Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

Size: px
Start display at page:

Download "Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010"

Transcription

1 Pylont Tr Inrns Usn Qurtt Splts By Kvn Ml Htok Blor o Sn Lnor-Ryn Unvrsty 2010 Sumtt n Prtl Fulllmnt o t Rqurmnts or t Dr o Mstr o Sn n Mtmts Coll o Arts n Sns Unvrsty o Sout Croln 2012 Apt y: Év Czrk, Drtor o Tss Anton Sp, Rr Lnoln Lu, Rr Ly For, V Provost n Dn o Grut Stus

2 Copyrt y Kvn Ml Htok, 2012 All Rts Rsrv.

3 Dton Ts work s t to my utul né Amn. Your support s lp mk ts tss possl. You nrt mu mor tn your r sr o t strss n prssur tt m lon wt wrtn t. I truly oul not v on ts wtout you. I lov you.

4 Aknowlmnts Frstly, I woul lk to tnk my vsor Dr. Év Czrk or r un n v. Your lp urn t wrtn o ts tss nnot ovrstt. Ts tss woul not v n possl not or you. I woul lso lk to tnk my ommtt mmrs Dr. Anton Sp n Dr. Lnoln Lu or your toutul sustons, s wll n your tm n ttnton. I xprss my pprton to Dr. Gor MNulty or mkn t pross o wrtn tss mu smplr tn I vr oul v. I woul lso lk to tnk t mmrs o t mt prtmnt t t Unvrsty o Sout Croln. Spl tnks to Knny Brown, Vrn Jonson, Trvs Jonston n Ml Ln or your lp wt ormtn n L A TEX. Your nst sv m mny ours o xtr work. Lst, ut rtnly not lst, I woul lk to xprss my mmns rttu to my mly, splly my motr, Kmrly Htok, my rotr, Kn Htok, n my wonrul né, n soon-to--w, Amn Hur. I oul not v on ts wtout your lov n support. Your nourmnt s rtly rsponsl or my suss. Tnk you ll. v

5 Astrt Pylont trs r us y olosts n ntsts s wy o lssyn t rltonsps twn rnt txonom unts. T rnn o tr rprsnts on unt volvn nto two or mor rnt unts. T lvs o pylont trs r ll wt t unts tt r to stu. For ny tr, n pylont trs n prtulr, ltn n rsults n prton o t l ll st. W ll su ltons splts n rprsnt t splt tt rsults n prton sts A n B y A B. A splt σ s rlz y tr T tr s n lton o T tt rsults n t prtton xprss y σ. T st o ll splts rlz y T s not Σ(T ). W suss wt t mns or two splts to omptl n v proo o t Splts-Equvln Torm w stts tt or ollton Σ o splts, tr s tr T su tt Σ = Σ(T ) n only t splts o Σ r prws omptl. O ntrst r splts n w ot A n B = 2. Ts r rrr to s qurtts. W sy tt st A o qurtts nrs qurtt s vry tr tt splys A must lso sply s. Su n nrn s ll k-ry nrn wn A = k. A k-ry nrn s ll prmtv, t n not rv rom lowrorr nrns. In s Mstr s Tss Ronstruton Mtos or Drvton Trs, Dkkr rtrz ll prmtv nry n trnry nrns. Stl n Brynt sow tt or ny postv ntr k tr r prmtv k-ry nrns. W prsnt n npnnt rrton o porton o Dkkr s work y lstn ll prmtv nry qurtt splt nrns, s wll s sow tt t only prmtv trnry nrns nvolv < 8 lvs. W lso prov n xmpl o vl trnry nrn. v

6 Contnts Dton Aknowlmnts v Astrt v Lst o Furs v Cptr 1 Prlmnrs Introuton Funmntl Dntons Cptr 2 Splts Cptr 3 Qurtts n Root Trpls Qurtts Root Trpls Cptr 4 Bnry Inrns Cptr 5 Trnry Inrns Blorpy v

7 Lst o Furs Fur 1.1 An X-tr wt X = {1,..., 25} Fur 1.2 A root nry pylont tr wt ll st {1,..., 6, ρ}... 5 Fur 1.3 A pylont tr Fur 1.4 A tr T n t tr T/ tr ontrton Fur 3.1 T qurtt Fur 3.2 T root trpl Fur 3.3 Contrtory yl sown tt λ Σ(T ) Fur 4.1 T tr T lon wt nw vrts s 1, s Fur 4.2 Trs T 1 n T Fur 4.3 Trs T 1, T 2, n T 3 sr no ommon splts otr tn A Fur 4.4 Trs T 1 n T 2 sr no ommon splts otr tn A Fur 4.5 Trs T 1, T 2, n T 3 sr no ommon splts otr tn A Fur 4.6 Trs T 1, T 2, n T 3 sr no ommon splts otr tn A Fur 4.7 Trs T 1, T 2, n T 3 sr no ommon splts otr tn A Fur 4.8 Tr sown possl lotons or tonl l Fur 4.9 Trs wt l n postons 4, 5, 6, n Fur 4.10 Tr wt l tt to poston Fur 5.1 A tr wt qurtt splts A 1,A 2, n A Fur 5.2 Ts v trs sr only t splts A 1, A 2, A Fur 5.3 T v trs ov v only tr ommon splts Fur 5.4 T tr trs ov sr only splts A 1, A 2, n A v

8 Fur 5.5 T our trs ov sr only splts A 1 A 2 n A Fur 5.6 T tr trs ov sr only splts A 1, A 2, n A Fur 5.7 T v trs ov sr only splts A 1, A 2, n A Fur 5.8 T our trs ov sr only splts A 1, A 2, n A Fur 5.9 T our trs ov sr only splts A 1, A 2, n A Fur 5.10 T v trs ov sr only splts A 1, A 2, n A Fur 5.11 T our trs ov sr only splts A 1, A 2, n A Fur 5.12 T two trs ov sr only splts A 1, A 2, A 3 n t ormnton nry nrn Fur 5.13 Ts tr sows tt A 1, A 2, A 3 n yl no trnry nrns.. 36 Fur 5.14 T trs ov sr only splts A 1, A 2, A Fur 5.15 T trs ov sr only splts A 1, A 2, A Fur 5.16 T trs ov sr only splts A 1, A 2, A Fur 5.17 T trs ov sr only splts A 1, A 2, A Fur 5.18 T trs ov sr only splts A 1, A 2, A Fur 5.19 T trs ov sr only A 1, A 2, A Fur 5.20 T trs ov sr only splts A 1, A 2, A Fur 5.21 T trs ov sr only splts A 1, A 2, A Fur 5.22 T trs ov sr only splts A 1, A 2, A Fur 5.23 T trs ov sr only splts A 1, A 2, A Fur 5.24 T trs ov sr only splts A 1, A 2.A Fur 5.25 T trs ov sr only splts A 1, A 2, A Fur 5.26 T trs ov sr only splts A 1, A 2, A Fur 5.27 T trs ov sr only splts A 1, A 2, A Fur 5.28 T trs ov sr only splts A 1, A 2, A Fur 5.29 T trs ov sr only splts A 1, A 2, A Fur 5.30 T trs ov sr only splts A 1, A 2, A v

9 Fur 5.31 T trs ov sr only splts A 1, A 2, A Fur 5.32 T trs ov sr only splts A 1, A 2, A Fur 5.33 T trs ov sr only splts A 1, A 2, A Fur 5.34 T trs ov sr only splts A 1, A 2, A Fur 5.35 T trs ov sr only splts A 1, A 2, A Fur 5.36 T trs ov sr only splts A 1, A 2, A Fur 5.37 T trs ov sr only splts A 1, A 2, A Fur 5.38 T trs ov sr only splts A 1, A 2, A Fur 5.39 T trs ov sr only splts A 1, A 2, A Fur 5.40 T trs ov sr only splts A 1, A 2, A Fur 5.41 T trs ov sr only splts A 1, A 2, A Fur 5.42 T trs ov sr only splts A 1, A 2, A Fur 5.43 T trs ov sr only splts A 1, A 2, A Fur 5.44 T trs ov sr only splts A 1, A 2, A Fur 5.45 T trs ov sr only splts A 1, A 2, A Fur 5.46 T trs ov sr only splts A 1, A 2, A Fur 5.47 T trs ov sr only splts A 1, A 2, A Fur 5.48 T trs ov sr only splts A 1, A 2, A Fur 5.49 T trs ov sr only splts A 1, A 2, A Fur 5.50 T trs ov sr only splts A 1, A 2, A Fur 5.51 T trs ov sr only splts A 1, A 2, A Fur 5.52 T trs ov sr only splts A 1, A 2, A Fur 5.53 T trs ov sr only splts A 1, A 2, A Fur 5.54 T trs ov sr only splts A 1, A 2, A Fur 5.55 T trs ov sr only splts A 1, A 2, A Fur 5.56 T trs ov sr only splts A 1, A 2, A Fur 5.57 T trs ov sr only splts A 1, A 2, A x

