Status of HL-LHC and Superconducting Magnets for future Colliders. Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader

Size: px
Start display at page:

Download "Status of HL-LHC and Superconducting Magnets for future Colliders. Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader"

Transcription

1 Status of HL-LHC and Superconducting Magnets for future Colliders Lucio Rossi CERN & Univ. of Milan High Luminosity LHC Project Leader Tsung-Dao Lee Institute Shanghai Physics BSM Workshop 2 July 2018

2 L. Shanghai 2 July

3 It took 25 years to develop LHC mainly because of Superconductivity Prof. Maiani 1998: first 15 m LHC dipole proto at SM18 test test: family picture L. Shanghai 2 July

4 1232 SC dipoles 15 m 8.33 T (Nb-Ti) 500 SC Quadrupoles 8000 Corrector Magnets 16 SC Cavities 40 pairs large Current Leads in HTS 2 magnets in one (twin dipoles) 1.9 K HEII cryogenics to boost field L. Shanghai 2 July

5 Superconductivity: an enabling technology Superconducting LHC Tunnel : 27 km Field : 8.3 T Cryoplant power at the plug: 40 MW: always on 70 MW for LHC. 150 MW for the accelerator complex 180 for the whole CERN complex Normalconducting LHC Tunnel 120 km Field : 1.8 T Dissipated power at collision: 2,200 MW Average power (0.4 coefficient): 900 MW only for accelerator L. Shanghai 2 July

6 HEP Accelerators progress: SC domination L. Shanghai 2 July

7 High Luminosity: a luminous future for LHC! Half way L. Shanghai 2 July

8 HiLumi LHC: An international collaboration Special in-kind from: ES CIEMAT IT INFN SE Uppsala UK STFC & C.I. Univ. US-DOE and JP- KEK are the biggest contributor (after CERN and Member States) Canada/Triumf China/IHEP Russia/BINP L. Shanghai 2 July

9 Then HL-LHC luminosity production in case of ULTIMATE scenario 320 fb -1 /y L. Shanghai 2 July

10 HL-LHC has developed : 1. ATS optics; 2. Lumi levelling (Now in use in LHC ); will improve LHC collimation form Run3 We are adopting strategy to improve the Experiment Data Quality (via optimization of the pile up density, eff = ) L. Shanghai 2 July

11 How a typical fill of HL-LHC will look like L. Shanghai 2 July

12 HL-LHC: Also pushing the technology frontier! L. Shanghai 2 July

13 1 km of new undergroung galleries and 2 PITs L. Shanghai 2 July

14 1.2 km of new complete accelerators UA Gallery Service cavern Connection to LHC (UL) Service gallery (UR) BBLR Collimators SC Links Q4 D2 TAXN Crab cavities DFM DFX D1 CP Q3 Q2b Q2a Q1 TAXS L. Shanghai 2 July

15 SRF Crab Cavity L. Shanghai 2 July

16 HL-LHC magnet zoo Triplet QXF (US-AUP and CERN) Orbit corrector (CIEMAT) Separation dipole D1 (KEK) 11 T dipole (CERN) Recombination dipole D2 (INFN) Q4 (CEA) D2/Q4 orbit corrector (CERN) Skew quadrupole (INFN) Approximately 150 single magnets and 50 cold masses for HL-LHC Sextupole (INFN) Octupole (INFN) Decapole (INFN) Dodecapole (INFN) Courtesy of E. Todesco Courtesy L. Rossi E. Shanghai Todesco, 2 July HL-LHC

17 11T dipole production Coil winding Pre-collaring Pole preparation L. Rossi Shanghai aperture 2 July

18 IT QUAD first prototypes CERN: Q m length US: Q1/Q3 4.2 m length Long mirror test at Coil winding at CERN First impregnated coil at CERN L. Shanghai BNL 2 July

19 HiLumi LHC: preparing technology for next big steps L. Shanghai 2 July

20 Future Circular Collider LHC FCC Circumference (km) Dipole field (T) C.o.M. energy (TeV) Courtesy of M. Benedikt, CERN, FCC L. Shanghai 2 July

21 Nb 3 Sn: the workhorse of the near Future Solid objectives for the FCC conductor R&D Nb 3 Sn D strand : mm J C (16 T, 4.2 K) > 1500 A/mm 2 M (1 T,4.2 K) <150 mt (D fil < 20 m) RRR > 150 UL > 5 km Cost(16 T, 4.2 K) < 5 USD/kA m Presentation given at years Panel Session at the ASC, Charlotte (US), August 10 th -15 th, 2014 By A. Ballarino and L. Bottura The goal is ambitious but not impossible. Cost will be probably the most challenging L. Shanghai 2 July

22 Conductor R&D Specification: 1500 A/mm 16T, 4.2K 2850 A/mm 12T, 4.2K 1250 A/mm 16T, 4.2K 1750 A/mm 15T, 4.2K 1400 A/mm 16T, 4.2K 1274 A/mm 15T, 4.2K 1000 A/mm 16T, 4.2K 950 A/mm 16T, 4.2K L. Shanghai 2 July

