CSE 332. Data Structures and Parallelism

Size: px
Start display at page:

Download "CSE 332. Data Structures and Parallelism"

Transcription

1 Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm

2 CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS

3 LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs, BSTs, Bln Trs, B-Trs, Hs Tls Importnt Alortms: Trvrsls, Sortn, ulhp, Prx Sum, Dv n Conqur Alortms Conurrny: Prlllsm, Synronzton So, wt s nxt? Grps n Grp Alortms A nrly unvrsl t strutur tt wll n t wy you tnk out t worl. (Srously.) Grps r mor ommon tn ll t otr t struturs omn (ts s n prt tru, us ty r nrlzton o most o t otr t struturs).

4 A Grp s Tny... 2 V = {}, E = V = {,}, E = {{,}} W ll t rls vrts n t lns s. Dnton (Grp) A Grp s pr, G = (V,E), wr: V s st o vrts, n E s st o s (prs o vrts).

5 A Grp s Tny... 2 V = {}, E = V = {,}, E = {{,}} V = {,, }, E = {{, },{,}} V = {,,, }, E = {{x,y} x,y V x y} W ll t rls vrts n t lns s. Dnton (Grp) A Grp s pr, G = (V,E), wr: V s st o vrts, n E s st o s (prs o vrts).

6 Grps r n ADT? 3 W n tnk o rps s n ADT wt oprtons lk x.snor(y), ut t s not lr wt soul nlu: x.rlfrom(y)? x.sortstptto(y)? x.ntrlty()?... W wll ppro rps rntly: Grps r n strt onpt tt w n pply n rnt wys to t prolm t n. A rp prolm s on tt w n mtmtlly mol s rp...

7 Molln Prolms wt Grps 4 Consr t ollown qustons: How n I llot rstrs to vrls n prorm? How populr m I? Wt s t mnmum mount o wr I v to us to onnt ll ts oms? Just ow os Gool work? Cn I utomtlly t t wors o sntn wt tr prt o sp? How o I mk look-ups n tss quk t Fook s sl?

8 Wy Grps? Fnn Importnt Popl 5 I ts rp s sol ntwork, wo s most mportnt? Wo s t most nlun?

9 Wy Grps? 6 Wt s t pst/sortst/t. lt rom loton A to B? ttp://lltnsrp.om/pul/ms/rln-ool-rt.pn

10 Wy Grps? 7 How o wors ssot wt otr? How sy r wors to onus? How smlr r spllns? ttp://lltnsrp.om/pul/ms/wornt-synonyms/oo-vl-rp-pt.pn

11 Wy Grps? 8 Wr soul w trt nr n prtulr ptnt s oy? ttps://om.om/2013/03/26/ow-rsrrs-r-tn-lun-nr-usn-prnk/

12 Wy Grps? 9 How r m I rom my rns? Wy os my sol ntwork look lustr? Wy r ll my rns mor populr tn I m? ttp://lltnsrp.om/pul/ms/ook/ook-rn-rp.pn

13 Wy Grps? 10 Wt n w n out rom poltl lo t? Wo lstns to wom? ttp://lltnsrp.om/pul/ms/poltl-los-2004/lt-rt.pn

14 Wy Grps? 11 Wt t Ron Wllms v on t popl roun m? ttp://lltnsrp.om/pul/ms/m/ron-wllms-rp.pn

15 Wy Grps? 12 Wt ppns wn vtrn trs lv sool ntworks? ttp://

16 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps T Intrnt Sol Ntworks A Runnn Prorm A Css Gm Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

17 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Sol Ntworks A Runnn Prorm A Css Gm Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

18 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks A Runnn Prorm A Css Gm Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

19 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks Vrts: popl; Es: s rns wt A Runnn Prorm A Css Gm Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

20 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks Vrts: popl; Es: s rns wt A Runnn Prorm Vrts: mtos; Es: lls A Css Gm Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

21 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks Vrts: popl; Es: s rns wt A Runnn Prorm Vrts: mtos; Es: lls A Css Gm Vrts: ors; Es: n mov to Tlpon Lns CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

22 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks Vrts: popl; Es: s rns wt A Runnn Prorm Vrts: mtos; Es: lls A Css Gm Vrts: ors; Es: n mov to Tlpon Lns Vrts: ouss; Es: tlpon ln twn CSE Courss Wt ts n mn, lt s tlk out mor rul ntons.

23 Molln Prolms wt Grps 13 To mol prolm wt rp, you n to mk two os 1 Wt r t vrts? 2 Wt r t s? Mps Vrts: rons; Es: s nxt to T Intrnt Vrts: wsts; Es: s lnk to Sol Ntworks Vrts: popl; Es: s rns wt A Runnn Prorm Vrts: mtos; Es: lls A Css Gm Vrts: ors; Es: n mov to Tlpon Lns Vrts: ouss; Es: tlpon ln twn CSE Courss Vrts: ourss; Es: s pr-rqust o Wt ts n mn, lt s tlk out mor rul ntons.