10 Cptr 1 Prlmnrs 1.1 Introuton Bolosts us pylont (volutonry) trs s vsul rprsntton o volutonry vnts n t rltonsps twn rnt txonom unts (sps, nus, mly, t). Wn on txonom unt splts n orms two or mor nw unts, t s rrr to s spton vnt. Bolosts rprsnt spton vnts usn ntrnl vrts o pylont tr. T to rprsnt spton vnts usn trs n wt Crls Drwn s rly s 1837 [6, 7]. Ornlly, t volutonry losnss o rnt sps ws trmn usn pysl omprsons ut t ws sovr tt t pprn o smlr trts not lwys orrlt wt n volutonry nstor s wll s mt xpt. For xmpl, s solly on pprn, t woul sm tt wls r mor losly rlt to srks tn to ppopotmuss ut ts s not t s [3]. It s lso ult to stnus twn sps tt r xtrmly smlr. In som ss, t only wy to urtly stnus twn mmrs o rnt sps s y usn DNA tstn [13]. Wt t snt vnmnts tt m n t son l o t twntt ntury, nlun t us o DNA n t l o noms, olosts wr l to t mu ttr ptur o ow rnt sps r rlt n wr to pl tm on pylont trs [1]. Wt tm, ts lts wll only mprov. A nturl mto or rtn lr pylont tr s to onstrut smllr trs usn only susts o t txonom unts n tn ttmpt to mr ts 1

11 smllr trs totr [4, 14]. In som ss owvr, tr n svrl rnt wys to mr ts smll trs totr. Wn ts s t s, t s nssry nvor to trmn wn ts sprt rprsnttons r omptl n n omn nto on omprnsv tr. Wl t us o pylont trs s y r t omnnt mto or rprsntn volutonry story, t mtos us to pl t rnt tx on t trs r not wtout ompltons. T morty o olo rltonsps r trmn usn nt mtrl. T mns o trnsrrn nt normton s rrr to s vrtl n trnsr. Vrtl trnsr ours wn nt mtrl s pss rom prnt to osprn. In multllulr ornsms ts s, wt vry w xptons, t only mns o trnsr. Howvr, snl-ll ornsms, n prtulr tr, v mny mtos o wt s rrr to s orzontl n trnsr [11]. Horzontl trnsr ours wn nt mtrl s spr n mnnr tt s not rom prnt to osprn [9]. Btr n sor n xprss orn nt mtrls. Ts s t prmry us o ntot rsstn n tr [5]. T pross o trnsuton nvolvs tr n vruss [15]. Som vruss, ll trops, v t lty to sor trl DNA rom ost ornsm n trnsr tt DNA to notr trum, tt my not los rltv o t ost [5]. Som tr lso v t lty to trnsr nt mtrl rtly y mns o ll-to-ll ontt. In ts wys, ssntlly unrlt ornsms n sply t sm ns. Amon mor omplx ornsms, tr r lso svrl ults tt rsult rom usn nt mtrls to nr volutonry rltonsps. Hyrzton n our trouout svrl rnt txonom lvls. Intrrn twn rnt susps wtn t sm sps s rly ommon n ntur: n xmpl n mtn twn Bnl tr n Srn tr [18]. Hyrs n orm twn rnt sps wtn t sm nus. Muls r t rsult o mtn twn onky n ors. Intrsps yrzton s lso n oun mon r- 2

12 nt sps o yks n squrrls [16]. Altou rr, yrs my lso orm twn mmrs o two rnt nr wtn t sm mly. Wl n nrl, t rtr prt t two ornsms r ntlly, t lowr t ns o sussul yr, su ntrnr yrs o our. T Lyln yprss s rsult o t rossn o Montry yprss wt n Alsk yprss [19]. In mny ss, splly wt ornsms tt r not losly rlt, ts yrs tn to unl to rprou, ut ts s not lwys t s [7]. Convrnt voluton s notr prolm wn onsrn t voluton o omplx ornsms. Plnts, nmls, un v so mny trts, t s not out o t rlm o posslty tt som smlr trts my volv npnntly n rtr unrlt tx. Wn lns tt r not losly rlt vlop smlr trts npnntly, t s ll onvrnt voluton [12]. A prm xmpl nvolvs rs n ts. T most rnt ommon nstor o rs n ts not v wns, yt ot v vlop tm ovr tm. Convrnt voluton n lso our t t DNA lvl wt rnt ornsms vlopn smlr nzyms n protns tt sply s smlr trts npnntly o otr [10]. Wl nt mtrls n normton r rly vll or lvn ornsms, olosts must tr normton out xtnt sps usn t ossl ror. Ts lrly rsults n lr mount o lost normton. It s vnt tt som ornsms tt v om xtnt, tr wr not osslz or v yt to sovr. Evn mon t ornsms tt v n sovr, only r tssus r unntly osslz; ltou vnmnts r llown or t nvrstton o som sot tssus [2]. T rtr k n tm n ornsm lv, t lss normton n n rom t rmns. Lonr-xtnt sps tn to v mor muous volutonry stors. Evn wt ts ults, t l o pylonts s t lty to strtn t tnl volutonry story o t ornsms on Ert. In ts tss, w ntn 3

13 to monstrt ow t o pylont trs n us to lp vsulz t rltonsps tt olosts sovr trou t us o DNA squnn n noms. W n y nn som unmntl s n rp tory. W tn xplor t o splts n tr n wys n w ts splts n us to ronstrut t tr. Two mportnt typs o splts (qurtts n root trpls) r xpoun upon sprtly n Cptr 3. Cptrs 4 n 5 monstrt ow on n us n nomplt st o qurtt splts to nr otr omptl qurtts. 1.2 Funmntl Dntons As wt ny sut, n orr to unrstn t omplx, on must v rsp o t s. W v svrl ssntl ntons n ts ston. For rrs wo sr mor n pt ntrouton, s Introuton to Grp Tory y Truu [17]. Dnton 1.1. A tr s onnt rp tt ontns no yls. Dnton 1.2. A tr n w som vrts (nlun vry vrtx o r on or two) r ll wt sont susts o st X s ll n X-tr. Not tt vrts o r rtr tn two my or my not ll. Exmpl 1.3. Fur 1.1 low splys n X-tr wr X = {1,..., 25}. Not tt tr r som vrts o r rtr tn 2 tt r ll n tt som vrts r ll y snl lmnts o X. Dnton 1.4. A tr tt s no vrts o r two n s l unquly lll y snlton sust o t st X s ll pylont tr or pylont X-tr. Dnton 1.5. A root pylont tr s pylont tr tt s n ntrnl vrtx tt s stnus n s ll t root. T root s not y ρ n my v r two. All ntrnl vrts otr tn t root must v r rtr 4

14 3, 6, 11 5, 21 10, 13, 19 20, , 2, 4 16, 17, , , 25 12, 23 Fur 1.1: An X-tr wt X = {1,..., 25} tn or qul to tr. In ts tss t trm pylont tr wll rr to t unroot s. Dnton 1.6. A tr n w vry ntrnl vrtx s r tr s ll nry tr. A nry pylont tr n root nry pylont tr, sown n Fur 1.2, r n smlrly. In root nry pylont tr owvr, t root stll s r two. ρ Fur 1.2: A root nry pylont tr wt ll st {1,..., 6, ρ} Dnton 1.7. Lt t ll st o n X-tr T not L(T ). T lton o ny o T rsults n xtly two smllr sutrs T 1 n T 2 o T. Ts lton lso prttons L(T ) nto two susts L(T 1 ) n L(T 2 ) wr L(T 1 ), L(T 2 ) n L(T 1 ) L(T 2 ) = L(T ). W ll ts prtton o L(T ) splt o T. Splts r 5

15 somtms ll X-splts. W wll not y Σ(T ), t ollton o ll t splts o T orm n ts son. W ll Σ(T ) t splt st o T. T splt tt rsults n t prtton o L(T ) nto sts A n B wll not A B. Not tt t splt A B s t sm s t splt B A. Exmpl 1.8. Consr t tr low n Fur 1.3. T splt orrsponn to ltn 1 s {1, 2} {3, 4, 5, 6} wl t splt orrsponn to 2 s {1, 2, 3, 4} {5, 6} Fur 1.3: A pylont tr Dnton 1.9. Lt T tr n n o T wt n vrts u n v. T nw tr T = T/ s t tr orm y t ontrton o. T tr s orm y rpln vrts u n v wt t snl vrtx ν su tt N(ν) = (N(u) \ {v}) (N(v) \ {u}). Exmpl T trs n Fur 1.4 monstrt n ontrton. T tr on t rt s t ontrt. It s mportnt to not tt ontrtn n, rmovs splt rom t tr. Wn onsrn pylont trs, ontrtn n rsults n loss o rsoluton. It tks two sprt spton vnts n ons tm nto on. It s tn mpossl to stnus w vnt ppn rst. For olosts, t st s snro or rprsntn volutonry t woul root nry pylont tr. Ts tr woul v root tt orrspons to t ommon nstor rom w ll o t lvs volv. E ntrnl vrtx o t 6

16 Fur 1.4: A tr T n t tr T/ tr ontrton tr woul v r tr n woul orrspon to t rton o xtly two nw txnom unts. A tr tt splys ll t normton possl or ts st o l lls s s to ully rsolv. Sn normlly t normton ollt out t volutonry rltonsps mon vn st o tx s not prt, t nnot xpt tt ll t sts rsult n ully rsolv trs. Wn tr s not ully rsolv, tr r vrts o r 4 or r. Ts orrspons to spton vnt tt rsult n 3 or mor nw tx. Sn ts s rrly t s n ntur, t s ly lkly tt ts vrtx o r 4 rprsnts two or mor sprt spton vnts wos orr nnot trmn. 7