23 FCC Magnet Designs T op 1.9 K I op /I C (loadline) 86 % V dump < 2.5 kv s max < 200 MPa T hot < 350 K D out 600 mm HE-LHC! blocks cos(q) common coil Current (A) Inductance (mh/m) Stored energy (kj/m) Coil mass (tons) Very efficient use of superconductor Simplified mechanics and manufacturing? Courtesy of D. Tommasini, CERN L. Shanghai 2 July

24 CCT option Canted CosTheta CCT Current (A) Inductance (mh/m) 19.2 Stored energy (kj/m) 3200 Coil mass (tons) MPa on the conductor Courtesy of B. Auchmann, PSI and CERN L. Shanghai 2 July

25 FCC 16T plan (a) Real estate Pinning (b) Conductor R&D C (c) ERMC 280h@625 C RMM Opportunity for full length prototypes built in industry 16 T models L. Shanghai 2 July

26 US high-field magnet R&D Nb 3 Sn 16 T HTS 20 T Courtesy of L. S. Rossi Shanghai US-MDP 2 July

27 Cos-theta, 4 layers, 15 T dipole Simplify assembly, reduce cost L1-L2: 28 strands, 1 mm RRP 150/169 L3-L4: 40 strands, 0.7 mm RRP 108/127 Assembly and test expected in 2018 Courtesy of A. Zlobin, FNAL L. Shanghai 2 July

28 Are stuck with T of Nb 3 Sn or can we go beyond? See recent superconductor results 2 HTS materials Beyond 25 T! J e = 600 A/mm 2 Nb-Ti Nb 3 Sn HTS Graph from Carmine Senatore, UniGeneva L. Shanghai 2 July

29 Racetrack POPE A 5 T, HTS based dipole Proof-Of-Principle Experiment 920 µm L. Shanghai 2 July

30 Racetrack POPE results 5.37 T Courtesy of M. Durante, CEA L. Shanghai 2 July

31 Short accelerator dipole demonstrator 40 mm aperture, cable (not single element) A 5 T, 40 mm bore HTS based dipole demonstrator Courtesy of G. Kirby, J. Van Nugteren, G. De L. Rijk, CERN; Shanghai A. 2 July Kario, 2018 KIT31

32 Dipole demonstrator results 3.35 T Wound with low grade SC, now winding with high grade: hope for 7+ tesla! Courtesy of J. Van Nugteren, H. Bajas, CERN L. Shanghai 2 July

33 US CCT and HTS programs Nb 3 Sn cable in CCT geometry Bi-2212 cable in racetrack REBCO CORC in CCT geometry Courtesy of S. Prestemon, LBNL L. Shanghai 2 July

34 20 T dipole hybrid proposed in 2010 for HE-LHC L. Rossi E. Todesco 40 mm aperture Now the FCC standard is more 50 mm HE-LHC 15 T 26 TeV c.o.m. 20T 33 TeV c.o.m. 25T 41 TeV c.o.m. L. Shanghai 2 July

35 20 T or more: Super proton-proton Collider in China (after CEPC) LHC FCC SppC Circumference (km) Dipole field (T) C.o.M. energy (TeV) Courtesy of Q. Xu, IHEP, CN L. Shanghai 2 July

36 CN high-field magnet R&D Conceptual design of common coil 12T dipole Baseline design Tunnel circumference: 100 km Dipole magnet field: 12 T, iron-based HTS technology (IBS) Center of Mass energy: >70 TeV Upgrade phase Dipole magnet field: 20 24T, IBS technology Center of Mass energy: >125 TeV Development of high-field superconducting magnet technology Starting to develop required HTS magnet technology before applicable iron-based wire is available ReBCO & Bi-2212 and LTS wires be used for model magnet studies and as an option for SppC: stress management, quench protection, field quality control and fabrication methods Top priority: reduce cost! Instead of increasing field IBS structure Courtesy of Q. Xu, IHEP, CN Courtesy of Q. Xu, IHEP L. Shanghai 2 July

37 Highest dipole fields LBNL HD1 Magnets with bore CERN RMC FRESCA2 + HTS insert = 20 T! From Luca.Bottura-CERN CERN/CEA FRESCA2 Record fields for SC magnets in dipole configuration L. Shanghai 2 July

38 Ideas for a 20 T dipoles! See SuST publication 2018 L. Shanghai 2 July

39 Betting on even larger improvement of Jc Thinking to unconventional design to go to T regime L. Shanghai 2 July

40 Abandoning the concept of costheta to go to simple race track ALL HTS Operation at K: no LHe (Big + in cost) L. Shanghai 2 July

41 Working on even more unconventional design of the coil end shape From Jeroen van Nugteren and Glyn Kirby -CERN L. Shanghai 2 July