24 Mor Importnt Grps 14 Empty Grp Complt Grp (K n ) Som Qustons How mny s n rp wt V = n v? I w v E = n, wt s t smllst numr o vrts w n v? T lrst? Smllst: Lrst:

25 Mor Importnt Grps 14 Empty Grp Complt Grp (K n ) Som Qustons How mny s n rp wt V = n v? E = ( n 2 ) = n(n 1) 2 I w v E = n, wt s t smllst numr o vrts w n v? T lrst? Smllst: Lrst:

26 Mor Importnt Grps 14 Empty Grp Complt Grp (K n ) Som Qustons How mny s n rp wt V = n v? E = ( n 2 ) = n(n 1) 2 I w v E = n, wt s t smllst numr o vrts w n v? T lrst? Smllst: v(v 1) = n v 2 v = n O( n) 2 Lrst:

27 Mor Importnt Grps 14 Empty Grp Complt Grp (K n ) Som Qustons How mny s n rp wt V = n v? E = ( n 2 ) = n(n 1) 2 I w v E = n, wt s t smllst numr o vrts w n v? T lrst? Smllst: v(v 1) = n v 2 v = n O( n) 2 Lrst: Tr s no lrst!

28 Wlks n Pts 15 Dnton (Wlk) A wlk n rp G = (V,E) s lst o vrts: v 0,v 1,...,v n su tt {v,v +1 } E. Intutvly, wlk rom u to v s ontnuous ln rwn wtout pkn up your pnl. Dnton (Pt) A pt n rp G = (V,E) s wlk wt no rpt vrts T lu s r pt 3 7 T r s r wlk ut not pt

29 Wlks n Cyls 16 Dnton (Wlk) A wlk n rp G = (V,E) s lst o vrts: v 0,v 1,...,v n su tt {v,v +1 } E. Intutvly, pt rom u to v s ontnuous ln rwn wtout pkn up your pnl. Dnton (Cyl) A yl n rp G = (V,E) s wlk (v 0,v 1,...,v n ) wt no rpt vrts xpt v 0 = v n T lu s r yl 3 7 T r s r not yl

30 Mkn A Connton! 17 Dnton (Connt Grp) W sy rp s onnt or vry pr o vrts, u,v V, tr s pt rom u to v. Intutvly, w pk up t rp n sk t roun, nytn sn t stll n t r, tn t rp sn t onnt Connt! Not Connt! 7

31 Trs: Just A Kn o Grp! 18 Dnton (Tr) A tr s onnt, yl rp. Dnton (Root Tr) A root tr s tr wt on spl no ll out s t root. It n qully usul to work wt trs s t s to work wt root trs; w r ntly mor mlr wt root trs so r...

32 A Worklst 19 A vry ommon typ o lortm on rps s worklst lortm. Rll t WorkLst ADT: WorkLst ADT (v) nxt() swork() Nots t worklst tt t must nl v Rturns t nxt vrtx to work on Rturns tru tr s ny work lt n ls otrws Importntly, w o not r ow t worklst mns t work. (Oky, w o, ut not wn omn up wt t lortm.) Worklst lortms wll lwys look lk t ollown: 1 worklst = /* ntl work to worklst */ 2 wl (worklst.swork()) { 3 v = worklst.nxt(); 4 owork(v); 5 }

33 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

34 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

35 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

36 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

37 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

38 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

39 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

40 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

41 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

42 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

43 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

44 Srn Grp 20 W s rp s onnt wn tr s pt twn vry pr o vrts. Wt w on t know rp s onnt? Rltly, w mt sk t quston: Is vrtx w rl (os tr xst pt) rom vrtx v? W oul us ts lortm to n pt, o somtn wt vry no, sr or prtulr no, t. Unsurprsnly, ts s worklst lortm: 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 }

45 Wt Hppn? 21 1 sr(v) { 2 worklst = [v]; 3 wl (worklst.swork()) { 4 v = worklst.nxt(); 5 osomtn(v); 6 or (w : v.nors()) { 7 worklst.(w); 8 } 9 } 10 } Wt Hppn? W strt srn pts n t rp n vntully wnt k n twn n. Ts ppn, us tr wr two stnt pts twn n : n W ollow t yl n our rp! A Corollry: Ts wouln t v ppn on tr! Tt s, w ust oun n lortm to k or tr-nss!

