QSim Quantum simulation with ultracold atoms

Size: px
Start display at page:

Download "QSim Quantum simulation with ultracold atoms"

Transcription

1 APS Tutorial 7 QSim Quantum simulation with ultracold atoms Lecture 1: Lecture 2: Lecture 3: Lecture 4: Introduction to quantum simulation with ultracold atoms Hubbard physics with optical lattices Ultracold bosons in optical lattices: an overview Quantum simulation & quantum information J. H. Thywissen B. DeMarco A.-M. Rey I. Deutsch

2 An introduction to Quantum simulation with ultracold atoms Joseph H. Thywissen University of Toronto 20 March 2011 APS March meeting Dallas, TX Quantum simulator?

3 Problem: what is the minimal surface given fixed edges?

4 Soap films a simulation to find minimal surfaces. Problem: what is the minimal surface given fixed edges? Answer: construct a wire grid and dip it in soap! minimal surface for tetrahedral edges.

5 Answer precedes the explanation Lagrange: calculus of variations 1760: poses minimal surface problem Plateau: soap film simulations, c.1840 Initiates a Golden Age of mathematical study of minimal surfaces. Riemann, Weierstraß, Schwarz, others: fail to find answer to surfaces of least area. Douglas: solves in (Fields Medal 36) J. A. F. Plateau

6 Answer precedes the explanation Lagrange: calculus of variations Plateau s laws 1760: poses minimal surface problem Plateau: soap film simulations, c.1840 Initiates 2. a Constant Golden curvature Age of mathematical study of minimal surfaces. Riemann, Weierstraß, Schwarz, others: fail to find answer to surfaces of least area. 1. Smooth surfaces 3. Soap films always meet in threes, and they do so at an angle of 120 o, forming an edge ( Plateau Border ). 4. These Plateau Borders meet in fours at an angle of arccos(-1/3) to form a Douglas: solves in vertex. (Fields Medal 36) J. A. F. Plateau

7 What is simulation? Provides the answer to a mathematical problem or model Typically done (today) on a classical digital computer. Does not solve the model -- does not tell us why. (unlike calculation?) Empirical rules might be learned; and further simulations (various initial conditions, etc) could address questions. Experiment? Yes, but we know Hamiltonian.

8 APS Tutorial 7 QSim Quantum simulation with ultracold atoms Lecture 1: Introduction to quantum simulation with ultracold atoms Outline J. H. Thywissen Lecture 2: Lecture 3: Lecture 4: Hubbard physics with optical lattices Ultracold bosons in optical lattices: an overview Quantum simulation & quantum information I. What B. is DeMarco Simulation? II. Length scales A.-M. Rey III.Example - strongly interacting I. Deutsch fermions Tutorial 7 slides online:

9 Classical simulation of a quantum system Typically on a computer...a device that cannot be in a superposition or entangled state. {more about this in Lecture 4.} Methods typically used are numerical integration of the Schrödinger Eq. (or mean field extension, such as GP Eq.) Monte Carlo (QMC) simulations However QMC fails* for many-body fermion problems, or excited states of bose systems, due to sign problem. Feynman: Use a quantum system to simulate another quantum system [1981] *or has exponential scaling

10 Quantum simulation (QSim) When classical simulation is inefficient, using a quantum system may be the only option. Not universal quantum computing...eg, couldn t factor a number. Certain models natural fits for atoms Hubbard Model: optical lattices 1D models: extremely elongated traps 2D models: pancake traps Universal interactions: unitarity-limited Fermi gas

11 Neutral atom Hamiltonian Ĥ = dr ˆΨ (r) ] [ 2 2m 2 + U(r) ˆΨ(r)+ 1 2 drdr ˆΨ (r) ˆΨ (r )V (r r ) ˆΨ(r ) ˆΨ(r) V: Inter-atomic potential is deep, complex, and unique to each atom pair) U: Trapping potential not reminiscent of textbooks, where we typically worked in a box (U=0) How could this Hamiltonian be useful to simulate other systems?