42 In summary The High-Luminosity LHC is the necessary step to prove High Field technology in real accelerator and reasonable size Production in First use ever of Nb 3 Sn in a running accelerator The next step is the development of magnets for an FCC Model activities are planned in EU laboratories (and US) in Prototyping in industry (full length, 10 magnets), in This is the logical sequence of the HL-LHC production, profiting from Nb 3 Sn technology established in laboratories and industry HTS is only in its infancy, but could be the killer technology for high-field magnet technology of the future Requires high-tech R&D, spanning from material science to electromechanical engineering, 5 years program defined HTS is the high-risk/high-return investment of the future Needs constant investment beyond the today level L. Shanghai 2 July

43 Can we extrapolate linearly from the past To go BEYOND 15-16? HE-LHC? Or FFC/SPPC HE- LHC 20 T is not out of reach Requires a step more & and consistent R&D L. Shanghai 2 July

44 Can we extrapolate linearly from the past To go BEYOND 15-16? 25 T HE-LHC FCC/SPPC Possible if a precision machine buys time to make the 25 T R&D L. Shanghai 2 July

45 Thanks and stay tuned for our 20+ T R&D L. Shanghai 2 July

46 60 years of experiments at accelerators have discovered the set of fundamental particles accelerators 4 6

47 Livingston plot From Luca.Bottura-CERN L. Shanghai 2 July

48 Old structures, new structures mid 1970 s, FNAL: Collared coils A. Tollestrup, Proc. Int Conf. on the History of Original Ideas and Basic Discoveries in Particle Physics, Erice (1994). 2002, LBNL: Bladder and keys R.R. Hafalia, et al., IEEE TAS, 12(1) (2002), pp , LBNL: CCT S. Caspi, et al., IEEE TAS (2014), p , FNAL: SM cos(q) V. Kashikin, et al., Proc. IPAC, Copenhagen (2017), pp , TAMU: Stress management N. Diaczenko, et al., Proc. PAC, Vancouver (1997), pp , MIT: CICC M.O. Hoenig, et al., Proc. 5th Magn. Tech. Conf., Frascati(1975), p L. Shanghai 2 July

49 Stress in high field magnets F µ B 2 s» F w µ JB QXF 11T FCC Stress limited reducing J HE-LHC w µ B J LHC L. Shanghai 2 July

50 MQXFS5 results 22 ka PIT strand (0.85 mm,192) J C : 2450 A/mm 2 (12 T, 4.2 K) Cu:non-Cu: strands cable (18.15 mm x 1.52 mm) Aperture 150 (mm) Gradient (T/m) Current (ka) Peak field 11.4 (T) Courtesy of P. Ferracin, J.C. Perez, H. Bajas, E. Todesco, CERN L. Shanghai 2 July

Very high field magnet options for ELN

Very high field magnet options for ELN Very high field magnet options for ELN Lucio Rossi CERN High Luminosity LHC Project Leader Erice ISSP 2018, June 18th Content Accelerator: engines for discovers Accelerators & Superconductivity Accelerator

More information

Superconducting Technology for Next Generation (HEP) Accelerators

Superconducting Technology for Next Generation (HEP) Accelerators Superconducting Technology for Next Generation (HEP) Accelerators Lucio Rossi CERN High Luminosity LHC Project Leader AIME-SCMED, Madrid 24 Nov 2016 What SC brings to HEP accelerators today L. Rossi @

More information

100 TeV Collider Magnets

100 TeV Collider Magnets 100 TeV Collider Magnets Alexander Zlobin Fermilab 1st CFHEP Symposium on circular collider physics 23-25 February 2014 IHEP, Beijing (China) Introduction v Circular collider energy scales with the strength

More information

Dipoles for High-Energy LHC

Dipoles for High-Energy LHC 4AO-1 1 Dipoles for High-Energy LHC E. Todesco, L. Bottura, G. De Rijk, L. Rossi Abstract For the High Energy LHC, a study of a 33 TeV center of mass collider in the LHC tunnel, main dipoles of 2 T operational

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

20 T Block Dipole: Features and Challenges

20 T Block Dipole: Features and Challenges 20 T Block Dipole: Features and Challenges GianLuca Sabbi, Xiaorong Wang, LBNL Acknowledgment: Daniel R. Dietderich, LBNL Emmanuele Ravaioli and Jonas Blomberg Ghini, CERN ICFA Mini Workshop on High Field

More information

Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet

Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet CERN-ACC-2015-0024 glyn.kirby@cern.ch Accelerator Quality HTS Dipole Magnet Demonstrator Designs for the EuCARD-2, 5 Tesla 40 mm Clear Aperture Magnet G. A. Kirby, J. van Nugteren, A. Ballarino, L. Bottura,

More information

LIMITS OF Nb 3 Sn ACCELERATOR MAGNETS*

LIMITS OF Nb 3 Sn ACCELERATOR MAGNETS* Proceedings of 5 Particle Accelerator Conference, Knoxville, Tenneee LIMITS OF Nb 3 Sn ACCELERATOR MAGNETS* S. Caspi # and P. Ferracin, LBNL, Berkeley, CA 947, USA Abstract Pushing accelerator magnets

