Overview of Future Colliders

Size: px
Start display at page:

Download "Overview of Future Colliders"

Transcription

1 Overview of Future Colliders Hongbo Zhu, Beijing IX International Conference on Interconnections between Particle Physics and Cosmology (PPC2015), June 29 th - July 3 rd 2015, Deadwood, South Dakota

2 Colliders over the Decays V D Shiltsev, High energy particle colliders: past 20 years, next 20 years and beyond, Physics-Uspekhi 55 (10) (2012) 2

3 Outline Future colliders ILC/CLIC CEPC-SPPC FCC HL-LHC Physics programs Summary FCC (80 km) CEPC-SPPC (50 km) (HL-)LHC (27 km) ILC (31 km) /CLIC (48 km) B-factories, muon collider, gamma-gamma collider and several other colliders are also very interesting but not discussed here. 3

4 International Linear Collider (ILC) e + e - linear collider with Superconducting RF linac Baseline: s = 500 GeV (31 km) upgrade later to ~ s= 1 TeV (50 km), luminosity of cm -2 s -1 with optional upgrade, one interaction point (IP) with two detectors: ILD and SiD with push-pull 4

5 ILC History Pre-ILC (several linear collider concepts since early 90s), technology decision in 2004 SCRF TESLA (SCRF) NLC/JLC (normal conducting) CLIC (two beam) ILC since 2005 Global Design Effort founded Reference Design Report (2007) Technical Design Report (2013) Current status Linear Collider Collaboration (LCC) ILC: Higgs/top factory possible realisation in Japan CLIC: multi-tev option on longer time scale TESLA TDR (2001) RDR (2007) TDR (2013) Waiting for the final decision from the Japanese government by the end of

6 Compact Linear Collider (CLIC) Drive Beam Main Beam Multi-TeV e + e - linear collider based on high gradient normal-conducting cavities with novel RF power generation (two-beam acceleration), nominal center-of-mass energy of 3 TeV Project not as advanced as ILC, possible Next Big Thing at CERN? 6

7 After the Higgs Discovery A bouquet of options: Higgs factory ideas bloom Courtesy of Symmetry Magazine 7

8 Circular Colliders The relative lightness of the discovered Higgs boson makes the circular electron-positron machine technologically feasible as Higgs Factory. A. Blondel and F. Zimmerman A High Luminosity e+e- Collider in the LHC tunnel to study the Higgs Boson, arxiv: LEP3 Super-TRISTAN, Fermilab Site-Filler, CHF, TLEP CEPC-SPPC FCC hh, ee, he ICFA Beam Dynamics Workshop Accelerators for a Higgs Factory: Linear vs. Circular November 14-16, 2012 Fermilab, Batavia, Illinois, U.S.A. ICFA Beam Dynamics Workshop, Accelerators for a Higgs Factory: Linear vs. Circular (HF2012) circular machines under official discussion ICFA 2013 statement: ICFA supports studies of energy frontier circular colliders and encourages global coordination. Factory γγ conferences.fnal.gov/hf2012 Organizing Committee: Local Committee: Contact: Alain Blondel, U.of Geneva Elliott McCrory, Fermilab Cynthia M. Sazama, Conference Office Alex Chao, SLAC Cynthia Sazama, Fermilab Fermi National Accelerator Laboratory Weiren Chou, Fermilab, Chair Tanja Waltrip, Fermilab M.S. 113, P.O. Box 500 Batavia, IL 60510, U.S.A. Jie Gao, IHEP Suzanne Weber, Fermilab Fax: sazama@fnal.gov Daniel Schulte, CERN Kaoru Yokoya, KEK 8

9 Circular Electron Positron Collider (CEPC) e+ IP1 e- LTB BTC e+ e- Linac BTC CEPC Booster IP3 CEPC Collider Ring Circular e + e - collider with conventional accelerator technologies proposed by the Chinese HEP community in 2012 Baseline design: s = 240 GeV (54 km), single ring with the pretzel scheme, luminosity of cm -2 s 240 GeV, 2 IP s; 10 years of data-taking Optional to operate at other energies: 91 GeV (Z-pole) and 160 GeV (WW) 9

10 Machine Layout 10

11 Possible Project Timeline CEPC Pre-studies ( ) R&D Engineering Design ( ) Construction ( ) Data taking ( ) 1 st Milestone: pre-cdr (by the end of 2014) R&D funding request to Chinese government in 2015 (China s 13 th Five-Year Plan ) Preliminary Conceptual Design Reports reviewed by international review committees and released: Volume I: Physics and Detector Volume II: Accelerator CEPC-SPPC Preliminary Conceptual Design Report Volume I - Physics & Detector IHEP-CEPC-DR IHEP-CEPC-DR IHEP-EP IHEP-AC IHEP-TH CEPC-SPPC Preliminary Conceptual Design Report Volume II - Accelerator Available on the CEPC website: The CEPC-SPPC Study Group March 2015 The CEPC-SPPC Study Group March