12 1st simplification: low-energy limit Dilute atoms scatter pair-wise, because their typical spacing R = n 1/3 is much smaller than the potential range r0 Below 0.1mK, atom pairs do not have enough E to overcome the p-wave centrifugal barrier inter-atomic potential, Cs Two-body collision l =1 m1 m2 R l =0 V l (R) =V (R)+ 2 l(l + 1)/(2µR 2 ) R (nm)

13

14 S-wave ( l =0) scattered wave function For elastic scattering, must be ψ k ( r )=e i k r a 1+ika e ikr r + plane wave spherical wave The scattering term has an amplitude f k = [1/a + ik] 1 scattering amplitude from which you find the phase & cross-section k θ σ =4π f k ( n) 2 1/a

15 S-wave ( l =0) scattered wave function For elastic scattering, must be ψ k ( r )=e i k r + a 1+ika e ikr r Only one free parameter! scattering length a plane wave spherical wave The scattering term has an amplitude f k = [1/a + ik] 1 scattering amplitude from which you find the phase & cross-section k θ σ =4π f k ( n) 2 1/a

16 Pseudo-potential Two interaction potentials V and V are equivalent if they have the same scattering length So: after measuring a for the real system, we can model with a very simple potential. Replace interaction V ( R) potential with delta function! V ( R)=gδ( R) where Actually, to avoid divergences you need g = 4π 2 m a V ( R)=gδ( R) R (R ) regularized

17 Neutral atom Hamiltonian (revisited) Ĥ = dr ˆΨ (r) ] [ 2 2m 2 + U(r) ˆΨ(r)+ 1 2 drdr ˆΨ (r) ˆΨ (r )V (r r ) ˆΨ(r ) ˆΨ(r) Can write V(..) as pseudo potential: V ( R)=gδ( R) R (R ) in limit of dilute ( ) R r 0 and ultracold ( T 100µK).

18 Neutral atom Hamiltonian (revisited) Ĥ = dr ˆΨ (r) ] [ 2 2m 2 + U(r) ˆΨ(r)+ 1 2 drdr ˆΨ (r) ˆΨ (r )V (r r ) ˆΨ(r ) ˆΨ(r) Can write V(..) as pseudo potential: V ( R)=gδ( R) R (R ) What about the trap? in limit of dilute ( ) R r 0 and ultracold ( T 100µK).

19 2nd simplification: Local chemical potential What if a cold gas were a distribution of local creatures? snake line of ants {scare the ant at the front of the line, and the last ant won t rattle its tail...}

20 2nd simplification: Local chemical potential What if a cold gas were a distribution of local creatures? snake line of ants {scare the ant at the front of the line, and the last ant won t rattle its tail...} Recipe: µ µ local = µ U( r)

21 Local chemical potential: µ local = µ U( r) how to use your Stat. Mech. textbook Thomas Fermi density profiles: n = 1 6π 2 [ 2mEF 2 ideal quantum gas functions: ] 3/2 n TF = (2m)3/2 6π 2 3 [E F U( r)] 3/2 for zero-temperature fermions in semiclassical limit. z = e βµ z = e β(µ U( r)) n = λ 3 T f 3/2(z) at finite temperature ( β =1/k B T), where z=fugacity. Similar Thomas Fermi expression for bosons: µ = gn textbook local µ textbook local µ textbook local µ n TF = 1 g [µ U( r)]

22 Validity of local chemical potential A local density approximation (LDA). Not a good approximation when: -tunneling can occur through barriers -long-range order affected (eg, phase coherence) -gradients perturb states (eg, localized states [AM Rey]) -long-range interactions (Coulomb etc) In those cases, QSim model must include trapping potential. However in some important cases works well: -important length scales (eg, Fermi length or lattice constant) much smaller than trap size -Far from edges, compared to healing length ξ: ξ =1/ 8πna such that 2 2mξ 2 = gn

23 Cold neutral gases: length scales inter-atomic potential range, r0: 2 nm scattering length, a -low-field (background) 5 nm -near a Feshbach resonance 100 nm to 1000 nm thermal de Broglie wavelength: 100 nm average inter-particle spacing: 100 nm -same length scale as 1/kF lattice constant: 400 nm ground state width: 100Hz (typ. magnetic trap) 10kHz (single site of optical lattice) cloud size: µm

24 Cold neutral gases: length scales inter-atomic potential range, r0: 2 nm scattering length, a -low-field (background) 5 nm -near a Feshbach resonance 100 nm to 1000 nm thermal de Broglie wavelength: 100 nm average inter-particle spacing: 100 nm -same length scale as 1/kF Quantum degeneracy lattice constant: 400 nm ground state width: 100Hz (typ. magnetic trap) 10kHz (single site of optical lattice) cloud size: µm