46 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

47 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

48 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

49 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

50 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

51 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

52 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

53 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

54 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

55 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

56 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

57 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

58 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

59 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

60 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

61 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

62 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

63 Srn Grp (wt SortLst) 22 1 sr(v) { 2 worklst = [v]; 3 sn = {v}; 4 wl (worklst.swork()) { 5 v = worklst.nxt(); 6 osomtn(v); 7 or (w : v.nors()) { 8 (w not sn) { 9 worklst.(w); 10 sn = sn {w}; 11 } 12 } 13 } 14 } W v two wys o xn ts: 1 nsst tt t worklst tk r o uplts, n 2 vo n uplts to t worklst

64 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

65 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

66 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

67 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

68 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

69 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

70 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

71 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

72 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

73 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

74 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

75 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

76 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

77 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

78 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

79 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

80 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

81 Srn Grp (wt Stk) 23 Oky, ut w nvr tully us SortLst. How out Stk? Wn w us Stk: 1 Ts lortm s ll DFS (pt-rst sr) 2 W ollow pt s r s possl, tn k up 3 It n wrttn rursvly worklst

82 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

83 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

84 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

85 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

86 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

87 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

88 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

89 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

90 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

91 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

92 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

93 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

94 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

95 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

96 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

97 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

98 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

99 Srn Grp (wt Quu) 24 Any rson w souln t us Quu? Wn w us Quu: 1 Ts lortm s ll BFS (rt-rst sr) 2 W nrs our orzon wy rom t strtn no worklst

100 Srn Grp: Rovrn T Pt 25 Us A Dtonry! sr(v) { worklst = [v]; rom = nw Dtonry(); rom.put(v, null); wl (worklst.swork()) { v = worklst.nxt(); osomtn(v); or (w : v.nors()) { (w not n rom) { worklst.(w); rom.put(w, v); } } } rturn rom; } npt(v, w) { rom = sr(v); pt = []; urr = w; wl (urr!= null) { pt.(0, urr); urr = rom[urr]; } rturn pt; }

101 Asymptot Anlyss o BFS n DFS 26 Runtm Bot lortms vst ll nos n t onnt omponnt: V Bot lortms n vst no on or n t rp: E So, BFS n DFS r O( V + E ) (ts s ll rp lnr ). Sp DFS: I t lonst pt s lnt p n t lrst numr o nors s n, tn DFS stors t most pn vrts BFS: Consr tr. BFS wll ol t ntr ottom lvl w s O( V ).

102 BFS n DFS Tr-Os 27 Tr-Os DFS s ttr sp us, ut t mt n rutous pt BFS wll lwys n t sortst pt to no, ut t wll us mor mmory Itrtv Dpnn Itrtv Dpnn s DFS tt ouns t pt: 1 nt pt = 1; 2 wl (tr r nos to xplor) { 3 s(v, pt); 4 pt++; 5 } Sn most o t vrts r lvs, ts tully osn t wst mu tm!

103 Gnrlzn Grps: Drton & E Wt 28 Unrt vs. Drt (o t s v rrows?) Unrt Drt Wt vs. Unwt (o t s v wts?) Unwt & Drt Wt & Unrt

104 Gnrlzn Grps: Mult-Es 29 Smpl vs. Mult (loops on vrts? multpl s?) Mult-rp Grp wt Loops Ts nrlztons r ll usul n rnt omns. W r on to tlk lot mor out tm ovr t nxt w lturs. Nxt ltur, w ll workn mostly wt rt rps.

105 A Wor out Sprsty 30 Bk to ountn s. In rp wtout multpl s, tr r n vrts, tr n nywr rom 0 to n 2 s. Ts s vry w rn. A rp wt wr s s ll sprs n on wt losr to n 2 s ll ns. W lry sw tt rp trvrsl ws O( E + V ): On sprs rp, tt s O( V ) On ns rp, tt s O( V 2 ). Sprsty mks u rn!

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY

DOCUMENT STATUS: LA-S5302-XXXXS LA, SSS, TRICEPS EXTENSION VERY RVSON STORY RV T SRPTON O Y //0 RLS OR PROUTON T LN MR ----- L /0/0 UPT SN N OMPONNTS US: S 3-03 (*N TWO PLS ONLY) WS 3-5, PRT 3-00 TO SSMLY. T OLLOWN UPT: 3-30, 3-403, 3-403, 3-40, 3-45, 3-4, 3-5. 30

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33.