12 Detector Design Concept Feasibility studies based on the ILD-like detector concept, with modifications to the interaction region (IR) to cope with much shorter final focal length (L*) Final focusing magnets inside the detector constraints on detector layout and technology choice + backgrounds from backscattering particles Detector performance requirements (similar to ILC): Additional critical challenges: Detector/electronics power consumption (too short bunch crossing, powerpulsing not optional) Detector backgrounds detector occupancy, radiation damage, DAQ 12

13 Super Proton-Proton Collider (SPPC) SPPC HE Booster SPP ME Booster IP4 SPPC LE Booster Proton Linac IP2 pp collider after the electron machine in the same tunnel LEP-LHC model Baseline design : s = TeV, luminosity of cm -2 s -1 (different opinions on the required luminosity), 2 interaction points Main constraint: high field superconducting magnets, e.g. dipole magnets: 50 km: B = 20 T, E = 70 TeV SPPC Collider Ring B min 2 π( Bρ) = C 0 13

14 High Field Superconducting Magnets Nb 3 Sn + HTS Develop 12 T Nb 3 Sn double-aperture dipole magnet Conduct basic technology research on HTS materials and wires and prototype an inserted coil of 2 3 T R&D for 20 years Develop 15 T Nb 3 Sn double-aperture dipole/quadruple magnets Conduct basic technology research on HTS materials and wires and prototype an inserted coil of 4 5 T Develop Nb 3 Sn (15 T) + HTS (5 T) or HTS (20 T) dipole magnet Knowledge and experience transfer to industry, enabling mass production 14

15 Possible Project Timeline CEPC Pre-studies ( ) R&D Engineering Design ( ) Construction ( ) Data taking ( ) 1 st Milestone: pre-cdr (by the end of 2014) R&D funding request to Chinese government in 2015 (China s 13 th Five-Year Plan ) SppC R&D ( ) Engineering Design ( ) Construction ( ) Data taking ( ) Extremely tight schedule, close to unrealistic Possibility to operate both electron and proton machines at the same time to accumulate more Higgs events 15

16 Civil Engineering Detailed geological survey and conceptual design efforts of civil engineering, summarised in precdr volume III: Civil Engineering (only in Chinese) IHEP proton electron 16

17 Future Circular Collider (FCC) 100 TeV proton-proton (and heavy-ion) collider and a high luminosity e + e - collider (H, Z, W and tt ) as a potential intermediate step FCC hh, ee, he FCC-hh LHC Energy [TeV] Dipole field [T] # IP Luminosity [cm -2 s -1 ] Stored energy/beam [GJ] Synchrotron rad. [W/m/ aperture] Bunch spacing [ns] 25 (5) 25 17

18 M. Benedikt, FCC study overview and status in FCC Week

19 M. Benedikt, FCC study overview and status in FCC Week

20 M. Benedikt, FCC study overview and status in FCC Week

21 High Luminosity LHC HL-LHC expected around 2023 to cm -2 s -1 and to deliver an integrated luminosity of 3000 fb -1 to each experiment over 10 years ATLAS/CMS detectors to be upgraded/re-built to cope with the hash collision conditions yet to maintain/enhance the performance European Strategy: P5 Report: 21

22 Physics Programs (selected topics) 22

23 e + e - Colliders: Luminosity vs Energy 23

24 Higgs Measurements dominant process at s ~ 240 GeV Well-defined initial states model independent measurements M 2 recoil =(p s E ff ) 2 p 2 ff = s 2E ffp s + m 2 ff Recoil mass method: reconstructed the Z decay without touching the Higgs, allowing precision measurements: production cross sections, branching ratios, Higgs mass, total decay width and more 24

25 Higgs Couplings Higgs couplings to fermions and gauge bosons predicted by the Standard Model (SM): g(hff;sm) and g(hv V ;SM); deviations from the SM couplings parameterised as: apple f = g(hff) g(hff;sm), apple V = g(hv V ) g(hv V ;SM) Relative Error Model-dependent fit: Precision of Higgs coupling measurement (Contrained Fit) LHC 300/3000 fb -1 CEPC 250 GeV at 5 ab -1 wi/wo HL-LHC Relative Error Model-independent fit: Precision of Higgs coupling measurement (Model-IndependentFit) ILC GeV at fb -1 wi/wo HL-LHC CEPC 250 GeV at 5 ab -1 wi/wo HL-LHC 10-3 κ b κ c κ g κ W κ τ κ Z κ γ 10-3 κ b κ c κ g κ W κ τ κ Z κ γ κ μ Br(inv) κ Γ 25

26 Expected Precision 26

27 Higgs Self-coupling Critical parameter governing the dynamics of electroweak symmetry breaking; accessible via the loop correction to the hz Zh = Zh SM Zh 1=2 applez hhh 27