25 Cold neutral gases: length scales inter-atomic potential range, r0: 2 nm scattering length, a -low-field (background) 5 nm -near a Feshbach resonance 100 nm to 1000 nm thermal de Broglie wavelength: 100 nm average inter-particle spacing: 100 nm -same length scale as 1/kF Quantum degeneracy lattice constant: 400 nm ground state width: 100Hz (typ. magnetic trap) Simulation space 10kHz (single site of optical lattice) cloud size: µm

26 Cold neutral gases: length scales (in traps) inter-atomic potential range, r0: 2 nm scattering length, a -low-field (background) 5 nm -near a Feshbach resonance 100 nm to 1000 nm thermal de Broglie wavelength: 100 nm average inter-particle spacing: 100 nm -same length scale as 1/kF ground state width: 100Hz (typ. magnetic trap) cloud size: µm Simulation space

27 QSim in local µ picture: µdensity energy U(r) position position

28 QSim in local µ picture: µdensity energy U(r) position position uniform H, simulated with local µ & T.

29 QSim in local µ picture: µdensity energy bosons (for single component): [ ] Ĥ = ˆΨ 2 2m 2 U(r) ˆΨ + g 2 ˆn2 fermions (for 2-component gas): position Ĥ = σ ˆΨ σ [ 2 ] 2m 2 ˆΨ σ + g ˆn ˆn position uniform H, simulated with local µ & T.

30 Feshbach resonances How can we tune the scattering length a? We can tune a molecular bound state into resonance with the free atoms, and affect net phase acquired during the collision. Result is indistinguishable from tuning the single-channel square well: it s only the phase that matters.

31 Feshbach resonances How can we tune the scattering length a? We can tune a molecular bound state into resonance with the free atoms, and affect net phase acquired during the collision. Result is indistinguishable from tuning the single-channel square well: it s only the phase that matters.

32 Feshbach resonances How can we tune the scattering length a? We can tune a molecular bound state into resonance with the free atoms, and affect net phase acquired during the collision. Result is indistinguishable from tuning the single-channel square well: it s only the phase that matters.

33 Feshbach resonances single-channel model Tune the square well potential & calculate a: potential V R b We find: 1. Resonances at bv =(n +1/2)π when each new bound state appears. 2. Mostly a>0. Near a resonance when a<0 (eg, Li.) a R b V

34 Feshbach resonances Near resonance the scattering length can be described as ( a(b) =a bg 1 B B 0 ) Example: 6 Li s-wave cross section is σ 0 = 4π k 2 sin2 η 0 For a>0, a bound state exists with binding energy E b = 2 2µa 2

35

36

37 Length scales (in res.) inter-atomic potential range, r0: 2 nm thermal de Broglie wavelength: 100 nm average inter-particle spacing: 100 nm -same length scale as 1/kF scattering length, a -at Feshbach resonance: divergent ground state width: 100Hz (typ. magnetic trap) cloud size: µm Simulation space

38 Length scales (in T=0) inter-atomic potential range, r0: 2 nm average inter-particle spacing: 100 nm -same length scale as 1/kF scattering length, a -at Feshbach resonance: divergent ground state width: 100Hz (typ. magnetic trap) cloud size: µm Simulation space

39 Length scales (in T=0) inter-atomic potential range, r0: 2 nm average inter-particle spacing: 100 nm -same length scale as 1/kF scattering length, a -at Feshbach resonance: divergent ground state width: 100Hz (typ. magnetic trap) cloud size: µm Simulation space Only one length scale left in the problem! Universal

40 Unitarity limit: a >> R If the scattering length far exceed any physical length scale of the problem, it cannot be important. Inter-particle spacing d only length scale left: must determine all interaction energies! In fact, EF is the energy scale associated with d -for both fermions *and* bosons! [Ho 2004] -so restate this condition as a k 1 F where for both bosons and fermions k F (6πn) 1/3

41 Cross section at unitarity Near a Feshbach resonance, a diverges. The scattering cross section departs from its low-ka form: σ = 4πa2 1+k 2 a 2 4π k 2 This is just a manifestation of the optical theorem, which says that complete reflection corresponds to a finite scattering length. In terms of the de Broglie wavelength, σ res = λ 2 db/π You may be more familiar with the resonant atom-photon cross section (which has different constants because it is a vector instead of scalar field): σ res = 3 2π λ2 L

