31st, 2014 Preliminary Words O Rourke s conjecture We begin with a motivating question concerning the

More information

Lévy Processes in Cones of Banach Spaces

Lévy Processes in Cones of Banach Spaces Lévy Processes in Cones of Banach Spaces Víctor Pérez-Abreu Centro de Investigación en Matemáticas CIMAT, Guanajuato, Mexico Alfonso Rocha-Arteaga Escuela de Ciencias Físico-Matemáticas Universidad Autónoma

More information

Elementary Probability. Exam Number 38119

Elementary Probability. Exam Number 38119 Elementary Probability Exam Number 38119 2 1. Introduction Consider any experiment whose result is unknown, for example throwing a coin, the daily number of customers in a supermarket or the duration of

More information

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( )

Indeed, if we want m to be compatible with taking limits, it should be countably additive, meaning that ( ) Lebesgue Measure The idea of the Lebesgue integral is to first define a measure on subsets of R. That is, we wish to assign a number m(s to each subset S of R, representing the total length that S takes

More information

Exercises Measure Theoretic Probability

Exercises Measure Theoretic Probability Exercises Measure Theoretic Probability 2002-2003 Week 1 1. Prove the folloing statements. (a) The intersection of an arbitrary family of d-systems is again a d- system. (b) The intersection of an arbitrary

More information

Infinitely divisible distributions and the Lévy-Khintchine formula

Infinitely divisible distributions and the Lévy-Khintchine formula Infinitely divisible distributions and the Cornell University May 1, 2015 Some definitions Let X be a real-valued random variable with law µ X. Recall that X is said to be infinitely divisible if for every

More information

Scale functions for spectrally negative Lévy processes and their appearance in economic models

Scale functions for spectrally negative Lévy processes and their appearance in economic models Scale functions for spectrally negative Lévy processes and their appearance in economic models Andreas E. Kyprianou 1 Department of Mathematical Sciences, University of Bath 1 This is a review talk and

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT 4

SOLUTIONS TO HOMEWORK ASSIGNMENT 4 SOLUTIONS TO HOMEWOK ASSIGNMENT 4 Exercise. A criterion for the image under the Hilbert transform to belong to L Let φ S be given. Show that Hφ L if and only if φx dx = 0. Solution: Suppose first that

More information

Introductory Analysis 2 Spring 2010 Exam 1 February 11, 2015

Introductory Analysis 2 Spring 2010 Exam 1 February 11, 2015 Introductory Analysis 2 Spring 21 Exam 1 February 11, 215 Instructions: You may use any result from Chapter 2 of Royden s textbook, or from the first four chapters of Pugh s textbook, or anything seen

More information

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition

Filtrations, Markov Processes and Martingales. Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition Filtrations, Markov Processes and Martingales Lectures on Lévy Processes and Stochastic Calculus, Braunschweig, Lecture 3: The Lévy-Itô Decomposition David pplebaum Probability and Statistics Department,

More information

Brownian survival and Lifshitz tail in perturbed lattice disorder

Brownian survival and Lifshitz tail in perturbed lattice disorder Brownian survival and Lifshitz tail in perturbed lattice disorder Ryoki Fukushima Kyoto niversity Random Processes and Systems February 16, 2009 6 B T 1. Model ) ({B t t 0, P x : standard Brownian motion

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

A LOCAL-TIME CORRESPONDENCE FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS

A LOCAL-TIME CORRESPONDENCE FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS A LOCAL-TIME CORRESPONDENCE FOR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS MOHAMMUD FOONDUN, DAVAR KHOSHNEVISAN, AND EULALIA NUALART Abstract. It is frequently the case that a white-noise-driven parabolic

More information

Definition: A "system" of equations is a set or collection of equations that you deal with all together at once.

Definition: A system of equations is a set or collection of equations that you deal with all together at once. System of Equations Definition: A "system" of equations is a set or collection of equations that you deal with all together at once. There is both an x and y value that needs to be solved for Systems

More information

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures

Spring 2014 Advanced Probability Overview. Lecture Notes Set 1: Course Overview, σ-fields, and Measures 36-752 Spring 2014 Advanced Probability Overview Lecture Notes Set 1: Course Overview, σ-fields, and Measures Instructor: Jing Lei Associated reading: Sec 1.1-1.4 of Ash and Doléans-Dade; Sec 1.1 and A.1

More information

Stochastic completeness of Markov processes

Stochastic completeness of Markov processes Stochastic completeness of arkov processes Alexander Grigor yan Lecture course at CUHK, February-arch 211 Contents Introduction 1 1 Brownian motion on Riemannian manifolds 3 1.1 Laplace-Beltrami operator........................

More information

Scaling limits for random trees and graphs

Scaling limits for random trees and graphs YEP VII Probability, random trees and algorithms 8th-12th March 2010 Scaling limits for random trees and graphs Christina Goldschmidt INTRODUCTION A taste of what s to come We start with perhaps the simplest

More information

GARCH processes continuous counterparts (Part 2)

GARCH processes continuous counterparts (Part 2) GARCH processes continuous counterparts (Part 2) Alexander Lindner Centre of Mathematical Sciences Technical University of Munich D 85747 Garching Germany lindner@ma.tum.de http://www-m1.ma.tum.de/m4/pers/lindner/

More information

On the quantiles of the Brownian motion and their hitting times.

On the quantiles of the Brownian motion and their hitting times. On the quantiles of the Brownian motion and their hitting times. Angelos Dassios London School of Economics May 23 Abstract The distribution of the α-quantile of a Brownian motion on an interval [, t]

More information

arxiv: v2 [math.pr] 28 Feb 2017

arxiv: v2 [math.pr] 28 Feb 2017 Transition probabilities of Lévy-type processes: Parametrix construction Franziska Kühn Abstract arxiv:1702.00778v2 [math.pr] 28 Feb 2017 We present an existence result for Lévy-type processes which requires

More information

LECTURE 15: COMPLETENESS AND CONVEXITY

LECTURE 15: COMPLETENESS AND CONVEXITY LECTURE 15: COMPLETENESS AND CONVEXITY 1. The Hopf-Rinow Theorem Recall that a Riemannian manifold (M, g) is called geodesically complete if the maximal defining interval of any geodesic is R. On the other

More information

Lecture 12. F o s, (1.1) F t := s>t

Lecture 12. F o s, (1.1) F t := s>t Lecture 12 1 Brownian motion: the Markov property Let C := C(0, ), R) be the space of continuous functions mapping from 0, ) to R, in which a Brownian motion (B t ) t 0 almost surely takes its value. Let

More information

(2) E M = E C = X\E M

(2) E M = E C = X\E M 10 RICHARD B. MELROSE 2. Measures and σ-algebras An outer measure such as µ is a rather crude object since, even if the A i are disjoint, there is generally strict inequality in (1.14). It turns out to

More information

Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension

Brownian motion with variable drift: 0-1 laws, hitting probabilities and Hausdorff dimension Brownian motion with variable drift: - laws, hitting probabilities and Hausdorff dimension Yuval Peres Perla Sousi Abstract By the Cameron Martin theorem, if a function f is in the Dirichlet space D, then

More information

L p Spaces and Convexity

L p Spaces and Convexity L p Spaces and Convexity These notes largely follow the treatments in Royden, Real Analysis, and Rudin, Real & Complex Analysis. 1. Convex functions Let I R be an interval. For I open, we say a function

More information

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS Bendikov, A. and Saloff-Coste, L. Osaka J. Math. 4 (5), 677 7 ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS ALEXANDER BENDIKOV and LAURENT SALOFF-COSTE (Received March 4, 4)

More information