A Simple Method for Identifying Compelled Edges in DAGs

Size: px
Start display at page:

Download "A Simple Method for Identifying Compelled Edges in DAGs"

Transcription

1 A Smpl Mto or Intyn Compll Es n DAGs S.K.M. Won n D. Wu Dprtmnt o Computr Sn Unvrsty o Rn Rn Ssktwn Cn S4S 0A2 Eml: {won, nwu}@s.urn. Astrt Intyn ompll s s mportnt n lrnn t strutur (.., t DAG) o Bysn ntwork. A rpl mto (Ckrn 1995) ws propos to solv ts prolm. In ts ppr, w sow tt jont prolty struton n y Bysn ntwork n unquly rtrz y ts ntrns torzton. Bs on su n lr rtrzton, w sust smpl lortm to nty t ompll s o Bysn ntwork strutur. 1. Introuton Bysn ntworks v n wly us or mnn unrtnty usn prolty (Prl 1988). A Bysn ntwork onssts o rpl strutur, rt yl rp (DAG) n st o ontonl prolty strutons (CPDs). Ts two omponnts n jont prolty struton. T ontonl npnns sts y jont prolty struton n rprsnt y rnt DAGs. T noton o n quvln lss o DAGs ws stu y (Vrm & Prl 1990; Ckrn 1995). An quvln lss o DAGs onssts o ll t Bysn ntworks w n t sm jont prolty struton ut r n tr rsptv DAGs. Altou rnt DAGs n t sm quvln lss v rnt rpl struturs, rtn rt s rtn tr rtonlty n ll tos quvlnt DAGs. Ts s r rrr to s ompll s. Itsusul to nty ts ompll s n lrnn Bysn ntwork rom t. Ckrn (Ckrn 1995) propos rpl lortm or ntyn su s. In ts ppr, w sow tt jont prolty struton n y Bysn ntwork n unquly xprss s prout o mrnls v y notr prout o mrnls. W rr to su rtrzton o jont prolty struton s n ntrns torzton. All Bysn ntwork struturs vn t sm ntrns torzton lon to t sm quvln lss. Bs on ts lr lsston o Bysn ntworks, w sust smpl mto to nty ll t ompll s n vndag. Copyrt 2003, Amrn Assoton or Artl Intlln ( All rts rsrv. T ppr s ornz s ollows. W rst rvw t noton o quvlnt DAGs n Ston 2. Our lr rtrzton o jont prolty struton n y Bysn ntwork s suss n Ston 3. In Ston 4, w sr our lortm or ntyn ompll s o Bysn DAG. T onluson s vn n Ston Equvlnt DAGs In t ppr, w us uppr s lttrs to rprsnt st o vrls n lowr s lttrs to rprsnt snl vrl unlss otrws mnton. Lt U not nt st o srt vrls. W us p(u) to not jont prolty struton (jp) ovr U. Wll p(v ), V U, t mrnl (struton) o p(u) n p(x Y ) t ontonl prolty struton (CPD), or smply ontonl. By XY, wr X U, Y U,wmn X Y. Smlrly, y, wr U, U, wmn {} {}. Aorn to t nton o ontonl prolty, p(x Y )= p(xy ), wnvr p(y ) > 0, p(y ) w tus sy tt n t ov xprsson, t nomntor p(y ) s sor y t numrtor p(xy ) to yl ontonl p(x Y ). Itsnot tt p(w ) n sor y p(v ) to yl p(v W W ) n only W V. A Bysn ntwork (BN) n ovr st U = { 1, 2,..., n } o vrls onssts o two omponnts: () rt yl rp (DAG) D. E vrtx n D rprsnts vrl U. T prnts o t vrtx r not p( ). T rpl strutur o t DAG nos st o ontonl npnny normton; () quntton o D. E vrl n D s qunt wt ontonl prolty p( p( )). Ts two omponnts n (nu) jont prolty struton (jp) ovr U s ollows: n p(u) = p( p( )). (1) =1 W ll t quton n (1) t Bysn torzton. It s wort mntonn tt y lookn t t tors n t ov Bysn torzton, t DAG n rwn y rtn n rrow rom no n p( ) to t no. A v strutur n DAG D s n orr trpl o nos 516 FLAIRS 2003