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

Progress of SC High Field Magnet Program for CEPC-SPPC

Progress of SC High Field Magnet Program for CEPC-SPPC Progress of SC High Field Magnet Program for CEPC-SPPC Qingjin XU On behalf of the SPPC Magnet Working Group Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS) 2017.12 HKUST, 2018-01-18

More information

Superconducting Magnet Development for the LHC Upgrades

Superconducting Magnet Development for the LHC Upgrades Review Article Superconducting Magnet Development for the LHC Upgrades Lucio ROSSI * Synopsis: LHC is now delivering proton and heavy ion collisions at the highest energy. Upgrading the LHC beyond its

More information

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011

FP7 Eucard2 WP on HTS Magnets term of reference: edms doc Lucio Rossi CERN Task 1 : conductor at EUCAS2011 FP7 Eucard2 WP on HTS Magnets term of reference: edms doc. 1152224 Lucio Rossi CERN Task 1 : conductor Mee@ng at EUCAS2011 Use of Bi- 2212 and YBCO: both are promising so far 10,000 YBCO B _ Tape Plane

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

HIGH FIELD MAGNET DEVELOPMENTS

HIGH FIELD MAGNET DEVELOPMENTS HIGH FIELD MAGNET DEVELOPMENTS T. Nakamoto, KEK, Tsukuba, Japan Abstract High field magnet developments based on Nb 3 Sn towards future accelerator applications in the next era have been intensively pursued.

More information

Progress with High-Field Superconducting Magnets for High-Energy Colliders

Progress with High-Field Superconducting Magnets for High-Energy Colliders FERMILAB-PUB-15-544-TD ACCEPTED 1 Progress with High-Field Superconducting Magnets for High-Energy Colliders G. Apollinari, S. Prestemon and A.V. Zlobin Abstract - One of the possible next steps for HEP

More information

Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!!

Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!! Challenges in Mechanical and Electrical Design of EuCARD2 HTS Insert Magnet's.!! G. Kirby, J. van Nugteren, J. Murtomaki, K. Broekens, H. Bajas, A. Ballarino, M. Bajko!L. Bottura, M.Canale,! L.Gentini,

More information

New European Accelerator Project EuCARD: Work Package on High Field Magnets

New European Accelerator Project EuCARD: Work Package on High Field Magnets New European Accelerator Project EuCARD: Work Package on High Field Magnets Gijs de Rijk CERN, Technology Department, 1211 Genève 23, Switzerland; Phone: +41-22767 5261; Fax: +41-22-767-6300; email: gijs.de.rijk@cern.ch

More information

Limits to high field magnets for particle accelerators

Limits to high field magnets for particle accelerators IEEE/CSC & ESAS EUROPEAN SUPERCONDUCTIVITY NEWS FORUM, No. 19, January 212 Submitted to ESNF Nov. 16, 211; accepted Nov. 3, 212. Reference No. ST286, Category 6 The published version of this manuscript

More information

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades

Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades 1LPN-03 FERMILAB-12-547-TD 1 Field Quality Measurements in a Single-Aperture 11 T Nb 3 Sn Demonstrator Dipole for LHC Upgrades N. Andreev, G. Apollinari, B. Auchmann, E. Barzi, R. Bossert, G. Chlachidze,

More information

Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN

Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN Classical and High Temperature Superconductors: Practical Applications and Perspectives at CERN!! Amalia Ballarino, CERN Transporting Tens of Gigawatts of Green Power to the Market Brainstorming Workshop

More information

A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets

A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets Wed-Af-Po3.01 1 A Method for Greatly Reduced Edge Effects and Crosstalk in CCT Magnets M. Koratzinos, ETH Zurich, G. Kirby, J. Van Nugteren, CERN, E. R. Bielert, Univ. Illinois at Urbana Abstract Iron-free

More information

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris LHC accelerator status and prospects 2 nd September 2016 - Paris LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 :

More information

EUCARD MAGNET DEVELOPMENT

EUCARD MAGNET DEVELOPMENT Paper selected from the Proceedings of the EuCARD - HE-LHC'10 AccNet Mini-Workshop on a "High Energy LHC" EUCARD MAGNET DEVELOPMENT Gijs de Rijk, CERN, Geneva, Switzerland. Abstract The FP7-EuCARD work

More information

REBCO coated conductor development in the ARIES program for HTS accelerator magnets

REBCO coated conductor development in the ARIES program for HTS accelerator magnets REBCO coated conductor development in the ARIES program for HTS accelerator magnets Lucio Rossi, Luca Bottura and Amalia Ballarino, CERN Carmine Senatore, Univ. of Geneva, Ulrich Betz and Alexander Usoskin,

More information

High Field Magnet Development Toward the High Luminosity LHC

High Field Magnet Development Toward the High Luminosity LHC High Field Magnet Development Toward the High Luminosity LHC Giorgio Apollinari, Fermilab for the HiLumi-LHC/LARP Collaboration IPAC14 June 15 th 20 th, 2014 Dresden, Germany Contributors BNL, CERN, FNAL,