42 Quantum simulation at unitarity For a many-body system, resonant interactions also saturate but are less easy to quantify. Certainly it is the case that a divergent a can no longer be a relevant physical quantity to the problem. For fermions, the only remaining length scale is k 1 F. This means that interaction energies must scale with the Fermi E. In particular, for resonant attractive interactions, where β 0.58 µ Local = (1 + β)ɛ F has been measured in various experiments. Using the LDA to integrate over the profile, we find µ U = 1+βE F 0.65E F for a

43 Perspective: What can cold atoms teach us? APS March meeting: 10,000 CM physicists. 100-yr-old field (SC observed in 1911 by Kammerling-Onnes) Traditional CM approach: see phenomenon (eg, superconductivity) search for theory (eg, BCS model) Ultracold atoms: quantum many-body physics (eg, BEC) know Hamiltonian

44 Quantum simulation with neutral atoms Conclusion: Emulation of simple models relies on a separation of length (or energy) scales. Contact interaction when dilute and ultracold R k 1 F r 0 T 100µK Universal (no dependence on interactions) when unitaritylimited a k 1 F Simulate uniform physics when LDA valid µ local = µ U( r) Single-band model for high lattice depths {next 2 lectures}

45 Quantum simulation at the University of Toronto Postdoc Bose- Fermi mixture experiment position available! Site-resolved optical lattice experiment

46 Thank you!

47 Addendum How to cool atoms?

48 Laser system

49 sympathetic cooling on a chip Aubin et al, Nature Phys. (2006)

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Introduction to cold atoms and Bose-Einstein condensation (II)

Introduction to cold atoms and Bose-Einstein condensation (II) Introduction to cold atoms and Bose-Einstein condensation (II) Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 7/7/04 Boulder Summer School * 1925 History

More information

A.4 - Elements of collision theory 181

A.4 - Elements of collision theory 181 A.4 - Elements of collision theory 181 A.4 Elements of collision theory The behavior of a many body system depends crucially on the interactions between particles, as epitomized by the BEC-BCS crossover.

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Quantum Mechanics: Fundamentals

Quantum Mechanics: Fundamentals Kurt Gottfried Tung-Mow Yan Quantum Mechanics: Fundamentals Second Edition With 75 Figures Springer Preface vii Fundamental Concepts 1 1.1 Complementarity and Uncertainty 1 (a) Complementarity 2 (b) The

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Strongly paired fermions

Strongly paired fermions Strongly paired fermions Alexandros Gezerlis TALENT/INT Course on Nuclear forces and their impact on structure, reactions and astrophysics July 4, 2013 Strongly paired fermions Neutron matter & cold atoms

More information

Quantum dynamics in ultracold atoms

Quantum dynamics in ultracold atoms Rather don t use Power-Points title Page Use my ypage one instead Quantum dynamics in ultracold atoms Corinna Kollath (Ecole Polytechnique Paris, France) T. Giamarchi (University of Geneva) A. Läuchli

More information

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems

Filippo Tramonto. Miniworkshop talk: Quantum Monte Carlo simula9ons of low temperature many- body systems Miniworkshop talk: Quantum Monte Carlo simulations of low temperature many-body systems Physics, Astrophysics and Applied Physics Phd school Supervisor: Dott. Davide E. Galli Outline Interests in quantum

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5.

Week 13. PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal, Frontiers of Modern AMO physics. 5. Week 13 PHY 402 Atomic and Molecular Physics Instructor: Sebastian Wüster, IISERBhopal,2018 These notes are provided for the students of the class above only. There is no warranty for correctness, please

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Superfluidity in Ultracold Fermi Gases

Superfluidity in Ultracold Fermi Gases Course in 3 lectures on Superfluidity in Ultracold Fermi Gases Francesca Maria Marchetti Rudolf Peierls Centre for Theoretical Physics University of Oxford Physics by the Lake Ambleside, September 2007

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality

Revolution in Physics. What is the second quantum revolution? Think different from Particle-Wave Duality PHYS 34 Modern Physics Ultracold Atoms and Trappe Ions Today and Mar.3 Contents: a) Revolution in physics nd Quantum revolution b) Quantum simulation, measurement, and information c) Atomic ensemble and