28 EW Precision Measurements EW precision measurements with significantly reduced uncertainties: R b,a b FB, sin eff W,m Z,m W,N R Ldt 150 fb 1 28

29 Electroweak Oblique Parameter Fit Electroweak parameters S and T, describing the gauge boson self-energies, are sensitive to physics beyond the Standard Model. Electroweak Fit: S and T Oblique Parameters 0.2 Current (95%) Current (68%) CEPC (95%) 0.1 CEPC (68%) Electroweak Fit: S and T Oblique Parameters 0.15 Current (68%) CEPC baseline (68%) 0.10 Improved Γ Z (68%) 0.05 Electroweak Fit: S and T Oblique Parameters CEPC baseline (68%) Improved Γ Z (68%) Improved Γ Z, m t (68%) T 0.0 T 0.00 T S S S 29

30 Higher Energies Precise determination of the top mass ( m t 100 MeV ) with the threshold scan method (350 GeV reachable at FCC-ee/ILC/CLIC ) Top-Higgs Yukawa coupling (500 GeV) accessible at ILC/CLIC with expected precision of g t /g t = 10% and Higgs-self coupling via e + e! t th 30

31 ILC/CEPC/FCC Complementary Higgs coupling measurements: considerable improvement in precision for bb, gg, cc, WW, τ + τ - and Γtot,+ top-higgs coupling, top mass by ILC ILC GeV with fb -1 CEPC 250 GeV with 5000 fb -1 ILC + CEPC Accelerator technologies (e.g. RF cavity) and detector technologies (vertex detector, calorimeter, etc. ) important to exploit the synergies 31

32 TeV Physics opportunities: Naturalness, Dark Matter, EW phase transition much extended searches with unprecedented high energy [TeV] 0 m χ gluino-neutralino with LF decays pp ~ g ~ g qq χ qq χ 5 σ discovery TeV, 3000 fb TeV, 3000 fb TeV, 3000 fb TeV, 300 fb [TeV] 0 1 χ m pp g ~ g ~ tt χ tt χ TeV, 140 PU, 3000 fb TeV, 140 PU, 3000 fb TeV, 140 PU, 3000 fb TeV, 50 PU, 300 fb m~ g [TeV] gluino-neutralino with HF decays 1 5 σ discovery m~ g [TeV] Waiting for more results/hints from the LHC 32

33 Summary ILC/CLIC, CEPC-SPPC and FCC: extraordinary physics potential precision measurements + search for New Physics Important to exploit the synergies between different projects (accelerator/detector/computing and more) Global Efforts FCC (80 km) CEPC-SPPC (50 km) (HL-)LHC (27 km) ILC (31 km) /CLIC (48 km) 33

34 Extra Slides 34

35 Cross-sections dominant process at the threshold e + Z H e Z e + ν e e + e + W H Z H W Z e e ν e e 35

36 CEPC-SPPC PreCDR International Reviews 36

37 37

38 38

Overview of the CEPC Project

Overview of the CEPC Project Overview of the CEPC Project Hongbo Zhu (IHEP, Beijing) on behalf of the CEPC-SppC Study Group 17th Lomonosov Conference on Elementary Particle Physics, Moscow State University, Moscow, 20 26 August, 2015

More information

CEPC Detector and Physics Studies

CEPC Detector and Physics Studies CEPC Detector and Physics Studies Hongbo Zhu (IHEP) On Behalf of the CEPC-SppC Study Group FCC Week 2015, 23-27 March, Washington DC Outline Project overview Higgs Physics @ CEPC The CEPC detector Machine-Detector

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP

Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP Tim Barklow (SLAC) April 13, 2016 Experimental Challenges for the LHC Run II, KITP Future Circular Collider Study - SCOPE CDR and cost review for the next ESU (2018) Intl. collab. to study: pp-collider

More information

TLEP White Paper : Executive Summary

TLEP White Paper : Executive Summary TLEP White Paper : Executive Summary q TLEP : A first step in a long- term vision for particle physics In the context of a global project CERN implementation A. Blondel J. Osborne and C. Waajer See Design

More information

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV Measurement of iggs couplings and mass in collisions at CLIC in the s range of 350 GeV - 3 TeV Tomáš Laštovička Institute of Physics, Academy of Sciences, Prague E-mail: lastovic@fzu.cz on behalf of The

More information

CERN & the High Energy Frontier

CERN & the High Energy Frontier CERN & the High Energy Frontier Emmanuel Tsesmelis CERN Directorate Office Corfu Summer Institute 13th Hellenic School & Workshop on Elementary Particle Physics & Gravity Corfu, Greece 1 September 2013