17 Cptr 2 Splts Ts ptr wll suss splts on t ll sts o pylont trs. Dntons wll nlu: splt, splt st, omptlty o splts, omptlty o trs, ontrton n nu sutr. Torms wll nlu: Splts-Equvln Torm. Dnton 2.1. Lt T n unroot pylont tr n A sust o L(T ). Lt T (A) t mnml sutr o T tt nlus lmnt o A. Supprssn ll vrts o T (A) wt r two rsults n t sutr o T nu y A w s not T A. I T s root pylont tr, tn stnus t vrtx o T (A) tt ws losst to t root n supprss ny otr vrts o r two n orr t orm T A. Inu sutrs r ll rstrt trs n Smpl-Stl. Dnton 2.2. Lt T n S pylont trs. Tn w sy tt T s omptl wt S S n orm y ontrtons o n nu sutr o T or S s n nu sutr o ontrton o T. W not tt T s omptl wt S y S T. Proposton 2.3. T rlton s prtl orr Proo. Lt T tr. Clrly T T sn t nu sutr T L(T ) = T lon wt t mpty st o ontrtons n rsults n T. Now suppos tt S T n T S. Tn L(S) L(T ) n L(T ) L(S), n L(S) = L(T ). Also, w know tt S s T wt ll r two vrts supprss. But, sn T ws pylont tr, t no r two vrts rom t nnn. So w s tt S = T. Now suppos tt or pylont trs S, T, U w know tt S T n T U. 8

18 Tn L(S) L(T ) L(U). Now, T s orm rom ontrtons o s rom U n S s orm rom ontrtons o T. Hn S s orm rom ontrtons o U n w s tt S U. So w v sown tt s n t prtl orr. T prnpl rsult o ts ston wll proo o t Splts-Equvln Torm rst prov y Bunmn n W wll rst suss svrl ntons n lmmt to n t proo o t torm. Dnton 2.4. T pr o splts A 1 B 1 n A 2 B 2 r s to omptl ny o t ollown ntrstons s mpty A 1 A 2, A 1 B 2, A 2 B 1, B 1 B 2. I st Σ o splts s su tt pr o splts n Σ r omptl, w sy tt Σ s onsstnt. Dnton 2.5. A splt o t orm A B wr mn{ A, B } = 1 s ll trvl splt. For nt st X, trvl splt s o t orm {x} {X \ {x}} wr x s n lmnt o X. Proposton 2.6. A trvl splt o st X s omptl wt vry X-splt. Proo. Lt x X. Tn {x} {X \ {x}} s t trvl splt orrsponn to x. Lt A B notr X-splt. Not tt tr x A or x B ut not ot. Wtout loss o nrlty, sy x A. Tn or t two splts {x} {X \ {x}} n A B w s tt {x} B = n rom Dnton 2.4 w know tt ts two splts r omptl. Lmm 2.7. T s pylont X tr n only T splys t st Σ trv (X) o trvl splts o X. 9

19 Proo. ( ) Lt T pylont X tr or som nt st X. From t nton o pylont tr (Dnton 1.4) w know tt vry l s ll unquly y snl lmnt o st X. T splts orrsponn to ltn t pnnt s o T r prsly t trvl splts Σ trv (X). ( ) Lt T n X tr tt splys Σ trv (X). Tn or x X tr s n su tt T rsults n t splt x {X \ {x }}. Sn x s splt rom t rst o X t s lr tt som vrtx o T s ll y t snlton st {x }. W n to sow tt ts vrtx s l. Suppos not. Tn ts s n ntrnl vrtx n t orrspons to rnn o T. Ts must tn l to on or mor lvs o T. But sn T s n X tr, ll vrts o r on (lvs) must ll. Suppos L s t st o lls rom ts lvs. Tn T woul rsult n t splt {{x } L} {X \ {{{x } L}} w s ontrton. So w s tt tr s l tt s ll y t snlton st {x } or vry x X n tror T s pylont X tr. Lmm 2.8. (Ronson n Fouls 1981) Lt T n X-tr n lt σ 1 n σ 2 lmnts o Σ(T ) su tt σ 1 σ 2. Tn X n prtton nto tr sts X 1, X 2, X 3 su tt σ 1 = X 1 (X 2 X 3 ) n σ 2 = (X 1 X 2 ) X 3. Furtrmor, X 1 X 3 =. Proo. Lt T n X-tr n σ 1, σ 2 Σ(T ). By nton, σ 1 orrspons to T \ 1 wr 1 = {u 1, v 1 } s n o T onntn vrts u 1 n v 1. Smlrly, σ 2 orrspons to T \ 2 wt 2 = {u 2, v 2 }. Sn σ 1 σ 2 w s tt 1 n 2 r lso stnt. Sn T s tr, tr xsts unqu pt rom u 1 to u 2 n T. Not tt u 1 u 2 ut t my t s tt v 1 = v 2. Etr wy, w n s tt X n v nto tr susts, X 1, X 2, X 3 s ollows. Consr t omponnts o T \ { 1, 2 }. Lt C 1 t omponnt tt nlus u 1, C 2 t omponnt tt 10

20 nlus v 1 n C 3 t omponnt tt nlus u 2. Sttn L(C ) = X, w v oun t sr sts. Exmpl 2.9. Consr t tr rom Fur 1.3, tt s rprou low. Lt σ 1 t t splt T \ 1 n σ 2 T \ 2. Dnn X 1 = {1, 2}, X 2 = {3, 4}, n X 3 = {5, 6} rsults n t prtton sr ov. W s tt σ 1 = X 1 (X 2 X 3 ) n σ 2 = (X 1 X 2 ) X 3. Also, X 1 X 3 = Now onsr ny tr T. Lt unton rom nt st X nto t vrtx st V (T ). In otr wors, vrtx o T s ll y on or mor lmnts rom X n tus T s n X-tr. Color t lmnts o X tr r or lu. W now olor t vrts o t tr s on ts olorn o X n t ollown wy. Lt v V (T ) n lmnt o (X). I vry lmnt o 1 (v) s t sm olor, tn ssn ts olor to v. I tr r lmnts n 1 (v) o ot olors, tn olor v r n lu. Ts olorn o t vrtx st s rrr to s t olorn o V nu y. W sy tt surp T o T s monoromt ll o t vrts n V (T ) v t sm olor. Lmm Lt T tr n unton rom nt st X nto t vrts o T. Consr t olorn o V (T ) nu y s sr ov. Now, suppos tt or E(T ) tt prsly on omponnt o T \ s monoromt n t nu olorn. Tn tr xsts unqu vrtx v V su tt vry omponnt o T \ v s monoromt. 11

21 Proo. Frst w prov t xstn o su vrtx. Bn y ssnn n orntton to o T wy rom t monoromt omponnt o T \. Cll ts ornt rp T. Wt ts orntton, tr must vrtx v V (T ) su tt t outr o v s 0. I ts wr not t s tn vry vrtx woul v t lst on rt wy rom t n w oul onstrut n nnt rt pt n T. Now, w onsr T \ v w s tt vry omponnt s monoromt. Tus w v oun vrtx tt stss t proposton. Now w wll sow tt ts vrtx n unqu. Suppos ts s not t s. Tn tr r two stnt vrts v, v V (T ) su tt v n v ot v t sr proprty. Sn T s tr, tr s unqu pt P tt onnts v to v. Sn v v ts pt P s t lst on lon. Slt ny o P. Tn rom t sttmnt o t proposton, xtly on omponnt o T \ s not monoromt. Assum wtout loss o nrlty tt ts s t omponnt ontnn vrtx v. Ts ls to ontrton. W ssum tt vry omponnt o T \ v ws monoromt ut w v ust sown tt t omponnt ontnn vrtx v s not. So w v sown tt su vrtx xsts n s unqu. Lmm Lt A B n X-splt n lt T n X-tr so tt A B s not splt o T ut A B s omptl wt wt vry splt n Σ(T ). Tn tr s unqu vrtx v o T su tt, or omponnt T o T \ v tr L(T ) A or L(T ) B. Proo. Lt : X V (T ) t unton tt ssns t lls to t vrts o T. Color t lmnts o A r n t lmnts o B lu n onsr t olorn o V (T ) nu y. Now suppos tt A 1 B 1 s splt o T. Tn sn A 1 B 1 s omptl wt A B w know tt on o t ollown ntrstons s mpty A A 1, A B 1, B B 1, B A 1. 12