More information

Design and Modelling of LTS Superconducting Magnets. Magnetic design

Design and Modelling of LTS Superconducting Magnets. Magnetic design ASC 212 Short Course Design and Modelling of LTS Superconducting Magnets Magnetic design Paolo Ferracin (paolo.ferracin@cern.ch) European Organization for Nuclear Research (CERN) Introduction The magnetic

More information

High Field Magnets. Lucio Rossi CERN. CAS Intermediate level Course 2 October 2009

High Field Magnets. Lucio Rossi CERN. CAS Intermediate level Course 2 October 2009 High Field Magnets Lucio Rossi CERN CAS Intermediate level Course 2 October 2009 Content Definition and historic Basic of Sc magnets for accelerator Superconductivity and Nb Ti review Reasons to pursue

More information

R&D Progress of the High Field Magnet Technology for CEPC-SPPC

R&D Progress of the High Field Magnet Technology for CEPC-SPPC R&D Progress of the High Field Magnet Technology for CEPC-SPPC Qingjin XU On behalf of the SPPC magnet working group Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS) HKUST,Jan.

More information

Mad Max DESY October 2017 Design of the Magnet System

Mad Max DESY October 2017 Design of the Magnet System Mad Max Workshop @ DESY 18-19 October 2017 Design of the Magnet System C. Boffo, H. Wu Babcock Noell GmbH Outline Introduction Framework of the study Magnetic designs Comparison Conclusion Page 2 Babcock

More information

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC

Report CERN-ACC Considerations for a QD0 with Hybrid Technology in ILC CERN-ACC-2014-0197 Michele.Modena@cern.ch Report Considerations for a QD0 with Hybrid Technology in ILC M. Modena, A. Aloev #, H. Garcia, L. Gatignon, R. Tomas CERN, Geneva, Switzerland Keywords: ILC Abstract

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

PUBLICATION. The Global Future Circular Colliders Effort

PUBLICATION. The Global Future Circular Colliders Effort CERN-ACC-SLIDES-2016-0016 Future Circular Collider PUBLICATION The Global Future Circular Colliders Effort Benedikt, Michael (CERN) et al. 09 August 2016 The research leading to this document is part of

More information

Luminosity for the 100 TeV collider

Luminosity for the 100 TeV collider Luminosity for the 100 TeV collider M.L.Mangano, contribution to the Luminosity discussion session, Jan 15 2015 IAS programme on The Future of High Energy Physics Critical parameter to determine the physics

More information

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP

DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP I DEVELOPMENT AND PRODUCTION OF SUPERCONDUCTING AND CRYOGENIC EQUIPMENT AND SYSTEMS FOR ACCELERATORS BY IHEP K. Myznikov, A. Ageyev, V. Sytnik, I. Bogdanov, S. Kozub, E. Kashtanov, A. Orlov, V. Sytchev,

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Preliminary design of the new HL-LHC beam screen for the low-β triplets

Preliminary design of the new HL-LHC beam screen for the low-β triplets Preliminary design of the new HL-LHC beam screen for the low-β triplets Marco Morrone TE-VSC-DLM 15/10/2015 Contents o CERN The Hi Lumi upgrade o Functional requirements -Functional study -Current vs new

More information

THE HIGH LUMINOSITY LHC PROJECT 1

THE HIGH LUMINOSITY LHC PROJECT 1 FRXC2 Proceedings of IPAC2015, Richmond, VA, USA THE HIGH LUMINOSITY LHC PROJECT 1 O. Brüning, CERN, Geneva, Switzerland Abstract This presentation reviews the status of the high luminosity LHC project,

More information

50 years of Superconducting Magnets for Physics Research and Medicine

50 years of Superconducting Magnets for Physics Research and Medicine 50 years of Superconducting Magnets for Physics Research and Medicine Herman ten Kate Kamerlingh Onnes and magnets Understanding superconductors From materials to magnets Examples of Applications: Lab

More information

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM

Impact of the forces due to CLIQ discharges on the MQXF Beam Screen. Marco Morrone, Cedric Garion TE-VSC-DLM Impact of the forces due to CLIQ discharges on the MQXF Beam Screen Marco Morrone, Cedric Garion TE-VSC-DLM The High Luminosity - LHC project HL-LHC Beam screen design - Beam screen dimensions - Conceptual

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Milestone Report. Cryogenic Scenarios for the Cold Powering System CERN-ACC-2014-0065 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Milestone Report Cryogenic Scenarios for the Cold Powering System Ballarino, A (CERN) et al 27 May 2014 The HiLumi LHC

More information

PUBLICATION. Overview of magnet design options: Deliverable D5.1

PUBLICATION. Overview of magnet design options: Deliverable D5.1 CERN-ACC-2016-0119 Future Circular Collider PUBLICATION Overview of magnet design options: Deliverable D5.1 Tommasini, Davide (CERN) et al. 20 October 2016 The European Circular Energy-Frontier Collider

More information

The Eloisatron. Thomas Taylor CERN. 55th School of Subnuclear Physics, Erice ELN - T. Taylor 20/06/2017

The Eloisatron. Thomas Taylor CERN. 55th School of Subnuclear Physics, Erice ELN - T. Taylor 20/06/2017 The Eloisatron Thomas Taylor CERN 1 Frontier High Energy Physics in the laboratory. The long march of hadron colliders It started with the ISR (Intersecting Storage Rings, 30 + 30 GeV) This was audacious.