More information

CEPC Theory Discussion

CEPC Theory Discussion CEPC Theory Discussion S. Su Shufang Su U. of Arizona CEPC Workshop April 9, IHEP Outline - Organization Physics - What has been done at precdr? - What s next? S. Su 2 - Organization S. Su 3 Funded Proposals

More information

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST

SPPC Study and R&D Planning. Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST SPPC Study and R&D Planning Jingyu Tang for the SPPC study group IAS Program for High Energy Physics January 18-21, 2016, HKUST Main topics Pre-conceptual design study Studies on key technical issues R&D

More information

arxiv: v2 [hep-ex] 21 Feb 2017

arxiv: v2 [hep-ex] 21 Feb 2017 Prospects for beyond Standard Model Higgs boson searches at future LHC runs and other machines arxiv:1701.05124v2 [hep-ex] 21 Feb 2017 Deutsches Elektronen-Synchrotron (DESY) E-mail: krisztian.peters@desy.de

More information

CEPC-SppC: an initiative from China for the future of HEP. Yifang Wang Institute of High Energy Physics, Beijing UChicago, Jan.

CEPC-SppC: an initiative from China for the future of HEP. Yifang Wang Institute of High Energy Physics, Beijing UChicago, Jan. CEPC-SppC: an initiative from China for the future of HEP Yifang Wang Institute of High Energy Physics, Beijing UChicago, Jan. 22, 2016 Where Are We Going? After the Higgs, game is over? Shall we wait

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

Precision of Higgs Couplings at CEPC

Precision of Higgs Couplings at CEPC Precision of Higgs Couplings at CEPC M. Ruan & G. Li for the CEPC Simulation Study Group CEPC-SPPC Electron-positron collision phase Higgs factory: collision at ~240-250 GeV center-of-mass energy, Instant

More information

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University Physics at Photon Colliders Prof. Mayda M. Velasco Northwestern University Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV J @LHC the Higgs is better detected in

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

Top Quark Precision Physics at Linear Colliders

Top Quark Precision Physics at Linear Colliders Top Quark Precision Physics at Linear Colliders Frank Simon 1 on behalf of the ILC Physics and Detector Study and the CLICdp Collaboration 1 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München,

More information

at the Higgs factory

at the Higgs factory eefact2018 Hong Kong, 24/09/2018 at the Higgs factory and complementarity with hadron colliders P. Giacomelli INFN Bologna Overview FCC complex and FCC-ee first stage CepC Higgs production at an e + e

More information

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada Dean Karlen University of Victoria & TRIUMF APS NW Section Meeting 2005 Victoria, Canada The International Linear Collider Next in the line of e + e - colliders at the high energy frontier of particle

More information

CEPC Input to the ESPP Physics and Detector

CEPC Input to the ESPP Physics and Detector CEPC Input to the ESPP 2018 - Physics and Detector CEPC Physics-Detector Study Group Abstract The Higgs boson, discovered in 2012 by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC),

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

CLIC Detector studies status + plans

CLIC Detector studies status + plans CLIC Detector studies status + plans Contents: - Introduction to CLIC accelerator - 2004 CLIC Study group report: "Physics at the CLIC Multi-TeV Linear Collider - CERN participation in Linear Collider

More information

Introduction of CEPC-SppC. Yifang Wang Institute of High Energy Physics, Beijing Feb. 13, 2014,Geneve

Introduction of CEPC-SppC. Yifang Wang Institute of High Energy Physics, Beijing Feb. 13, 2014,Geneve Introduction of CEPC-SppC Yifang Wang Institute of High Energy Physics, Beijing Feb. 13, 2014,Geneve CEPC+SppC For about 8 years, we have been talking about What can be done after BEPCII in China Thanks

More information

James E. Brau Center for High Energy Physics, University of Oregon, Eugene, OR USA

James E. Brau Center for High Energy Physics, University of Oregon, Eugene, OR USA 5 GeV ILC Operating Scenarios Center for High Energy Physics, University of Oregon, Eugene, OR USA E-mail: jimbrau@uoregon.edu Tim Barklow SLAC National Accelerator Laboratory, Menlo Park, CA USA E-mail:

More information

Proposal for a US strategy towards physics & detectors at future lepton colliders

Proposal for a US strategy towards physics & detectors at future lepton colliders Proposal for a US strategy towards physics & detectors at future lepton colliders Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National

More information

Detector Requirements for Precision Higgs Boson Physics

Detector Requirements for Precision Higgs Boson Physics Detector Requirements for Precision Higgs Boson Physics Status of Higgs property measurements Difference and complementary of pp and ee collisions Physics drivers of detector performances Jianming Qian

More information

Why a muon collider?