2 (,, ) su tt (1) D ontns s n, n (2) n r not rtly onnt n D. T sklton o DAG s t unrt rp otn y roppn t rtonlty o vry n t DAG. Sn BN s lt y ts rpl strutur, nmly, t DAG, W tus wll us t trm BN or DAG ntrnly no onuson rss. It s n not (Vrm & Prl 1990) tt DAGs o rnt BNs my n t sm jp. Dnton 1 (Ckrn 1995) Two DAGs D n D r quvlnt or vry BN nu y D, tr xsts notr BN nu y D su tt ot nu BNs ns t sm jp, n v vrs. W us D 1 D 2 to not tt DAG D 1 s quvlnt to DAG D 2,orquvlntly, BN1 BN2. Grpl rtr (Vrm & Prl 1990; Ckrn 1995) v n propos to trmn wtr two vn DAGs r quvlnt or not. Torm 1 (Vrm & Prl 1990) Two DAGs r quvlnt n only ty v t sm sklton n t sm v-struturs. It s not r to s tt t rlton nus n quvln rlton. Lt {D} not ll t DAGs n ovr xst U o vrls. Nturlly, t rtrsts o t quvln rlton n us to roup t DAGs n {D} nto rnt quvln lsss. It s not tt sn quvlnt DAGs n t sm jp, ty rtnly no t sm st o ontonl npnny normton. Tror, ll t DAGs n t sm quvln lss no t sm ontonl npnny normton. () () Fur 1: Four quvlnt DAGs omprs n quvln lss. Exmpl 1 Consr t our DAGs sown n Fur 1. By Torm 1, ty r quvlnt to otr. Morovr, no otr DAGs n ovr t sm st o vrls r quvlnt to ny o tm, tror, ty omprs n quvlnt lss. Gvn n quvln lss o DAGs, t s not tt som s rtn tr rtonlty n ll t quvlnt DAGsnt quvln lss. Dnton 2 An x y n DAG D s ompll, or ny D D, x y s lso n D. Otrws, t s rvrsl. () (v) Exmpl 2 It n vr tt n t DAGs sown n F 1, t s,,,,,, n ppr n ll o t quvlnt DAGs, tror, ty r ompll s. On t otr n, t, or xmpl, s rvrsl. It s n suss n (Ckrn 1995) tt t ompll s n DAG v prtulr mportn n lrnn t strutur o Bysn ntworks rom osrv t. Morovr, n lortm ws vlop to nty ll ompll s n vn DAG. T lortm rst ns totl orrn ovr ll t s n t v DAG n tn ns out ll t ompll s s on t totl orrn. Howvr, t prsntton o t lortm n t proo o ts orrtnss r rtr omplt n r to omprn. For tls o t susson o t mportn on ntyn ompll s n t lortm, rrs r rrr to (Ckrn 1995). 3. Alr Rprsntton o Equvlnt DAGs In ts ston, w rst rly rvw rnt rpl rprsnttons o quvln lss o DAGs, w tn v novl lr rprsntton o quvlnt DAGs y stuyn t orm o Bysn torzton. Ts lr rprsntton o quvlnt DAGs wll srv s t ss or smpl n sy to unrstn mto or ntyn ompll s. Sn ll t DAGs n t sm quvln lss n t sm jp n rprsnt t sm ontonl npnny normton, t s tus ly srl to v unqu rprsntton to rprsnt t wol lss o quvlnt DAGs. Svrl rpl rprsnttons v n propos. Vrm (Vrm & Prl 1990) propos t noton o rumntry pttrn n omplt pttrn to rtrz t quvln lss usn prtlly rt rp. Anrson (Anrsson, Mn, & Prlmn 1997) sust t noton o ssntl rp, w s spl n rp (Frynr 1990), to rprsnt Mrkov quvlnt DAGs. Mor rntly, Stuny (Stuny 1998) us t noton o lrst n rp (rnt tn t ssntl rp) to rtrz t quvln lss o Bysn ntworks. Sn ll t quvlnt DAGs lso ns t sm jp, w lv tt ts sm jp soul t rprsntton o t wol quvln lss n t soul lso possss t lty to srn rnt DAGs n t sm quvln lss. In t ollown, w prsnt novl lr rprsntton to rprsnt t wol quvln lss s on t noton o Bysn torzton. Dnton 3 Consr DAG n ovr st U = { 1,..., n } o vrls wt ts Bysn torzton s ollows: p(u) = p( 1 ) p( 2 p( 2 ))... p( n p( n )), (2) = p( 1) 1 =, j p( 2,p( 2 )) p(p( 2 ))... p( n,p( n )),(3) p(p( n )) p(,p( )), (4) p(p( j )) FLAIRS