More information

Design of Superconducting Magnet System for SuperKEKB Interaction Region

Design of Superconducting Magnet System for SuperKEKB Interaction Region Design of Superconducting Magnet System for SuperKEKB Interaction Region Norihito Ohuchi On behalf of SuperKEKB Accelerator Gp and BNL SC Magnet Gp 2013/9/29-10/4 NA-PAC 2013 1 Contents 1. SC magnet system

More information

STATE-OF-THE ART SUPERCONDUCTING ACCELERATOR MAGNETS

STATE-OF-THE ART SUPERCONDUCTING ACCELERATOR MAGNETS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 541 STATE-OF-THE ART SUPERCONDUCTING ACCELERATOR MAGNETS L. Rossi Abstract

More information

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics

High Field Magnets Perspectives from High Energy Physics. Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics High Field Magnets Perspectives from High Energy Physics Dr. Glen Crawford Director, Research and Technology R&D DOE Office of High Energy Physics What is High Energy Physics? The High Energy Physics (HEP)

More information

Trends in Magnet Technologies

Trends in Magnet Technologies Trends in Magnet Technologies Davide Tommasini State of the art Motivation for new developments in Magnet Technology Fast cycled superconducting magnets Higher Magnetic Fields Conclusions Magnet Technologies

More information

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6

PUBLICATION. Consolidated EIR design baseline: Milestone M3.6 CERN-ACC-2018-0039 Future Circular Collider PUBLICATION Consolidated EIR design baseline: Milestone M3.6 Tomas Garcia, Rogelio (CERN) et al. 01 November 2018 The European Circular Energy-Frontier Collider

More information

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna

The LHC. Part 1. Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna The LHC Part 1 Corsi di Dottorato Corso di Fisica delle Alte Energie Maggio 2014 Per Grafstrom CERN and University of Bologna Organizzazione Part 1 Part 2 Part 3 Introduction Energy challenge Luminosity

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

State-of-the Art Superconducting Accelerator Magnets

State-of-the Art Superconducting Accelerator Magnets IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 12, NO. 1, MARCH 2002 219 State-of-the Art Superconducting Accelerator Magnets Lucio Rossi Abstract With the LHC the technology of NbTi-based accelerator

More information

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN

The LHC Collider. STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN The LHC Collider STOA lecture, Brussels, 27 th November 2012 Steve Myers Director of Accelerators and Technology, CERN Outline of Talk The LHC Stored energy and protection systems 2008 start-up 2008 accident

More information

BEAM DYNAMICS STUDIES FOR HILUMI LHC

BEAM DYNAMICS STUDIES FOR HILUMI LHC BEAM DYNAMICS STUDIES FOR HILUMI LHC BARBARA DALENA IN COLLABORATION WITH: J. PAYET, A. CHANCÉ, O. GABOUEV The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded

More information

Overview of the CEPC Project

Overview of the CEPC Project Overview of the CEPC Project Hongbo Zhu (IHEP, Beijing) on behalf of the CEPC-SppC Study Group 17th Lomonosov Conference on Elementary Particle Physics, Moscow State University, Moscow, 20 26 August, 2015

More information

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS

SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS SUPERCONDUCTIVITY APPLIED TO PARTICLE ACCELERATOR MAGNETS Arnaud Devred CEA/Saclay Snowmass Lectures on Magnets, Revisited July 2001 1 Contents Accelerator Magnet Technologies On the Use of Superconducting

More information

Study of a 5 T Research Dipole Insert-Magnet using an Anisotropic ReBCO Roebel Cable

Study of a 5 T Research Dipole Insert-Magnet using an Anisotropic ReBCO Roebel Cable CERN-CC-2015-0058 jeroen.van.nugteren@cern.ch Study of a 5 T Research Dipole Insert-Magnet using an nisotropic ReCO Roebel Cable J. van Nugteren, G.. Kirby, G. de Rijk, L. Rossi, H.H.J. ten Kate CERN,

More information

Progress Towards A High-field HTS Solenoid

Progress Towards A High-field HTS Solenoid Progress Towards A High-field HTS Solenoid Ramesh Gupta For PBL/BNL Team Ramesh Gupta, BNL, Progress towards a high-field HTS solenoid, Jefferson Lab, March 3, 2011 Slide No. 1 Overview High Field HTS

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report. Issues In Special Magnets Studies

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report. Issues In Special Magnets Studies CERN-ACC-2014-0294 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report Issues In Special Magnets Studies Fessia, Paolo (CERN) et al 28 November 2014 The HiLumi LHC Design

More information

SC magnets for Future HEHIHB Colliders

SC magnets for Future HEHIHB Colliders SC magnets for Future HEHIHB Colliders presented by L. Bottura WAMS, Archamps, March 22-23,2004 Overview Few selected examples of drivers for R&D in the next 10 years LHC upgrades scenarios (why? how?)