22 Wtout loss o nrlty, suppos tt B B 1 =. Tn, sn A n B prtton V (T ) w n s tt B 1 A n n B 1 s r. Sn t splt A 1 B 1 orrspons to ltn som 1 o T, w know tt T \ 1 s monoromt omponnt. I A 1 wr sust o B n B 1 wr sust o A, tn t woul t s tt A B = A 1 B 1 w woul ontrt t ssumpton tt A B / Σ(T ). Now w s tt T \ 1 s xtly on monoromt omponnt or E(T ) n w n ppl to Lmm So w know tt tr xsts unqu vrtx v V (T ) su tt vry omponnt o T \ v s monoromt. In otr wors, omponnt T o T \ v s tr ompltly r or ompltly lu n n L(T ) A or L(T ) B. W wll now prov t Splts-Equvln Torm s stt low. Torm (Splts-Equvln Torm) Lt Σ ollton o X-splts. Tn, tr s n X-tr T su tt Σ = Σ(T ) n only t splts o Σ r prws omptl. Furtrmor, su n X-tr T xsts, tn up to somporpsm, T s unqu. Proo. Suppos tt Σ s ollton o X-splts nu y t s o som X-tr. Lt σ 1 n σ 2 stnt lmnts o t splt st Σ. W know rom Lmm 2.8 tt tr must prtton o X nto sts X 1, X 2, X 3 su tt σ 1 = X 1 (X 2 X 3 ) n σ 2 = (X 1 X 2 ) X 3. Sn X 1 X 3 =, w n s rom Dnton 2.4 tt t splts σ 1 n σ 2 r omptl. Tror ll t splts o Σ must prws omptl. Now, suppos tt Σ s ollton o prws omptl X-splts. W wll sow y nuton on t rnlty o Σ to sow tt Σ = Σ(T ) or som tr T n lso tt, up to somorpsm, ts tr T s unqu. Bs Cs: Suppos tt Σ = 0. Tn, up to somorpsm, tr s unqu X-tr T or w Σ = Σ(T ). In ts s, w s tt T t tr onsstn o on vrtx ll y ll o X. Inuton Stp: Now suppos tt Σ = k + 1 wr k 0 n tt t torm s tru or 13

23 Σ = k. Now lt A B n lmnt o Σ. Sn Σ s st o prws omptl X-splts w s tt Σ A B must lso. So y t nuton ypotss, tr xsts, up to somorpsm, unqu tr T wr Σ A B = Σ(T ). Lt t unton : X V (T ) ll t vrts o T. Usn Lmm 2.11, w s tt tr s vrtx v V (T ) su tt or vry omponnt T o T \ v, tr L(T ) A or L(T ) B. W now rt tr T n t ollown mnnr. Rpl v n T y two nw vrts v A n v B so tt {v A, v B } E(T ). Now tt t vrts o (A) to t nw vrtx v A n tt t vrts o (B) to v B. Now w n nw unton s ollows (x) = (x) (x) v v A v B (x) = v n x A (x) = v n x B Ts nw unton lls t vrts o our nw tr T. It s lr tt T s n X- tr. Any splt o T s lso splt o T n lso, y onstruton T \ {v A, v B } = A B. So w v onstrut tr T so tt Σ = Σ(T ). By t nuton ypotss, w know tt T s t only tr, up to somporpsm, tt splys Σ A B. It ollows tn, tt, up to somorpsm, T s t only tr tt s splt st Σ. 14

24 Cptr 3 Qurtts n Root Trpls 3.1 Qurtts Ts ptr wll suss qurtt splts n root trpls. Dntons wll nlu: qurtt, root trpl, spn, qurtt st n root trpl st. Proos o svrl lmms on tr omptlty wll vn. Dnton 3.1. An unroot nry tr wt our lvs s ll qurtt. W wll not t qurtt wt l prs {, } n {, } on y snl ntrnl s. W us ts notton us ltn t snl non-pnnt rsults n t splttn o t two vrtx prs. For ts rson, qurtts r somtms rrr to s qurtt splts. Fur 3.1: T qurtt Dnton 3.2. For st Q o qurtts, t spn o Q, w w not Q, s t st o ll unroot trs tt r omptl wt qurtt n Q n v lvs lll y L(Q). 15

25 Dnton 3.3. For n unroot tr T t qurtt st q(t ) s t st o ll qurtts tt r nu sutrs o T. Tt s, t st o qurtts tt n orm y ontrtn s o nu sutrs o T. 3.2 Root Trpls Ts ston wll suss root trpls Dnton 3.4. A root nry tr wt xtly tr lvs s ll root trpl. W wll not t root trpl wt l st {, } onnt y t root t l y. ρ Fur 3.2: T root trpl Dnton 3.5. For st R o root trpls, t spn o R, w w not R s t st o ll root trs tt r omptl wt root trpl n R n v lvs ll y L(R). Dnton 3.6. For root tr T t root trpl st r(t ) s t st o ll root trpls tt r nu sutrs o T. Tt s, t st o root trpls tt n orm y ontrtn s o nu sutrs o T. Rll rom nton 2.2 tt or two trs S n T, w sy S T S s orm y ontrtons o n nu sutr o T or S s n nu sutr o ontrtons o T. W sow n proposton 2.3 tt s prtl orr. Blow, n Torm 3.2 w v wy to trmn, or trs S n T, T s omptl wt S,.. S T. 16

26 Lmm 3.7. For pylont tr S, λ λ s splt o S, wt mn{ λ, λ } 2 tn s qurtt splt o S or ll prs, λ n, λ. Proo. Sn λ λ s splt o S, tr s n S so tt S prous t splt λ λ wr λ λ = n λ λ = L(S). Lt, λ n, λ, tn lrly, S rsults n λ n λ. Tror S rsults n t qurtt splt n w s tt q(s). Lmm 3.8. I T s pylont tr n q(t ) or ll prs {, } λ n {, } λ, tn λ λ s splt o T. Proo. Lt T pylont tr. Lt, lmnts o λ n lt u 0 t vrtx t w t tr splts nto t sprt rns ln to n. Hr w us nuton on λ. Bs Cs: I λ = 2 tn lrly λ λ Σ(T ). Inuton Stp: Assum tt λ = n n t sttmnt s tru or ll sts o sz < n. Lt x 0 λ. Tn, y t nuton ypotss, t splt { λ \ {x 0 }} s n Σ(T ) sn ts st s o sz on lss tn λ. Ts mns tt tr s n 0 = {u 0, v 0 } so tt T \ 0 prous t ormnton splt. Also, or x λ tr s n wos rmovl rsults n x 0 x. Consr on su 1. Suppos tt 0 1. Tn 1 = {u 0, v 1 }. But now, u 0 v 1 x 1 v 0 u 0 s yl ns T (sown n Fur 3.3) w s ontrton sn T s tr. So w s tt or ll, t must tt = 0 n tt rmovn 0 rom T rsults n λ. Tr must su n or pr o vrts n λ n smlr rumnt sows tt λ λ must splt o T. Lmm 3.9. For pylont trs S n T on t sm ll st L, Σ(S) Σ(T ), tn S T. Proo. Lt T n S pylont trs on t sm ll st L su tt Σ(S) Σ(T ). For E(S), S rsults n som splt α β. Sn Σ(S) Σ(T ), 17

27 t splt α β must orrspon to T or som E(T ). Howvr, tr my splts n Σ(T ) tt v no orrsponn n E(S). So w n s tt S s orm y ontrtn xtly ts s o T. So S s orm y ontrtosn on t s o t nu tr T L n tror S T. v 1 x 0 u 0 0 v 0 1 x 1 λ \ {x} Fur 3.3: Contrtory yl sown tt λ Σ(T ) Torm Lt S n T unroot pylont trs. T s omptl wt S (.. S T ) n only q(s) q(t ) n L(S) L(T ). Proo. ( ) Assum tt S T. I t splt s n q(s), tn surly S s omptl wt t qurtt wt l sts {, } n {, } sn t qurtt n orm y ontrtn s o S {,,,}. W sow n Proposton 2.3 tt s trnstv n so t qurtt S n S T mpls tt T. Tror q(t ). Sn S T y ssumpton, t s lr tt L(S) L(T ). ( ). Suppos tt q(s) q(t ) n L(S) L(T ). Clrly, T L(S) s omptl wt S tn T s lso omptl wt S. So w n rstrt ourslvs t s wn L(S) = L(T ). Lt λ λ splt o S. By Lmm 3.7, w s tt q(s) or ll, λ n, λ. From t ssumpton, w s tt ts mns q(t ) or ll su prs n tror λ λ Σ(T ) y Lmm 3.8. Ts ounts or vry splt λ λ wr mn{ λ, λ } 2. I, wtout loss o nrlty, λ = 1, tn t splt λ λ s trvl splts. W know rom Lmm 2.7 tt sn S n T r ot pylont trs, ty ot sply ll t trvl splts. So w s tt Σ(S) Σ(T ). Sn w rstrt T to L(S) w n ppl to Lmm 3.9 to sow tt S T. 18

28 Cptr 4 Bnry Inrns Dnton 4.1. W sy tt st o qurtt splts Q nrs t qurtt splt s wn vry tr T tt splys vry splt n Q lso splys s. I Q nrs s t s not Q s. Wn Q = k ts r ll k-ry nrns. I Q s or som Q o sz k n tr s no propr sust o Q tt nrs s, ts s ll prmtv k-ry nrn. Brynt n Stl sow tt tr r prmtv k-ry nrns or ll k [4]. In s Mstr s Tss rom 1986, Ronstruton Mtos or Drvton Trs, M.C.H. Dkkr numrt ll nry n trnry qurtt splt nrns[8]. Hs rsults wr not vll to m n I v tror not sn ny o Dkkr s work. Wt ollows s n npnnt r-rton o porton o s Mstr s Tss. Lt A st o two qurtt splts A 1 n A 2. Lt s qurtt splt su tt s / A. W ws to know unr wt rumstns os A s. W lt t ll st L(A) o A {L(A 1 ) L(A 2 )}. Lmm 4.2. I L(A) L(s) < 2 tn A s. Proo. Cs 1. Lt L(A) L(s) = 0 n lt T tr tt splys ot splts n A. Lt s t splt wr {,,, } L(A) =. Now oos som ntrnl vrtx v o T n tt our nw s to v wt on ln to o t our nw vrts {,,, }. Cll ts nw tr T. Sn,, n r ll nt to t vrtx v tr s no wy to splt, rom, n T. It s lr tt q(t ) q(t ) n 19