Why a muon collider? Why a muon collider? What will we learn? Mary Anne Cummings Northern Illinois Center for Accelerator and Detector Development Northern Illinois University 1 Why consider a Muon Collider? The current story

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

Future Circular Colliders

Future Circular Colliders Future Circular Colliders M. Benedikt and F. Zimmermann CERN, Geneva, Switzerland Summary. In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future

More information

Prospects and challenges for future ee and ep colliders

Prospects and challenges for future ee and ep colliders Prospects and challenges for future ee and ep colliders Marcin Chrzaszcz mchrzasz@cern.ch Physik-Insitut, University of Zurich Instiute of Nuclear Physics, Polish Academy of Sciences Neutrinos at the High

More information

New Physics Scales to be Lepton Colliders (CEPC)

New Physics Scales to be Lepton Colliders (CEPC) New Physics Scales to be Probed @ Lepton Colliders (CEPC) Shao-Feng Ge (gesf02@gmail.com) Max-Planck-Institut für Kernphysik, Heidelberg, Germany 2016-1-11 Contribution to CEPC precdr & CDR Collaboration

More information

Parameters for the Linear Collider Update November 20, 2006

Parameters for the Linear Collider Update November 20, 2006 Parameters for the Linear Collider Update November 20, 2006 1. Introduction Over the past decade, studies in Asia, Europe and North America have described the scientific case for a future electron-positron

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

PUBLICATION. The Global Future Circular Colliders Effort

PUBLICATION. The Global Future Circular Colliders Effort CERN-ACC-SLIDES-2016-0016 Future Circular Collider PUBLICATION The Global Future Circular Colliders Effort Benedikt, Michael (CERN) et al. 09 August 2016 The research leading to this document is part of

More information

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group

CEPC NOTE CEPC-RECO April 1, Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR. CEPC Simulation Group CEPC NOTE CEPC-RECO-218-2 April 1, 218 Higgs Signal Reconstruction at CEPC-v4 Baseline Detector for the CEPC CDR CEPC Simulation Group Abstract Using the CEPC software chain, the reconstruction performance

More information

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units The European Strategy for Particle Physics Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units Purpose of this meeting q To inform CERN s employees (staff, fellows) about the goals

More information

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 The International Linear Collider Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 Why e + e - Collisions? elementary particles well-defined energy, angular momentum uses full COM energy produces

More information

Tools of Particle Physics I Accelerators

Tools of Particle Physics I Accelerators Tools of Particle Physics I Accelerators W.S. Graves July, 2011 MIT W.S. Graves July, 2011 1.Introduction to Accelerator Physics 2.Three Big Machines Large Hadron Collider (LHC) International Linear Collider

More information

The ILC and its complementarity to the LHC

The ILC and its complementarity to the LHC The ILC and its complementarity to the LHC Outline: 1. ILC physics motivation 2. ILC LHC synergy 31 st Johns Hopkins Workshop Heidelberg 2007 3. LHC ILC implications Klaus Desch Universität Bonn The Terascale

More information

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and

Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Light Higgs Discovery Potential with ATLAS, Measurements of Couplings and Impact on Model Discrimination Junichi TANAKA ICEPP, Univ. of TOKYO On behalf of the ATLAS Collaboration 12th June, 2006 SUSY06@UCIrvine

More information

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay Studies of Higgs hadronic decay channels at CLIC IMPRS Young Scientist Workshop at Ringberg Castle 8 th July 24 Outline Physics at e + e - colliders CLIC - collider and detectors BDT intermezzo Higgs branching

More information

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London Current and Future Developments in Accelerator Facilities Jordan Nash, Imperial College London Livingston chart (circa 1985) Nearly six decades of continued growth in the energy reach of accelerators Driven

More information

Whither colliders after the Large Hadron Collider?

Whither colliders after the Large Hadron Collider? PRAMANA c Indian Academy of Sciences Vol. 79, No. 5 journal of November 2012 physics pp. 993 1002 Whither colliders after the Large Hadron Collider? ROLF-DIETER HEUER CERN, CH-1211, Geneva 23, Switzerland

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS

PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS PROSPECTS FOR MEASURING HIGGS CP VIOLATION AT FUTURE COLLIDERS Felix Yu Johannes Gutenberg University, Mainz U. of Massachusetts, Amherst, Amherst Center for Fundamental Interactions The CP Nature of the

More information

Potential Discoveries at the Large Hadron Collider. Chris Quigg

Potential Discoveries at the Large Hadron Collider. Chris Quigg Potential Discoveries at the Large Hadron Collider Chris Quigg Fermilab quigg@fnal.gov XXIII Taiwan Spring School Tainan 31 March - 3 April 2010 Electroweak theory successes Theoretical Physics Department,

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Where is Europe going?