More information

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique "

Théorie de la Matière Condensée Cours & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique - Master Concepts Fondamentaux de la Physique 2013-2014 Théorie de la Matière Condensée Cours 1-2 09 & 16 /09/2013 : Transition Superfluide Isolant de Mott et Modèle de Hubbard bosonique " - Antoine Georges

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Ultracold Fermi Gases with unbalanced spin populations

Ultracold Fermi Gases with unbalanced spin populations 7 Li Bose-Einstein Condensate 6 Li Fermi sea Ultracold Fermi Gases with unbalanced spin populations Nir Navon Fermix 2009 Meeting Trento, Italy 3 June 2009 Outline Introduction Concepts in imbalanced Fermi

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

PHYS598 AQG Introduction to the course

PHYS598 AQG Introduction to the course PHYS598 AQG Introduction to the course First quantum gas in dilute atomic vapors 87 Rb BEC : Wieman / Cornell group (1995) Logistics A bit about the course material Logistics for the course Website: https://courses.physics.illinois.edu/phys598aqg/fa2017/

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

Population imbalance and condensate fraction with SU(3) superfluid fermions

Population imbalance and condensate fraction with SU(3) superfluid fermions Population imbalance and condensate fraction with SU(3) superfluid fermions Luca Salasnich Dipartimento di Fisica Galileo Galilei and CNISM, Università di Padova Sarajevo, July 11, 211 Main results published

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14 Super Efimov effect together with Yusuke Nishida and Dam Thanh Son Sergej Moroz University of Washington Few-body problems They are challenging but useful: Newton gravity Quantum atoms Quantum molecules

More information

Breakdown and restoration of integrability in the Lieb-Liniger model

Breakdown and restoration of integrability in the Lieb-Liniger model Breakdown and restoration of integrability in the Lieb-Liniger model Giuseppe Menegoz March 16, 2012 Giuseppe Menegoz () Breakdown and restoration of integrability in the Lieb-Liniger model 1 / 16 Outline

More information

In Situ Imaging of Cold Atomic Gases

In Situ Imaging of Cold Atomic Gases In Situ Imaging of Cold Atomic Gases J. D. Crossno Abstract: In general, the complex atomic susceptibility, that dictates both the amplitude and phase modulation imparted by an atom on a probing monochromatic

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases

Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in 2D Fermi Gases Effects of spin-orbit coupling on the BKT transition and the vortexantivortex structure in D Fermi Gases Carlos A. R. Sa de Melo Georgia Institute of Technology QMath13 Mathematical Results in Quantum

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State

Supported by NIST, the Packard Foundation, the NSF, ARO. Penn State Measuring the electron edm using Cs and Rb atoms in optical lattices (and other experiments) Fang Fang Osama Kassis Xiao Li Dr. Karl Nelson Trevor Wenger Josh Albert Dr. Toshiya Kinoshita DSW Penn State

More information

Bogoliubov theory of disordered Bose-Einstein condensates

Bogoliubov theory of disordered Bose-Einstein condensates Bogoliubov theory of disordered Bose-Einstein condensates Christopher Gaul Universidad Complutense de Madrid BENASQUE 2012 DISORDER Bogoliubov theory of disordered Bose-Einstein condensates Abstract The

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Prof. Seth Aubin Office: room 255, Small Hall, tel: 1-3545 Lab: room 069, Small

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Introduction to Atomic Physics and Quantum Optics

Introduction to Atomic Physics and Quantum Optics Physics 404 and Physics 690-03 Introduction to Atomic Physics and Quantum Optics [images courtesy of Thywissen group, U of T] Instructor Prof. Seth Aubin Office: room 245, Millington Hall, tel: 1-3545

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

Matter wave interferometry beyond classical limits

Matter wave interferometry beyond classical limits Max-Planck-Institut für Quantenoptik Varenna school on Atom Interferometry, 15.07.2013-20.07.2013 The Plan Lecture 1 (Wednesday): Quantum noise in interferometry and Spin Squeezing Lecture 2 (Friday):