29 tror T splys A ut T os not sply s. Sn w v rt tr tt splys A n not s w s tt A s. Cs 2. Lt L(A) L(s) = 1 n lt T tr tt splys ot splts n A. Lt s t splt wr {,,, } L(A) = {} wtout loss o nrlty. Coos n ntrnl vrtx v o T n tt tr nw s to v wt on ln to o t nw vrts {,, }. An, tr s no splt tt sprts {, } rom {, }. T s n xmpl o tr tt splys A ut not s. So w s tt A s. Lmm 4.3. I L(A) L(s) = 2 tn A s. Proo. Lt L(A) L(s) = {, } wtout loss o nrlty. So w v tt L(s) = {,, s 1, s 2 }. Lt T tr tt splys ot splts n A. I w s 1 n s 2 to T n su wy tt s 1 n s 2 r nt to t sm ntrnl vrtx o T, tn tr n no splts o t orm v 1 s 1 v 2 s 2 wr v 1, v 2 L(A) s sn n Fur 4.1. s 1 s 2 Fur 4.1: T tr T lon wt nw vrts s 1, s 2 So suppos tt s s o t orm v 1 v 2 s 1 s 2. A s 1 to T so tt t s nt to v 1 n s 2 so tt t s nt to v 2. W s tt T {s 1, s 2 } nnot sply t splt s. Tr r no mor posslts or t rrnmnt o s n so w s tt wn L(A) L(s) = 2, A q. 20

30 Lmm 4.4. I L(A) L(s) = 3 tn A s. Proo. Suppos tt L(A) L(s) = {,, }. Tn wtout loss o nrlty, lt s t splt s 1. Lt T tr tt splys ot splts n A. Sn s 1 / L(A) w s tt s 1 n so tt t s nt to ny ntrnl vrtx o T. In prtulr, s 1 n so tt t s nt to vrtx. Sn s nt to s 1 tr s no splt tt wll sprt rom s 1. Hn or ny splt s w s tt A s. Not tt w v now sown tt A s tn t must t s tt L(A) L(s) 4. Sn L(s) = 4, w s tt wn A s t must tt L(q) L(A). In orr or n nrn to m, w s rom nton 4.1 tt ll trs splyn A must lso sply s. Tt s, T s t st o ll trs T tt sply A, n A s, tn s q(t). It s lr tn tt som numr o trs n T r sown to v no ommon qurtt splts otr tn A tn t s n sown tt tr r no nrns to m rom A. Torm 4.5. T ollown s n xustv lst o nry nrns nvolvn qurtt splts. T st {,,,, } rprsnts t lvs o tr T tt splys t qurtt splts.,,,, 21

31 Proo. W n s tt L(A) {5, 6, 7, 8}. W wll prov t torm y ss. Cs 1. Suppos tt L(A) = 8.. L(A 1 ) L(A 2 ) = 0. Wtout loss o nrlty lt A 1 n A 2. Fur 4.2: Trs T 1 n T 2 W n s rom Fur 4.2 tt t trs T 1 n T 2 ot sply t splts o A ut v no otr splts n ommon. From ts w n s tt t splts o A o not nr ny otr qurtt splts. Cs 2. Suppos tt L(A) = 7.. L(A 1 ) L(A 2 ) = 1. Wtout loss o nrlty lt A 1 n A 2. Fur 4.3: Trs T 1, T 2, n T 3 sr no ommon splts otr tn A. In Fur 4.3, w v tr trs tt ll sply ot A 1 n A 2. I t wr t s tt A nr notr qurtt splt s, tn T 1, T 2, n T 3 woul ll sply s. Sn tr r not splts tt r ommon to ll tr trs, otr tn tos n A, w n s tn no nrns n m wn L(A) = 7. 22

32 Cs 3. Suppos tt L(A) = 6.. L(A 1 ) L(A 2 ) = 2. Hr w must look t svrl suss or tr r our possl rrnmnts o t lvs n w L(A) = 6. Sus 3.1. Suppos tt A 1 s t qurtt splt n A 2 s t qurtt splt. It s lr rom Fur 4.4 tt ts two splts o not nr tr. Fur 4.4: Trs T 1 n T 2 sr no ommon splts otr tn A. Sus 3.2. Sus 3.2 Suppos tt A 1 s t qurtt splt n A 2 s t qurtt splt. As sn n Fur 4.5, tr r no splts tt n nr rom A 1 n A 2. Fur 4.5: Trs T 1, T 2, n T 3 sr no ommon splts otr tn A. Sus 3.3. Suppos tt A 1 s t qurtt splt n A 2 s t qurtt splt. As vn y t trs n Fur 4.6, t splts n A o not nr tr qurtt splt. Sus 3.4. Suppos tt A 1 s t qurtt splt n A 2 s t qurtt splt. It s sown n Fur 4.7 tt no nrns n m rom ts two qurtt splts. 23

33 Fur 4.6: Trs T 1, T 2, n T 3 sr no ommon splts otr tn A. Fur 4.7: Trs T 1, T 2, n T 3 sr no ommon splts otr tn A. W v now xust ll posslts or two qurtt splts A 1 n A 2, or w L(A 1 ) L(A 2 ) 6. T only rmnn s nvolvs splts twn w only on l n rnt. Cs 4. Now, ssum tt L(A 1 ) L(A 2 ) = 3.. L(A) = 5. Wtout loss o nrlty, lt A 1 t splt. In ts snro, w n onsr 4-l tr T tt splys qurtt splt A 1 n xplor t possl lotons or our t l. Consr Fur 4.8 low Fur 4.8: Tr sown possl lotons or tonl l 24

34 Tr r 7 possl lotons to w t t l n to T. W wll onsr son qurtt splt A 2, wt L(A 2 ) = {,,, }, n trmn w o ts postons woul vl lotons or t nw l. W wll tn trmn tr r nrns to m rom A 1 n A 2. Sus 4.1. Suppos tt A 1 s t qurtt splt s ov, n A 2 s t qurtt splt. To orm nw tr T = T + {} tt wll sply A 1 s wll s A 2, w s tt n tt t postons 4, 5, 6, or 7. I wr to postons 1, 2 or 3, t rsultn tr T woul not sply A 2. Now lt us onsr t trs n Fur 4.9. By onstruton, o ts trs splys splts A 1 n A 2 n w trmn usn Fur 4.8 tt ts r t only trs tt o so. Not, owvr, tt o ts trs lso splys t qurtt splt. Fur 4.9: Trs wt l n postons 4, 5, 6, n 7 Sn vry tr tt slys A lso splys, w v sown tt,. Ts s t rst o t our nry nrns. 25

35 Sus 4.2. An, w lt A 1 t splt. I A 2 s t splt tn, rom Fur 4.8, w s tt t only possl loton or l s n poston 2. Fur 4.10: Tr wt l tt to poston 2 In Fur 4.10 w s tt t only tr tt splys A 1 n A 2 lso splys tr otr splts. So rom ts tr w n trmn t ollown nry nrns,,, As tr r no otr posslts or A 1 n A 2 w v sown tt ts our nry nrns r prsly t nrns tt n rwn rom two qurtt splts. 26

36 Cptr 5 Trnry Inrns W ontnu t work o t prvous ptr, ts tm lttn A = {A 1, A 2, A 3 }. Sn t sz o A s now 3, w rr to ny nrns oun rom su st trnry nrns. Lmm 5.1. I L(A) = 12 tn tr s no qurtt splt s su tt A s. Proo. Wtout loss o nrlty, lt A 1 =, A 2 =, n A 3 = kl. T proo o t ov lmm s lr rom Fur 5.1 low. W n s tt sn t prs {} n {} n ntrn n t prs {} n {kl} n ntrn tt tr r no nrns tt n rwn rom t tr low. k l Fur 5.1: A tr wt qurtt splts A 1,A 2, n A 3 Lmm 5.2. I L(A) = 11 tn tr r no nrns tt n m. Proo. Wtout loss o nrlty w n lt A 1 =, A 2 =, n A 3 = k. I w n n ollton o trs tt sply o ts tr splts ut v 27

37 no otrs n ommon, tn w v prov t lmm. Consr Fur 5.2 low. Ts v trs sply A 1, A 2, A 3 ut v no otr splts ommon to ll v. k k k k k k Fur 5.2: Ts v trs sr only t splts A 1, A 2, A 3 Lmm 5.3. I L(A) = 10 tn tr r no nrns tt n m. Proo. Wn L(A) = 10 w r or to onsr two ss, o w l to svrl suss. W n s tt wt ll st o sz 10, tt tr r two rnt wys to oos our rst two splts. Wtout loss o nrlty, lt A 1 =. Now, A 2 must su tt L(A 1 ) L(A 2 ) {0, 1, 2} n orr to t 10 stntly ll lvs. Not owvr, tt L(A 1 ) L(A 2 ) = 2, tn sn tr r 10 totl lvs, t must tt L(A 1 ) L(A 3 ) = 0. Sn w n rtrtly snt w splt s A 2 n w s A 3 ts s ssntlly t sm s t s wn 28