Where is Europe going? Where is Europe going? Lars Bergström The Oskar Klein Centre for Cosmoparticle Physics Department of Physics, Stockholm University 1 www.aspensnowmass.com In Swedish, Snowmass may translate to two different

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

CLIC THE COMPACT LINEAR COLLIDER

CLIC THE COMPACT LINEAR COLLIDER CLIC THE COMPACT LINEAR COLLIDER Emmanuel Tsesmelis Directorate Office, CERN 9 th Corfu Summer Institute 4 September 2009 1 THE CLIC ACCELERATOR 2 Linear Collider Baseline LEP: 209 GeV next Electron-Positron

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Beam-beam Effects in Linear Colliders

Beam-beam Effects in Linear Colliders Beam-beam Effects in Linear Colliders Daniel Schulte D. Schulte Beam-beam effects in Linear Colliders 1 Generic Linear Collider Single pass poses luminosity challenge Low emittances are produced in the

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Preliminary Design of m + m - Higgs Factory Machine-Detector Interface

Preliminary Design of m + m - Higgs Factory Machine-Detector Interface Fermilab Accelerator Physics Center Preliminary Design of m + m - Higgs Factory Machine-Detector Interface Nikolai Mokhov Y. Alexahin, V. Kashikhin, S. Striganov, I. Tropin, A. Zlobin Fermilab Higgs Factory

More information

Status of the Standard Model. Outline. The nineties precision physics at LEP and SLC. Precision electroweak measurements: e+e- colliders

Status of the Standard Model. Outline. The nineties precision physics at LEP and SLC. Precision electroweak measurements: e+e- colliders Outline Status SM What can a high energy e+e- collider contribute? Physics items Higgs boson measurements Top-quark The Linear Collider Projects Why linear? Key topics Energy Luminosity polarization Description

More information

e + e - (1) Silicon Vertex Detector

e + e - (1) Silicon Vertex Detector 3.1 GeV (4) Electromagnetic Calorimeter (3) Cerenkov- Detector (2) Drift Chamber (5) 1.5 T Solenoid (6) Instrumented Iron Yoke e + e - (1) Silicon Vertex Detector 9.0 GeV e + e - Colliders as B Factories

More information

Particles and Universe: Particle accelerators

Particles and Universe: Particle accelerators Particles and Universe: Particle accelerators Maria Krawczyk, Aleksander Filip Żarnecki March 24, 2015 M.Krawczyk, A.F.Żarnecki Particles and Universe 4 March 24, 2015 1 / 37 Lecture 4 1 Introduction 2

More information

LHC/ILC. Hitoshi Murayama (Berkeley) SLAC SSI, 7/27/2006

LHC/ILC. Hitoshi Murayama (Berkeley) SLAC SSI, 7/27/2006 LHC/ILC Hitoshi Murayama (Berkeley) SLAC SSI, 7/27/2006 Technicolor Lykken: It doesn t look good but is not going away 2 LHC/ILC Hitoshi Murayama (Berkeley) SLAC SSI, 7/27/2006 Outline e + e - Linear Collider

More information

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory Future of LHC Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory PiTP, July 2013 1 LHC Run 1: 2009-2012 25 fb -1 of 7+8 TeV pp data Higgs boson found! Looks like SM

More information

Super-c-tau factory in Novosibirsk (WP7)

Super-c-tau factory in Novosibirsk (WP7) Super-c-tau factory in Novosibirsk (WP7) E. Levichev Budker Institute of Nuclear Physics Novosibirsk, RUSSIA CREMLIN kick-off meeting, 6-7 October 2015 NRC Kurchatov Institute Budker Institute Founded

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN LNF WONP-NURT La Habana 5 february 2013 CERN North Jura ATLAS Sketch of LHC North Ring 26,6 Km long and 3,8 m of diameter, made of 8 arches connected by 8

More information

Beyond the LHC: physics goals and CERN's plans for future colliders

Beyond the LHC: physics goals and CERN's plans for future colliders KEK Theory Meeting on Particle Physics Phenomenology (KEK-PH2018) February 13-16 2018 Beyond the LHC: physics goals and CERN's plans for future colliders or, as Mihoko put it: All you need to know about

More information

International Linear Collider ILC Overview

International Linear Collider ILC Overview International Linear Collider ILC Overview Lyn EVANS, Shinichiro MICHIZONO and Akira YAMAMOTO The International Linear Collider (ILC) is proposed as an energy frontier electron-positron colliding accelerator,

More information

SLAC-PUB Introduction

SLAC-PUB Introduction SLAC-PUB-16546 Accelerator Considerations of Large Circular Colliders Alex Chao SLAC National Accelerator Laboratory, Stanford, California, USA E-mail: achao@slac.stanford.edu As we consider the tremendous

More information

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing)

Machine Detector Interface at Electron Colliders. Hongbo Zhu (IHEP, Beijing) Machine Detector Interface at Electron Colliders Hongbo Zhu (IHEP, Beijing) Outline Introduction Interaction Regions Single ring, pretzel scheme, head-on collision Radiation Backgrounds Final Focusing