More information

Quantum Computing with neutral atoms and artificial ions

Quantum Computing with neutral atoms and artificial ions Quantum Computing with neutral atoms and artificial ions NIST, Gaithersburg: Carl Williams Paul Julienne T. C. Quantum Optics Group, Innsbruck: Peter Zoller Andrew Daley Uwe Dorner Peter Fedichev Peter

More information

Contents Ultracold Fermi Gases: Properties and Techniques Index

Contents Ultracold Fermi Gases: Properties and Techniques Index V Contents 1 Ultracold Fermi Gases: Properties and Techniques 1 Selim Jochim 1.1 Introduction 1 1.2 Ultracold Fermions in a Trap 2 1.2.1 Ideal Fermi Gas 3 1.3 Preparing an Ultracold Fermi Gas 6 1.4 Interactions

More information

Exotic superfluidity in optical lattices

Exotic superfluidity in optical lattices Universität Hamburg Exotic superfluidity in optical lattices Andreas Hemmerich when bosons condense in excited states AH 11/13! Optical lattice = Ultracold atoms in a lattice made of light How cold is

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

Chapter 7: Quantum Statistics

Chapter 7: Quantum Statistics Part II: Applications - Bose-Einstein Condensation SDSMT, Physics 204 Fall Introduction Historic Remarks 2 Bose-Einstein Condensation Bose-Einstein Condensation The Condensation Temperature 3 The observation

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Optical Lattices. Chapter Polarization

Optical Lattices. Chapter Polarization Chapter Optical Lattices Abstract In this chapter we give details of the atomic physics that underlies the Bose- Hubbard model used to describe ultracold atoms in optical lattices. We show how the AC-Stark

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover

Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover Influence of Disorder on the Fidelity Susceptibility in the BCS-BEC Crossover 6th APCWQIS, December 2012 Bilal Tanatar December 6, 2012 Prologue 1 Introduction Prologue Cooling Techniques 2 BCS-BEC Crossover

More information

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5

Lecture 2. Trapping of neutral atoms Evaporative cooling. Foot 9.6, , 10.5 Lecture Trapping of neutral atoms Evaporative cooling Foot 9.6, 10.1-10.3, 10.5 34 Why atom traps? Limitation of laser cooling temperature (sub)-doppler (sub)-recoil density light-assisted collisions reabsorption

More information

Studying strongly correlated few-fermion systems with ultracold atoms

Studying strongly correlated few-fermion systems with ultracold atoms Studying strongly correlated few-fermion systems with ultracold atoms Andrea Bergschneider Group of Selim Jochim Physikalisches Institut Universität Heidelberg Strongly correlated systems Taken from: http://www.chemistryexplained.com

More information

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005

arxiv:cond-mat/ v1 [cond-mat.other] 19 Dec 2005 Released momentum distribution of a Fermi gas in the BCS-BEC crossover arxiv:cond-mat/5246v [cond-mat.other] 9 Dec 25 M.L. Chiofalo, S. Giorgini 2,3 and M. Holland 2 INFM and Classe di Scienze, Scuola

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti

Multipath Interferometer on an AtomChip. Francesco Saverio Cataliotti Multipath Interferometer on an AtomChip Francesco Saverio Cataliotti Outlook Bose-Einstein condensates on a microchip Atom Interferometry Multipath Interferometry on an AtomChip Results and Conclusions

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Quasi Two-Dimensional 6 Li Fermi gas

Quasi Two-Dimensional 6 Li Fermi gas Quasi Two-Dimensional 6 Li Fermi gas A thesis submitted for the degree of Doctor of Philosophy by Paul Dyke Centre for Atom Optics and Ultrafast Spectroscopy and ARC Centre of Excellence for Quantum-Atom

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

(Noise) correlations in optical lattices

(Noise) correlations in optical lattices (Noise) correlations in optical lattices Dries van Oosten WA QUANTUM http://www.quantum.physik.uni mainz.de/bec The Teams The Fermions: Christoph Clausen Thorsten Best Ulrich Schneider Sebastian Will Lucia

More information

CHAPTER 9 Statistical Physics

CHAPTER 9 Statistical Physics CHAPTER 9 Statistical Physics 9.1 Historical Overview 9.2 Maxwell Velocity Distribution 9.3 Equipartition Theorem 9.4 Maxwell Speed Distribution 9.5 Classical and Quantum Statistics 9.6 Fermi-Dirac Statistics

More information