38 L(A 1 ) L(A 2 ) = 0. Ts rlzton llows us to only onsr t two ss wn L(A 1 ) L(A 2 ) {0, 1}. Cs 5. Suppos tt L(A 1 ) L(A 2 ) = 0. Tn, wtout loss o nrlty, A 1 = n A 2 =. Hr w onsr possl rrnmnt o A 3. Sus 5.1. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.3 low tt ts tr splts o not nr ourt. Fur 5.3: T v trs ov v only tr ommon splts Sus 5.2. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.4 low tt ts tr splts o not nr ourt. 29

39 Fur 5.4: T tr trs ov sr only splts A 1, A 2, n A 3 Sus 5.3. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.5 low tt ts tr splts o not nr ourt. Fur 5.5: T our trs ov sr only splts A 1 A 2 n A 3. 30

40 Sus 5.4. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.6 low tt ts tr splts o not nr ourt. Fur 5.6: T tr trs ov sr only splts A 1, A 2, n A 3 Sus 5.5. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.7 low tt ts tr splts o not nr ourt. Fur 5.7: T v trs ov sr only splts A 1, A 2, n A 3 31

41 Sus 5.6. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.8 low tt ts tr splts o not nr ourt. Fur 5.8: T our trs ov sr only splts A 1, A 2, n A 3 Cs 6. Now suppos tt L(A 1 ) L(A 2 ) = 1. Tn, wtout loss o nrlty, A 1 = n A 2 =. Hr w onsr possl rrnmnt o A 3. Sus 6.1. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.9 low tt ts tr splts o not nr ourt. Sus 6.2. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.10 low tt ts tr splts o not nr ourt. 32

42 Fur 5.9: T our trs ov sr only splts A 1, A 2, n A 3 Fur 5.10: T v trs ov sr only splts A 1, A 2, n A 3 Sus 6.3. W v t ollown tr splts: A 1 = A 2 = A 3 = W n s rom Fur 5.11 low tt ts tr splts o not nr ourt. 33

43 Fur 5.11: T our trs ov sr only splts A 1, A 2, n A 3 Lmm 5.4. I L(A) = 9, tr r no nrns tt n m. Proo. Wn w onsr tr qurtt splts wt totl o 9 stnt l lls, w s tt t posslts r v nto 5 ss pnn on t ntrstons o t ll sts o o t tr qurtt prs. W v splts A 1, A 2, n A 3 n w tror v ( 3 2) = 3 ntrstons twn tm. For onvnn, w lwys lt A 1 =. W n ssum wtout loss o nrlty tt L(A 1 ) L(A 2 ) L(A 1 ) L(A 3 ). I ts s not t s, w n smply rll A 2 n A 3 so tt ts s tru. W lso not tt L(A 1 ) L(A 2 ) {0, 1, 2, 3} sn two qurtt splts on t sm 4 lvs r tr t sm splt or ty r momptl. T our ss o our proo wll s on ntrston trpls w wll orr trpls wr t oornts r t szs o t ntrstons twn t tr qurtt splts. T rst oornt o t ntrston trpl wll L(A 1 ) L(A 2 ), t son L(A 1 ) L(A 3 ), n t tr oornt wll L(A 2 ) L(A 3 ). Cs 1. Frst ssum tt L(A 1 ) L(A 2 ) s s lr s possl, nmly 3. Sn tr must xtly 9 stnt lvs, n only 5 r omn rom splts A 1 n A 2, w s A 3 must onsst o 4 prvously unus lls. Tror, w v t 34

44 ntrston trpl (3,0,0). Not tt y rlln n usn our ov ssumpton tt L(A 1 ) L(A 2 ) s lrst ntrston tt (3,0,0) s quvlnt to (0,3,0) n (0,0,3). Ts quvln rtly rus t numr o suss w must k. So w r onsrn sts wr splts A 1 n A 2 sr tr lvs w, wtout loss o nrlty, w wll nm,,. W now v two suss to onsr. Sus 1.1. W v t ollown tr splts A 1 = A 2 = A 3 = Not tt splts A 1 n A 2 mply t tr splt rom Torm 4.5. Sn ts nrn s m y only two o our splts t s not onsr trnry nrn. W n s rom Fur 5.12 low tt ts tr splts yl no trnry nrns. Fur 5.12: T two trs ov sr only splts A 1, A 2, A 3 n t ormnton nry nrn Sus 1.2. W v t ollown tr splts A 1 = A 2 = A 3 = Not tt splts A 1 n A 2 mply t splts,, n rom Torm 4.5. Sn ts nrns r m y only two o our splts t r not onsr trnry nrns. T tr n Fur 5.13 low s t only wy to sply ot A 1 n A 2 s oun urn t proo o t Bnry Inrns Torm. Sn t lvs,,, n tt rtrrly to ts tr so lon s splt A 3 s rlz, w s tt tr n no nrns rwn otr tn t tr mnton prvously. 35

45 Fur 5.13: Ts tr sows tt A 1, A 2, A 3 n yl no trnry nrns Cs 2. Now w onsr t s wn t ntrston trpl s (2,1,1). From t son oornt w n s tt L(A 1 ) L(A 3 ) = 1. Sn w ssum tt A 1 s lwys, w n lt ts snl lmnt o t ntrston. W now v our lvs rom A 1 plus two tonl lvs rom A 2, w mns tt w must t tr unus lvs rom t rmnr o A 3. From ts w s tt t must tt L(A 2 ). W know tt A 2 must v two lvs n ommon wt A 1 n tt on o ts s to. W n s tt ts ponts us towr two possl omntons,, n,. From ts normton, w rrv t t our suss low. Sus 2.1. W v t ollown tr splts A 1 = A 2 = A 3 = Not tt splts A 1 n A 2 mply t tr splt rom Torm 4.5. Sn ts nrn s m y only two o our splts t s not onsr trnry nrn. W n s rom Fur 5.14 low tt ts tr splts yl no trnry nrns. Fur 5.14: T trs ov sr only splts A 1, A 2, A 3 36

46 Sus 2.2. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.15 low tt ts tr splts yl no trnry nrns. Fur 5.15: T trs ov sr only splts A 1, A 2, A 3 Sus 2.3. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.16 low tt ts tr splts yl no trnry nrns. Sus 2.4. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.17 low tt ts tr splts yl no trnry nrns. 37

47 Fur 5.16: T trs ov sr only splts A 1, A 2, A 3 Fur 5.17: T trs ov sr only splts A 1, A 2, A 3 Cs 3. Now w onsr t s wn t ntrston trpl s (2,1,0). Sn t rst oornt tlls us tt L(A 1 ) L(A 2 ) = 2 w n sy tt ts ntrston must tr {, } or {, }. Suppos tt A 2 =. Tn n orr to onorm to t ntrston trpl, A 3 must tr or. Lookn t t symmtry o A 1 ( = ) w s tt ts two splts r ssntlly t sm. Usn ts prnpls, w rrv t t ollown our suss. 38

48 Sus 3.1. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.18 low tt ts tr splts yl no trnry nrns. Fur 5.18: T trs ov sr only splts A 1, A 2, A 3 39

49 Sus 3.2. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.19 low tt ts tr splts yl no trnry nrns. Fur 5.19: T trs ov sr only A 1, A 2, A 3 Sus 3.3. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.20 low tt ts tr splts yl no trnry nrns. Sus 3.4. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.21 low tt ts tr splts yl no trnry nrns. 40

50 Fur 5.20: T trs ov sr only splts A 1, A 2, A 3 Fur 5.21: T trs ov sr only splts A 1, A 2, A 3 Cs 4. Now w onsr t s wn t ntrston trpl s (1,1,1). For t rst oornt, w n st A 1 A 2 = {} wtout loss o nrlty. So n s w v A 1 = n A 2 =. T only vrty oms rom A 3. It must v on l n ommon wt o A 1 n A 2 ut ts l nnot. I wr n 41

51 lmnt o L(A 3 ), tn t woul v t orm, ut ts vs us mor tn 9 lvs. So w s tt L(A 3 ) must ontn xtly on o t ollown prs n s: {, } {, } {, } {, } Howvr, w onsr ts our posslts losly w wll not tt tr ssntlly s no rn twn t pr {.} n t pr {, }. Tus w v tr os tt l to 6 suss n t proo o our lmm. Sus 4.1. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.22 low tt ts tr splts yl no trnry nrns. Fur 5.22: T trs ov sr only splts A 1, A 2, A 3 42

52 Sus 4.2. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.23 low tt ts tr splts yl no trnry nrns. Fur 5.23: T trs ov sr only splts A 1, A 2, A 3 Sus 4.3. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.24 low tt ts tr splts yl no trnry nrns. Sus 4.4. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.25 low tt ts tr splts yl no trnry nrns. 43