DOCUMENT STATUS: CORE HEALTH & FITNESS, LLC IL-D2002-XXAAX IP,DUAL ADJUSTIBLE PULLEY MATERIAL SEE BOM FINISH N/A N/A SHEET SIZE: B SCALE: 1:33. NOTS: RVSON STORY RV T SRPTON O Y //04 RLS OR PROUTON 433 P 34 55 033 OUMNT STTUS: NOT O PROPRTRY NORMTON TS OUMNT SLL NOT RPROU NOR SLL T NORMTON ONTN RN US Y OR SLOS TO OTR XPT S XPRSSLY UTORZ Y OR LT

More information

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH

MATERIAL SEE BOM ANGLES = 2 > 2000 DATE MEDIUM FINISH NOTS:. LN MTN SUR WT NTUR/SOPROPYL LOOL PROR TO RN L OR LOO. PPLY LOTT 4 ON TRS. TORQU TO. Nm / 00 lb-in 4. TORQU TO 45-50 Nm / - lb-ft 5. TORQU TO Nm / 4.5 lb-ft. TORQU TO 0 Nm / lb-in. TORQU TO 5.5 Nm

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n

PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D D r r. Pr d nt: n J n r f th r d t r v th tr t d rn z t n pr r f th n t d t t. n R P RT F TH PR D NT N N TR T F R N V R T F NN T V D 0 0 : R PR P R JT..P.. D 2 PR L 8 8 J PR D NT N n TR T F R 6 pr l 8 Th Pr d nt Th h t H h n t n, D.. 20 00 D r r. Pr d nt: n J n r f th r d t r v th

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

,. *â â > V>V. â ND * 828.

,. *â â > V>V. â ND * 828. BL D,. *â â > V>V Z V L. XX. J N R â J N, 828. LL BL D, D NB R H â ND T. D LL, TR ND, L ND N. * 828. n r t d n 20 2 2 0 : 0 T http: hdl.h ndl.n t 202 dp. 0 02802 68 Th N : l nd r.. N > R, L X. Fn r f,

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION

DETAIL B DETAIL A 7 8 APPLY PRODUCT ID LABEL SB838XXXX ADJ FOUR POST RACK SQUARE HOLE RAIL B REVISION RVISION RV SRIPTION Y T HNG NO NOT OR PROUT LL JJH // LR TIL PPLY PROUT I LL TIL INSI UPPR ROSS MMR ON PR RK IS J OUR POST RK SQUR HOL RIL IS MN MS G NUT, PNL RNG 99 PPLY PROUT I LL INSI UPPR ROSS MMR

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

7 ACM FOR FRAME 2SET 6 FRAME 2SET 5 ACM FOR MAIN FRAME 2SET 4 MAIN FRAME 2SET 3 POLE ASSLY 1 2 CROWN STRUCTURE ASSLY 1 1 CROWN ASSLY 1

7 ACM FOR FRAME 2SET 6 FRAME 2SET 5 ACM FOR MAIN FRAME 2SET 4 MAIN FRAME 2SET 3 POLE ASSLY 1 2 CROWN STRUCTURE ASSLY 1 1 CROWN ASSLY 1 7 M OR RM 2ST 6 RM 2ST 5 M OR MIN RM 2ST 4 MIN RM 2ST 3 POL SSLY 1 2 ROWN STRUTUR SSLY 1 1 ROWN SSLY 1 SR.NO. SRIPTION QTY. a LL IMNSIONS R IN mm I N MT Pi IOLMI 1'NTION LT. Tm: XPLO VIW OR POL MOUNT MLM

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

B ADDED BADGE PN , CHANGED TO C SIZE FOR ASSY, ADDED NOTES DN J DETAIL A SCALE 1 : INCH MATERIAL

B ADDED BADGE PN , CHANGED TO C SIZE FOR ASSY, ADDED NOTES DN J DETAIL A SCALE 1 : INCH MATERIAL 0 RVSONS RV. T SRPTON O Y 0--0 PROUTON RLS N 0--0 PN 00-0, N TO SZ OR SSY, NOTS N TL SL :. N TM NO. PRT NUMR SRPTON QTY. NOT 00-0, PROUT, P-ST 0 NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

Humanistic, and Particularly Classical, Studies as a Preparation for the Law

Humanistic, and Particularly Classical, Studies as a Preparation for the Law University of Michigan Law School University of Michigan Law School Scholarship Repository Articles Faculty Scholarship 1907 Humanistic, and Particularly Classical, Studies as a Preparation for the Law

More information

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th

46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l pp n nt n th n r t d n 20 0 : T P bl D n, l d t z d http:.h th tr t. r pd l 46 D b r 4, 20 : p t n f r n b P l h tr p, pl t z r f r n. nd n th t n t d f t n th tr ht r t b f l n t, nd th ff r n b ttl t th r p rf l

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

n

n p l p bl t n t t f Fl r d, D p rt nt f N t r l R r, D v n f nt r r R r, B r f l. n.24 80 T ll h, Fl. : Fl r d D p rt nt f N t r l R r, B r f l, 86. http://hdl.handle.net/2027/mdp.39015007497111 r t v n

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information