More information

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS

Supersymmetry IV. Hitoshi Murayama (Berkeley) PiTP 05, IAS Supersymmetry IV Hitoshi Murayama (Berkeley) PiTP 05, IAS Plan Mon: Non-technical Overview what SUSY is supposed to give us Tue: From formalism to the MSSM Global SUSY formalism, Feynman rules, soft SUSY

More information

LHC and its injector chain used for physics LHC Run 7-8 TeV ongoing Run 13 TeV Run 3 starting 14 TeV Injectors supporting additional pr

LHC and its injector chain used for physics LHC Run 7-8 TeV ongoing Run 13 TeV Run 3 starting 14 TeV Injectors supporting additional pr LHC Selected Physics Eckhard Elsen Director Research and Computing Results from LHC Run 1 and Run 2 ILC Advisory Committee, Dec 6, 2017, MEXT, Tokyo, Japan 1 LHC and its injector chain used for physics

More information

SLHC Physics Impact Albert De Roeck/CERN

SLHC Physics Impact Albert De Roeck/CERN SLHC Physics Impact Albert De Roeck/CERN XXXVII SLAC Summer Institute 1 Today s Lecture Contents Introduction Luminosity upgrade scenario for the LHC machine Physics with the SLHC Other possible upgrades

More information

The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders

The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders The Higgs Mechanism and Electroweak Symmetry Breaking at e + e - Colliders Jim Brau University of Oregon Snowmass 2001 Workshop on the Future of High Energy Physics 1 The Higgs Mechanism and Electroweak

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

Accelerators. Lecture V. Oliver Brüning. school/lecture5

Accelerators. Lecture V. Oliver Brüning.  school/lecture5 Accelerators Lecture V Oliver Brüning AB/ABP http://bruening.home.cern.ch/bruening/summer school/lecture5 V) LEP, LHC + more LEP LHC Other HEP Projects Future Projects What else? LEP Precision Experiment:

More information

Luminosity for the 100 TeV collider

Luminosity for the 100 TeV collider Luminosity for the 100 TeV collider M.L.Mangano, contribution to the Luminosity discussion session, Jan 15 2015 IAS programme on The Future of High Energy Physics Critical parameter to determine the physics

More information

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History - Physics 736 Experimental Methods in Nuclear-, Particle-, and Astrophysics - Accelerator Techniques: Introduction and History - Karsten Heeger heeger@wisc.edu Homework #8 Karsten Heeger, Univ. of Wisconsin

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

The Large Hadron electron Collider at CERN

The Large Hadron electron Collider at CERN The Large Hadron electron Collider at CERN A. Polini (for the LHeC Collaboration) Outline: Introduction Accelerator, Interaction Region and Detector Physics Highlights Future and Outlook A. Polini LHeC

More information

Higgs Boson: from Collider Test to SUSY GUT Inflation

Higgs Boson: from Collider Test to SUSY GUT Inflation Higgs Boson: from Collider Test to SUSY GUT Inflation Hong-Jian He Tsinghua University String-2016, Tsinghua, Beijing, August 5, 2016 String Theory Supergravity,GUT Effective Theory: SM, + eff operators

More information

News from CERN LHC Status and Strategy for Linear Colliders

News from CERN LHC Status and Strategy for Linear Colliders News from CERN LHC Status and Strategy for Linear Colliders Rolf-Dieter Heuer CERN Director-General CH-1211 Geneva 23 Switzerland This paper presents the latest development at CERN, concentrating on the

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

Accelerator development

Accelerator development Future Colliders Stewart T. Boogert John Adams Institute at Royal Holloway Office : Wilson Building (RHUL) W251 Email : sboogert@pp.rhul.ac.uk Telephone : 01784 414062 Lectures aims High energy physics

More information

Future HEP Accelerators: The US Perspective

Future HEP Accelerators: The US Perspective DPF2015-126 August 8, 2015 Future HEP Accelerators: The US Perspective Pushpalatha BHAT, Vladimir SHILTSEV Fermilab 1, PO Box 500, Batavia IL, 60510, USA Accelerator technology has advanced tremendously

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013

Digital Calorimetry for Future Linear Colliders. Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013 Digital Calorimetry for Future Linear Colliders Tony Price University of Birmingham University of Birmingham PPE Seminar 13 th November 2013 Overview The ILC Digital Calorimetry The TPAC Sensor Electromagnetic

More information

Recent Results on New Phenomena and Higgs Searches at DZERO

Recent Results on New Phenomena and Higgs Searches at DZERO Recent Results on New Phenomena and Higgs Searches at DZERO Neeti Parashar Louisiana Tech University Ruston, Louisiana U.S.A. 1 Outline Motivation for DØ Run II Detector at Fermilab The Fermilab Tevatron