53 Fur 5.24: T trs ov sr only splts A 1, A 2.A 3 Fur 5.25: T trs ov sr only splts A 1, A 2, A 3 Sus 4.5. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.26 low tt ts tr splts yl no trnry nrns. 44

54 Fur 5.26: T trs ov sr only splts A 1, A 2, A 3 Sus 4.6. W v t ollown tr splts A 1 = A 2 = A 3 = W n s rom Fur 5.27 low tt ts tr splts yl no trnry nrns. Fur 5.27: T trs ov sr only splts A 1, A 2, A 3 45

55 Lmm 5.5. I L(A) = 8, tr r no nrns tt n m. Proo. Wn w onsr tr qurtt splts wt totl o 8 stnt l lls, w s tt t posslts r v nto 6 ss pnn on t ntrstons o t ll sts o o t tr qurtt prs. An or onvnn, w lwys lt A 1 =. W n ssum wtout loss o nrlty tt L(A 1 ) L(A 2 ) L(A 1 ) L(A 3 ). I ts s not t s, w n smply rll A 2 n A 3 so tt ts s tru. W lso not tt L(A 1 ) L(A 2 ) {0, 1, 2, 3} sn two qurtt splts on t sm 4 lvs r tr t sm splt or ty r momptl. T sx ss o our proo wll n s on ntrston trpls. Cs 1. Frst w onsr t ntrston trpl (3,1,1). Ts snro rsults n two possl suss. Sus 1.1. W v t ollown tr splts A 1 = A 2 = A 3 =. Frst, not tt A 1 n A 2 mply t splt. W n s rom Fur 5.28 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.28: T trs ov sr only splts A 1, A 2, A 3 46

56 Sus 1.2. W v t ollown tr splts A 1 = A 2 = A 3 =. Frst, not tt A 1 n A 2 mply t splts n. W n s rom Fur 5.29 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.29: T trs ov sr only splts A 1, A 2, A 3 Cs 2. Now w onsr t ntrston trpl (3,1,0). Ts snro rsults n two possl suss. Sus 2.1. W v t ollown tr splts A 1 = A 2 = A 3 =. Frst, not tt A 1 n A 2 mply t splt. W n s rom Fur 5.30 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.30: T trs ov sr only splts A 1, A 2, A 3 47

57 Sus 2.2. W v t ollown tr splts A 1 = A 2 = A 3 =. Frst, not tt A 1 n A 2 mply t splts, n. W n s rom Fur 5.31 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.31: T trs ov sr only splts A 1, A 2, A 3 Cs 3. Now w onsr t ntrston trpl (2,2,2). Ts snro rsults n sx possl suss. Sus 3.1. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.32 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.32: T trs ov sr only splts A 1, A 2, A 3 48

58 Sus 3.2. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.33 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.33: T trs ov sr only splts A 1, A 2, A 3 Sus 3.3. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.34 low owvr, tt ts splts o not yl ny trnry nrns. Sus 3.4. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.35 low owvr, tt ts splts o not yl ny trnry nrns. 49

59 Fur 5.34: T trs ov sr only splts A 1, A 2, A 3 Fur 5.35: T trs ov sr only splts A 1, A 2, A 3 Sus 3.5. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.36 low owvr, tt ts splts o not yl ny trnry nrns. 50

60 Fur 5.36: T trs ov sr only splts A 1, A 2, A 3 Sus 3.6. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.37 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.37: T trs ov sr only splts A 1, A 2, A 3 51

61 Cs 4. Now w onsr t ntrston trpl (2,2,1). Ts snro rsults n svn possl suss. Sus 4.1. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.38 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.38: T trs ov sr only splts A 1, A 2, A 3 Sus 4.2. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.39 low owvr, tt ts splts o not yl ny trnry nrns. Sus 4.3. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.40 low owvr, tt ts splts o not yl ny trnry nrns. 52

62 Fur 5.39: T trs ov sr only splts A 1, A 2, A 3 Fur 5.40: T trs ov sr only splts A 1, A 2, A 3 Sus 4.4. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.41 low owvr, tt ts splts o not yl ny trnry nrns. 53

63 Fur 5.41: T trs ov sr only splts A 1, A 2, A 3 Sus 4.5. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.42 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.42: T trs ov sr only splts A 1, A 2, A 3 54

64 Sus 4.6. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.43 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.43: T trs ov sr only splts A 1, A 2, A 3 Sus 4.7. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.44 low owvr, tt ts splts o not yl ny trnry nrns. 55

65 Fur 5.44: T trs ov sr only splts A 1, A 2, A 3 Cs 5. Now w onsr t ntrston trpl (2,2,0). Ts snro rsults n sx possl suss. Sus 5.1. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.45 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.45: T trs ov sr only splts A 1, A 2, A 3 56

66 Sus 5.2. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.46 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.46: T trs ov sr only splts A 1, A 2, A 3 Sus 5.3. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.47 low owvr, tt ts splts o not yl ny trnry nrns. Sus 5.4. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.48 low owvr, tt ts splts o not yl ny trnry nrns. 57

67 Fur 5.47: T trs ov sr only splts A 1, A 2, A 3 Fur 5.48: T trs ov sr only splts A 1, A 2, A 3 Sus 5.5. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.49 low owvr, tt ts splts o not yl ny trnry nrns. 58

68 Fur 5.49: T trs ov sr only splts A 1, A 2, A 3 Sus 5.6. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.50 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.50: T trs ov sr only splts A 1, A 2, A 3 59

69 Cs 6. Now w onsr t ntrston trpl (2,1,1). Ts snro rsults n svn possl suss. Sus 6.1. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.51 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.51: T trs ov sr only splts A 1, A 2, A 3 Sus 6.2. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.52 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.52: T trs ov sr only splts A 1, A 2, A 3 60

70 Sus 6.3. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.53 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.53: T trs ov sr only splts A 1, A 2, A 3 Sus 6.4. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.54 low owvr, tt ts splts o not yl ny trnry nrns. Sus 6.5. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.55 low owvr, tt ts splts o not yl ny trnry nrns. 61

71 Fur 5.54: T trs ov sr only splts A 1, A 2, A 3 Fur 5.55: T trs ov sr only splts A 1, A 2, A 3 Sus 6.6. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.56 low, tt ts splts o not yl ny nrns. 62

72 Fur 5.56: T trs ov sr only splts A 1, A 2, A 3 Sus 6.7. W v t ollown tr splts A 1 = A 2 = A 3 =. W n s rom Fur 5.57 low owvr, tt ts splts o not yl ny trnry nrns. Fur 5.57: T trs ov sr only splts A 1, A 2, A 3 63

73 W n s tt tr o xst trnry nluns rom t xmpl low. Exmpl 5.6. Consr t qurtt splts A 1 = A 2 = A 3 = W rr k to Fur 4.8 rom Cptr 4, rprou low W n to on t two nw lvs n to ts tr so tt splts A 2 n A 3 r rlz. W s rom A 2 tt ntr nor n pl t postons 1,2, or 3. Also, rom A 3 w s tt n nnot nt to t sm vrtx. It s lr owvr tt tr r postons tt wll llow ll tr splts to sply y t sm tr: or xmpl, t poston 6 n t poston 7. W n s tt ny vl postonn o n t postons 4,5,6, or 7 wll n nr t nw qurtt. Ts nw splt, lon wt t ornl tr, tn mpls otr splts usn t nry nrn ruls rom Torm

74 Blorpy [1] Jos Amt, Gnoms n voluton, Curr. S. 82 (2002), [2] U. Brmnn t l, Aroptryx trs n on mstry ully rvl v synrotron mn, Pro. Nt. A. S. USA 107 (2010), [3] Jn-Rnul Bossr, Fr Loru, n Ml Brunt, Orns o ppopotm (mmml, trtotyl): towrs rsoluton, Zoolo Srpt 34 (2005), [4] Dv Brynt n Mk Stl, Extnson oprtons on sts o l-lll trs, Av. n Appl. Mt. 16 (1995), no. 4, (96:05035) [5] Mrt Colomr-Llu, Jon Jor, n Mr Trs Muns Prz, Antot rsstn ns n t trop n rton o nvronmntl smpls, PLoS ONE 6 (2011). [6] Crls Drwn, Frst notook on trnsmutton o sps, [7], T orn o sps, Brns & Nol Books, [8] M.C.H. Dkkr, Ronstruton mtos or rvton trs, Mstr s tss, Unvrsty o Amstrm, [9] J. Ptr Gortn, W. For Doolttl, n Jry G. Lwrn, Prokryot voluton n lt o n trnsr, Mol. Bol. Evol. 19 (2002). [10] Mrus R. Kronorst t l, Unrvln t tr o ntur s tpstry: t nts o vrsty n onvrn n nml pmntton, Pmnt Cll Mlnom Rs. 25 (2012), [11] Jry G. Lwrn, Horzontl n vrtl n trnsr: t l story o ptons, Contr. Mrool. 12 (2005), [12] Jontn B Losos, Convrn, ptton, n onstrnt, Evoluton 65 (2011),