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Overview of Future Colliders

Overview of Future Colliders Overview of Future Colliders Hongbo Zhu, Beijing IX International Conference on Interconnections between Particle Physics and Cosmology (PPC2015), June 29 th - July 3 rd 2015, Deadwood, South Dakota Colliders

More information

SLAC-PUB Introduction

SLAC-PUB Introduction SLAC-PUB-16546 Accelerator Considerations of Large Circular Colliders Alex Chao SLAC National Accelerator Laboratory, Stanford, California, USA E-mail: achao@slac.stanford.edu As we consider the tremendous

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title: Post-LHC accelerator magnets Author: Gourlay, Stephen A. Publication Date: 06-10-2001 Publication Info: Lawrence Berkeley

More information

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System

Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Protecting a Full-Scale Nb3Sn Magnet with CLIQ, the New Coupling-Loss Induced Quench System Emmanuele Ravaiolia,b H. Bajasa, V. I. Datskova, V. Desbiollesa, J. Feuvriera, G. Kirbya, M. Maciejewskia,c,

More information

The Large Hadron Collider Lyndon Evans CERN

The Large Hadron Collider Lyndon Evans CERN The Large Hadron Collider Lyndon Evans CERN 1.9 K 2.728 K T The coldest ring in the universe! L.R. Evans 1 The Large Hadron Collider This lecture. LHC Technologies Magnets Cryogenics Radiofrequency Vacuum

More information

Progress of High Field Magnet Program for Accelerators in IHEP China

Progress of High Field Magnet Program for Accelerators in IHEP China TE-MSC Seminar, CERN, Geneva, 09 th October, 2018 Progress of High Field Magnet Program for Accelerators in IHEP China Qingjin XU Institute of High Energy Physics (IHEP) Chinese Academy of Sciences (CAS)

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION CERN-ACC-2013-011 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report SIMULATION MODELS FOR ENERGY Redaelli, Stefano (CERN) 20 November 2012 The HiLumi LHC Design Study

More information

of a Large Aperture High Field HTS SMES Coil

of a Large Aperture High Field HTS SMES Coil Design, Construction and Testing of a Large Aperture High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer High Field HTS SMES Coil R.

More information

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme LHC Project Note 03 May 007 guido.sterbini@cern.ch A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme G. Sterbini and J.-P. Koutchouk, CERN Keywords: LHC Luminosity

More information

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction 1.1 Field properties of superconducting magnets The vanishing electrical resistance of superconducting coils as well as their ability to provide magnetic fields far beyond those

More information

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC

Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC CERN-ACC-2018-0009 Galina.Skripka@cern.ch Beam-induced heat loads on the beam screens of the inner triplets for the HL-LHC G. Skripka and G. Iadarola CERN, Geneva, Switzerland Keywords: LHC, HL-LHC, heat

More information

LHC Upgrades and Future Circular Colliders

LHC Upgrades and Future Circular Colliders LHC Upgrades and Future Circular Colliders M. Benedikt gratefully acknowledging input from HL-LHC project team, FCC coordination group global design study team and many HL-LHC SPS other contributors. Particular

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

High Field HTS SMES Coil

High Field HTS SMES Coil High Field HTS SMES Coil R. Gupta, M. Anerella, P. Joshi, J. Higgins, S. Lakshmi, W. Sampson, J. Schmalzle, P. Wanderer Brookhaven National Laboratory, NY, USA December 1, 2014 High Field HTS SMES Coil

More information

Beam-Beam DA Simulations for HL-LHC

Beam-Beam DA Simulations for HL-LHC Beam-Beam DA Simulations for HL-LHC N. Karastathis G. Arduini, X. Buffat, S. Fartoukh, R. de Maria, Y. Papaphilippou on behalf of the HiLumi LHC WP2 Outline: Brief recap of baseline scenario at collisions

More information

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Superior performance. Powerful technology. REBCO HTS Wire Manufacturing and Continuous Development at SuperPower Yifei Zhang, Satoshi Yamano, Drew Hazelton, and Toru Fukushima 2018 IAS-HEP Mini-Workshop

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN - ACCELERATORS AND TECHNOLOGY SECTOR CERN-ATS-2013-019 Superconducting Magnets for Particle Accelerators L. Rossi, L. Bottura CERN-ATS-2013-019 07/02/2013

More information

Superconducting Undulator R&D at LBNL

Superconducting Undulator R&D at LBNL Superconducting Undulator R&D at LBNL Søren Prestemon Dan Dietderich Steve Gourlay Phil Heimann Steve Marks GianLuca Sabbi Ron Scanlan Ross Schlueter Outline On-going research at LBNL Coil winding issues