More information

Exploring the Energy Frontier; Understanding LHC Discoveries

Exploring the Energy Frontier; Understanding LHC Discoveries Exploring the Energy Frontier; Understanding LHC Discoveries Jim Brau University of Oregon Jim Brau Exploring the Energy Frontier APS, Denver, May 3, 2009 1 History of the Universe accessible with precision

More information

Physics Studies for FCC-hh Introduction. Filip Moortgat (CERN) and Heather Gray (LBNL)

Physics Studies for FCC-hh Introduction. Filip Moortgat (CERN) and Heather Gray (LBNL) Physics Studies for FCC-hh Introduction Filip Moortgat (CERN) and Heather Gray (LBNL) Physics case of the FCC-hh see M. Mangano, Wed morning 2 Study of Higgs and top quark properties and exploration of

More information

Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009

Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009 Fermilab Program Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009 Outline State of the program and future evolution Energy Frontier Cosmic Frontier Intensity Frontier Any other items the

More information

New Frontiers in Particle Physics and The Splendors of a Linear Collider

New Frontiers in Particle Physics and The Splendors of a Linear Collider New Frontiers in Particle Physics and The Splendors of a Linear Collider Barry Barish Caltech University of Iowa 16-Sept-02 Developing a Long Range Strategy for Particle Physics A roadmap is an extended

More information

Why do we accelerate particles?

Why do we accelerate particles? Why do we accelerate particles? (1) To take existing objects apart 1803 J. Dalton s indivisible atom atoms of one element can combine with atoms of other element to make compounds, e.g. water is made of

More information

Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa

Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa Paul Newman Birmingham University Lepton-hadron collider based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? 1 [CERN Courier, June 2014] Lepton-hadron

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew

Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew Report from the Luminosity Working Group of the International Linear Collider Technical Review Committee (ILC-TRC) Chairman: Greg Loew The ILC-TRC was originally constituted in 1994 and produced a report

More information

CLIC Project Status. Roger Ruber. Uppsala University. On behalf of the CLIC Collaborations. Thanks to all colleagues for materials

CLIC Project Status. Roger Ruber. Uppsala University. On behalf of the CLIC Collaborations. Thanks to all colleagues for materials CLIC Project Status Roger Ruber Uppsala University On behalf of the CLIC Collaborations Thanks to all colleagues for materials IAS 2018 Program on High Energy Physics Hong Kong, 23 January 2018 CLIC Collaborations

More information

Higgs Factory Magnet Protection and Machine-Detector Interface

Higgs Factory Magnet Protection and Machine-Detector Interface Higgs Factory Magnet Protection and Machine-Detector Interface Nikolai Mokhov Fermilab MAP Spring Workshop May 27-31, 2014 Outline MDI Efforts Building Higgs Factory Collider, Detector and MDI Unified

More information

8 lectures on accelerator physics

8 lectures on accelerator physics 8 lectures on accelerator physics Lectures can be found at Lecture 1 and 2: Introduction Why do we accelerate? What are the important parameters for characterizing accelerators Lecture 3 and 4: Examples

More information

Recent LHC Physics Results and their Impact on Future HEP Accelerator Programme

Recent LHC Physics Results and their Impact on Future HEP Accelerator Programme Recent LHC Physics Results and their Impact on Future HEP Accelerator Programme Sergio Bertolucci CERN Where we stand There is a new boson of mass ~125 GeV, with properties consistent with the SM Higgs,

More information

Roma, 2 febbraio ILC vs CLIC. .cosa si perde e cosa si guadagna. Barbara Mele. Sezione di Roma

Roma, 2 febbraio ILC vs CLIC. .cosa si perde e cosa si guadagna. Barbara Mele. Sezione di Roma Roma, 2 febbraio 2006 ILC vs CLIC.cosa si perde e cosa si guadagna. Barbara Mele Sezione di Roma 2 3 4 Luminosity vs Collision Energy 5 6 7 8 9 10 Experimentation at CLIC: beamstrahlung becomes more severe

More information

Particle Physics Columbia Science Honors Program

Particle Physics Columbia Science Honors Program Particle Physics Columbia Science Honors Program Week 10: LHC and Experiments April 8th, 2017 Inês Ochoa, Nevis Labs, Columbia University 1 Course Policies Attendance: Up to four excused absences (two

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

Higgs physics at the ILC

Higgs physics at the ILC Higgs physics at the ILC Klaus Desch University of Bonn Second Linear Collider Physics School Ambleside,UK, 15/09/06 Disclaimers + Announcements Focus will be on experimental possibilities + studies with

More information

CERN R&D on Linear Collider Detectors. Lucie Linssen CERN

CERN R&D on Linear Collider Detectors. Lucie Linssen CERN CERN R&D on Linear Collider Detectors Lucie Linssen CERN 1 Outline Outline: Introduction CLIC physics Detector issues Comparison between ILC and CLIC Linear Collider Detector R&D plans Outlook 2 Introduction

More information