75 [13] Grl Prr-Ol n Dv B. Wk, Extrm morpolol n olol omoplsy n tropl slmnrs, Pro. Nt. A. S. USA 98 (2001), [14] Crls Smpl n Mk Stl, Pylonts, Oxor Ltur Srs n Mtmts n ts Appltons, vol. 24, Oxor Unvrsty Prss, Oxor, [15] R.Y. Stnr, J.L. Inrm, M.L. Wls, n P.R. Pntr, Gnrl mrooloy, Mmlln, [16] S. Ttov, A. Smyrov, n A Kuz mn, Botop prnpls o symptry n ntrsps yrzton n mmmls, Bol. ull. Russ. A. S. 39 (2012), [17] Rr J. Truu, Introuton to rp tory, Dovr Pultons In., Nw York, 1993, Corrt rprnt o t 1976 ornl (95:05031) [18] E.O. Wlson n W.L. Brown, T susps onpt n ts txonom pplton, Syst. Bol. 2 (1953), [19] Noko Ymu, Sts Susumu, Yosnor Ssk, n Ck Ymmoto, Molulr vn o t yr orns o lyln yprss, J. o Forst Rs. 5 (2000),

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

PRECAST APPROACH SLAB NOTES

PRECAST APPROACH SLAB NOTES ULNS TS ULN RWNS RPRSNT TYPL TLS OR T SN N TLN O PRST PPRO SLS. TS STS R NLU TO PROV N XMPL O T RTN LYOUT O TYPL PRST PPRO SL. TWO RNT PPRO SL SYSTMS R SOWN: SUR PPRO SLS: SLS TT R PL WT T TOP SUR T OR

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

A Simple Method for Identifying Compelled Edges in DAGs

A Simple Method for Identifying Compelled Edges in DAGs A Smpl Mto or Intyn Compll Es n DAGs S.K.M. Won n D. Wu Dprtmnt o Computr Sn Unvrsty o Rn Rn Ssktwn Cn S4S 0A2 Eml: {won, nwu}@s.urn. Astrt Intyn ompll s s mportnt n lrnn t strutur (.., t DAG) o Bysn ntwork.

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Label each of the following statements with either mitosis or meiosis. Fill in the gaps:

Label each of the following statements with either mitosis or meiosis. Fill in the gaps: AQA Boloy Unt 46: Inrtn, Vrton n Evoluton - Founton 1 Ll o t ollown sttmnts wt tr mtoss or moss Prous ntl lls Prous non-ntl lls Fll n t ps: Gmts on t to rstor t norml numr o romosoms T nw ll tt s prou

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

An Introduction to Clique Minimal Separator Decomposition

An Introduction to Clique Minimal Separator Decomposition Alortms 2010, 3, 197-215; o:10.3390/3020197 Rvw OPEN ACCESS lortms ISSN 1999-4893 www.mp.om/ournl/lortms An Introuton to Clqu Mnml Sprtor Domposton Ann Brry 1,, Romn Poorln 1 n Gnvèv Smont 2 1 LIMOS UMR

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

Introduction to Fourier optics. Textbook: Goodman (chapters 2-4) Overview:

Introduction to Fourier optics. Textbook: Goodman (chapters 2-4) Overview: Introuton to ourr opts Ttbook: Goon (ptrs -) Ovrv: nr n nvrnt ssts T ourr trnsor Slr rton rsnl n runor pprotons. . nr ssts n ourr trnsor tutorl (rnr) sst onnts n nput to n output su tt: It s s to b lnr

More information

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks.

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks. Dt-rlll rmtvs or Sptl Oprtons Usn M Qutrs* Erk G. Hol Hnn Smt Computr Sn Dprtmnt Computr Sn Dprtmnt Cntr or Automton Rsr Cntr or Automton Rsr Insttut or Avn Computr Sns Insttut or Avn Computr Sns Unvrsty

More information

A New Interface to Render Graphs Using Rgraphviz

A New Interface to Render Graphs Using Rgraphviz A Nw Intr to Rnr Grps Usn Rrpvz Florn Hn Otor 30, 2017 Contnts 1 Ovrvw 1 2 Introuton 1 3 Dult rnrn prmtrs 3 3.1 Dult no prmtrs....................... 4 3.2 Dult prmtrs....................... 6 3.3 Dult

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

e Describe the structure of DNA. bases pair up.

e Describe the structure of DNA. bases pair up. Q Boloy GCSE Unt 6: Inrtn, Vrton n Evoluton - Hr 1 Compr moss n mtoss. Gv tr vnts o sxul rprouton. Dsr t strutur o DN. Ll t prts t m up nulot. 1. 2. Ll t rm low wt t ollown ywors: ll, nulus, romosom, n,

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH NOTS:. LN MTN SUR WT NTUR/SOPROPYL LOOL PROR TO RN L OR LOO. PPLY LOTT 4 ON TRS. TORQU TO. Nm / 00 lb-in 4. TORQU TO 45-50 Nm / - lb-ft 5. TORQU TO Nm / 4.5 lb-ft. TORQU TO 0 Nm / lb-in. TORQU TO 5.5 Nm

More information

Physics 222 Midterm, Form: A

Physics 222 Midterm, Form: A Pysis 222 Mitrm, Form: A Nm: Dt: Hr r som usul onstnts. 1 4πɛ 0 = 9 10 9 Nm 2 /C 2 µ0 4π = 1 10 7 tsl s/c = 1.6 10 19 C Qustions 1 5: A ipol onsistin o two r point-lik prtils wit q = 1 µc, sprt y istn

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

A Gentle Introduction to Matroid Algorithmics

A Gentle Introduction to Matroid Algorithmics A Gntl Introuton to Mtro Alortms Mtts F. Stllmnn Aprl, 06 Mtro xoms T trm mtro ws rst us n 9 y Hsslr Wtny []. ovrvw oms rom t txtooks o Lwlr [] n Wls []. Most o t mtrl n ts A mtro s n y st o xoms wt rspt

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

a ( b ) ( a ) a ( c ) ( d )

a ( b ) ( a ) a ( c ) ( d ) Lzy Complton o Prtl Orr to t Smllst Ltt Krll Brtt 1, Ml Morvn 1, Lour Nourn 2 1 LITP/IBP - Unvrst Dns Drot Prs 7 Cs 7014 2, pl Jussu 75256 Prs Cx 05 Frn. ml: (rtt,morvn)@ltp.p.r. 2 Dprtmnt 'Inormtqu Fonmntl

More information

Isomorphism In Kinematic Chains

Isomorphism In Kinematic Chains Intrntonl Journl o Rsr n Ennrn n Sn (IJRES) ISSN (Onln): 0-, ISSN (Prnt): 0- www.rs.or Volum Issu ǁ My. 0 ǁ PP.0- Isomorpsm In Knmt Cns Dr.Al Hsn Asstt.Prossor, Dprtmnt o Mnl Ennrn, F/O- Ennrn & Tnoloy,

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Fun sheet matching: towards automatic block decomposition for hexahedral meshes

Fun sheet matching: towards automatic block decomposition for hexahedral meshes DOI 10.1007/s00366-010-0207-5 ORIGINAL ARTICLE Fun st mtn: towrs utomt lok omposton or xrl mss Nols Kowlsk Frnk Loux Mttw L. Sttn Stv J. Own Rv: 19 Frury 2010 / Apt: 22 Dmr 2010 Ó Sprnr-Vrl Lonon Lmt 2011

More information

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query Intrntonl Journl o Appl Ennrn Rsr ISSN 973-4562 Volum 13, Numr 2 (218) pp. 1496-15 An Applton to Sr or H-Prorty Wr Opponnt n Sptl Gms Usn Qury Jonwn Km Smt Lrl Arts Coll, Smyook Unvrsty, 815 Hwrn-ro, Nowon-u,

More information

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY RVSON STORY RV T SRPTON O Y //0 RLS OR PROUTON T LN MR ----- L /0/0 UPT SN N OMPONNTS US: S 3-03 (*N TWO PLS ONLY) WS 3-5, PRT 3-00 TO SSMLY. T OLLOWN UPT: 3-30, 3-403, 3-403, 3-40, 3-45, 3-4, 3-5. 30

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

One-Dimensional Computational Topology

One-Dimensional Computational Topology Wr rltn so n Stz: Dnn un nur nn, wnn s Sm s Grpn I) ur nn Umsltunsoprton U n BZ-R lrt, II) ur Umrunsoprton wr us r BZ-R ntstt, stllt s Sm nn u r Kullä rlsrrn Grpn r. Dmt st n Gusss Prolm ür n llmnstn Grpn

More information

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs

Straight-line Grid Drawings of 3-Connected 1-Planar Graphs Strt-ln Gr Drwns o 3-Connt 1-Plnr Grs M. Jwrul Alm 1, Frnz J. Brnnur 2, n Stn G. Koourov 1 1 Drtmnt o Comutr Sn, Unvrsty o Arzon, USA {mlm, koourov}@s.rzon.u 2 Unvrsty o Pssu, 94030 Pssu, Grmny rnn@normtk.un-ssu.

More information

JUNEAU STATE OFFICE BUILDING HVAC FAN REPLACEMENT

JUNEAU STATE OFFICE BUILDING HVAC FAN REPLACEMENT NW- JSO HV an Replacement LOTON MP Yakutat Pacific Ocean N Haines Sitka SOUTHST RON Juneau * PPLL OS raig JUNU, K PROJT LOTON Petersburg Wrangell N Ketchikan Metlakatla NTRNTONL ULN O 00 TON () NTRNTONL

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information