More information

SUPERCONDUCTING MAGNETS

SUPERCONDUCTING MAGNETS 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

DESIGN OF Nb 3 Sn MAGNETIC DEVICES TO STUDY THE SUPERCONDUCTOR DEGRADATION UNDER VARIABLE MECHANICAL LOAD

DESIGN OF Nb 3 Sn MAGNETIC DEVICES TO STUDY THE SUPERCONDUCTOR DEGRADATION UNDER VARIABLE MECHANICAL LOAD POLITECNICO DI TORINO PhD in Mechanics XXI PhD Course PhD THESIS DESIGN OF Nb 3 Sn MAGNETIC DEVICES TO STUDY THE SUPERCONDUCTOR DEGRADATION UNDER VARIABLE MECHANICAL LOAD CERN-THESIS-2009-194 //2009 Tutor:

More information

Superconductive coil characterization for next dipoles and quadrupoles generation

Superconductive coil characterization for next dipoles and quadrupoles generation 1 P a g e Superconductive coil characterization for next dipoles and quadrupoles generation Abstract The LHC is the most sophisticated scientific machine ever built as a device that allows the scientists

More information

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication

EuCARD-2 Enhanced European Coordination for Accelerator Research & Development. Journal Publication CERN-ACC-2016-0039 EuCARD-2 Enhanced European Coordination for Accelerator Research & Development Journal Publication HTS Dipole Magnet for a Particle Accelerator using a Twisted Stacked Cable Himbele,

More information

Why are particle accelerators so inefficient?

Why are particle accelerators so inefficient? Why are particle accelerators so inefficient? Philippe Lebrun CERN, Geneva, Switzerland Workshop on Compact and Low-Consumption Magnet Design for Future Linear and Circular Colliders CERN, 9-12 October

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Lecture #2 Design Guide to Superconducting Magnet

Lecture #2 Design Guide to Superconducting Magnet Lecture #2 Design Guide to Superconducting Magnet Yukikazu Iwasa Francis Bitter Magnet Laboratory Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge MA 02139 CEA Saclay June

More information

Future Circular Colliders

Future Circular Colliders Future Circular Colliders M. Benedikt and F. Zimmermann CERN, Geneva, Switzerland Summary. In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future

More information

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland 1970-1 Signaling the Arrival of the LHC Era 8-13 December 2008 Current Status of the LHC Albert De Roeck CERN Switzerland Status of the LHC Albert De Roeck CERN and University of Antwerp and the IPPP Durham

More information

APPLICATION OF HIGH TEMPERATURE SUPERCONDUCTORS TO ACCELERATORS

APPLICATION OF HIGH TEMPERATURE SUPERCONDUCTORS TO ACCELERATORS EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 420 APPLICATION OF HIGH TEMPERATURE SUPERCONDUCTORS TO ACCELERATORS

More information

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop

Plans for the LHC Luminosity Upgrade Summary of the CARE-HHHAPD-LUMI-05 workshop Plans for the LHC Luminosity Upgrade Summary of the APD-LUMI-05 workshop Walter Scandale CERN AT department LHC project seminar Geneva, 10 November 2005 We acknowledge the support of the European Community-Research

More information

LHC Luminosity Upgrades Using Close-In Magnets

LHC Luminosity Upgrades Using Close-In Magnets LHC Luminosity Upgrades Using Close-In Magnets Peter J. Limon, CERN, Geneva, Switzerland and Fermilab, Batavia, IL, USA Abstract Among luminosity upgrades presently being considered for the LHC are those

More information

CURRENT LEADS FOR THE LHC MAGNET SYSTEM

CURRENT LEADS FOR THE LHC MAGNET SYSTEM EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 526 CURRENT LEADS FOR THE LHC MAGNET SYSTEM A. Ballarino Abstract The

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

Retraining of the 1232 Main Dipole Magnets in the LHC

Retraining of the 1232 Main Dipole Magnets in the LHC Retraining of the 1232 Main Dipole Magnets in the LHC A. Verweij, B. Auchmann, M. Bednarek, L. Bottura, Z. Charifoulline, S. Feher, P. Hagen, M. Modena, S. Le Naour, I. Romera, A. Siemko, J. Steckert,

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics STATUS OF THE LHC. R. Schmidt

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics STATUS OF THE LHC. R. Schmidt EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 569 STATUS OF THE LHC R. Schmidt Abstract The Large Hadron Collider

More information

Superconductivity in High-Energy Particle Accelerators

Superconductivity in High-Energy Particle Accelerators Superconductivity in High-Energy Particle Accelerators Peter Schmüser, Univ. Hamburg and DESY Motivation for superconductor technology in accelerators Basic properties of superconductors Superconducting

More information

High Field Dipoles for GTeV Experiment at the Tevatron

High Field Dipoles for GTeV Experiment at the Tevatron TD-03-051 December 12, 2003 Introduction High Field Dipoles for GTeV Experiment at the Tevatron A.V. Zlobin, V.V. Kashikhin, A. Drozhdin Abstract This note discusses the possibilities of creating the necessary

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets

Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets Design Aspects of High-Field Block-Coil Superconducting Dipole Magnets E. I. Sfakianakis August 31, 2006 Abstract Even before the construction of the Large Hadron Collider at CERN is finished, ideas about

More information