3 wr {, p( )} {p( j )} or ny 1, j n. E p( p( )) n quton (2) s ll tor. Wll t quton n (3) t rton torzton o t DAG. T xprsson n quton (4) s otn y nln ny ppll numrtor n nomntor n quton (3) n s ll t ntrns torzton o t DAG. T ntrns torzton s n prov to t nvrnt proprty o n quvln lss o DAGs. Torm 2 (Won & Wu 2002) Two DAGs r quvlnt n only ty v t sm ntrns torzton. Torm 2 mpls tt ll t DAGs n t sm quvln lss v t sm ntrns torzton. It mmtly ollows: Corollry 1 T ntrns torzton o vn DAG D s unqu n t rtrzs n srs lrlly t wol quvln lss tt t vn DAG D lons to. Exmpl 3 Consr t our DAGs n ovr U = {,,,,,,,, } s sown n F 1. T ntrns torzton or t DAG n () s s ollows n quton (6): p(u) = p() p() p( ) p( ) p( ) p( ) p( ) p( ) p( ) (5) p() p() p() p() p() p() = p() p() p() p() p() p() p() p(). (6) Smlrly, t ntrns torzton or t DAGs n F 1 (), () n (v) n otn n t sm son. It n sly vr tt t our rnt DAGs o v t sm ntrns torzton sown n quton (6). 4. Compll Es Intton In ts ston, w wll prsnt vry smpl mto to nty ompll s n vn DAG s on ts ntrns torzton. T n our propos mto s vry ntutv. As wll monstrt sortly, t ntrns torzton o vn DAG rprsnts t wol quvlnt lss n t ontns ll t normton n to rstor quvlnt DAG (mor prsly, to rstor ts Bysn torzton.) Ts osrvton vs rs to t propos mto or ntyn ompll s. Exmpl 4 Contnu on Exmpl 3 n onsr t ntrns torzton o t Bysn ntwork sown n Fur 1 () rpt s ollows: p() p() p() p() p() p() p(u) = p() p() p() p() p() p() p() p(). (7) W now monstrt ow w n rstor quvlnt DAG (ts Bysn torzton) n t quvln lss rtrz y t ov ntrns torzton. In orr to trnsorm t ntrns torzton n quton (7) nto Bysn torzton, w n to sor ll t nomntors n quton (7) s ollows. p(u) = or p() p() p() p() p() p() p() p() p() p() p() p() p() p(), (8) = p() 1 p() p() p() p() 1 p() p() p() p() p() p() p() p() p(), (9) = p() p( ) p() p( ) p( ) p( ) p( ) p( ), (10) = p() p( ) p() p( ) p( ) p( ) p( ) p( ) p( ), (11) p(u) = p() 1 p() p() 1 p() p() p() p() p() p() p() p() p() p() p(), (12) = p() p() p( ) p( ) p( ) p( ) p( ) p( ) p( ), (13) or p(u) = p() 1 p() p() p() p() p() p() p() 1 p() p() p() p() p() p(), (14) = p() p( ) p( ) p( ) p() p( ) p( ) p( ) p( ), (15) In qutons (9), (12), n (14), w v sor nomntor n t ntrns torzton y n pproprt numrtor, ts sorptons rsult n qutons (11), (13), n (15), rsptvly. W tus v nlly otn tr rnt Bysn torztons, w xtly orrspon to t tr quvlnt DAGs sown n F 1 (), () n (v), rsptvly. Tror, w v sussully rstor ll t DAGs tt r quvlnt to t on sown n F 1 (). Tr r w osrvtons tt n m wt rspt to t ov monstrton n Exmpl Drnt DAGs n t sm quvln lss r otn, pnn on ow nomntor n t ntrns torzton s sor. It s ovous tt rnt sorpton wll rsult n rnt Bysn torztons, n, prou rnt ut quvlnt DAGs. 2. It s not tt urn t ours o sorn nomntors, som nomntor s or to sor y prtulr x numrtor, no otr os. In otr wors, som nomntor s no lxlty so tt t s to sor y x numrtor. 518 FLAIRS 2003

4 Bor w mov on, lt s srutnz t nomntor sorpton w v m n Exmpl 4. Not tt or nomntor p(x) to sor y numrtor p(y ), tmust t s tt X Y. Unr ts rstrton, t possl sorpton o t nomntors,,,,, n n summrz y t ollown xprssons, = {, }, (16) = {}, (17) = {,, }, (18) = {,,, }, (19) = {, }, (20) = {, }, (21) wr X = {Y 1,..., Y n } mns tt t nomntor p(x) n possly sor y p(y 1 ),..., p(y n ). W urtr ll t st {Y 1,..., Y n }, not AS(X), t sorpton st or X. It s not tt Y AS(X) X Y. W wll us AS(X) to not ts rnlty. It s lso not tt t st D = {X p(x ) s nomntor n t ntrns torzton} s multst, n w wll us X to not t numr o ourrn o X n t multst D. Rll tt t DAG o Bysn ntwork n rwn s on ts Bysn torzton, mor prsly, s on ts tor p( p( )), yrtn n rom no n p( ) to t no. Follown ts ln o rsonn, t ollows tt nomntor, sy p(x), s no o ut s or to sor y x numrtors, sy p(y ), tn t s xpt tt t s y x, wr y Y X, x X, wll ppr n vry rsultn Bysn torztons. Tror, ty wll ompll s y nton. For nstn, n xprsson (17), t only numrtor tt s ppll to sor p() s p(), n, t tor p( ) wll otn y ts sorpton n t s n wll ppr n ll possl rsultn Bysn torztons, w mpls tt ty r ompll s s n vr y F 1. Spl ttnton soul p to t two ntl nomntors p() n p() n xprssons (20) n (21), rsptvly. Altou ts two nomntors r synttlly ntl, ot o tm v to sor n orr to otn t Bysn torzton. T ppll numrtors or ot o tm s t sorpton st {, }, w ontns xtly two lmnts, t sm numr o t ourrn o p() s nomntors. Ts nts tt on o t p() must sor y p(), n t otr p() must sor y p(), nootr os. Ts sorptons mply tt t tors p( ) n p( ) wll otn n t s,,, n wll ppr n ll possl rsultn Bysn torztons, w mpls tt ty r ompll s s n vr y F 1 s wll. Sn t numrtors p(), p(), n p() v n snt to sor t nomntors p(), p(), n p(), rsptvly, ts ns t sorpton st or rom {,,, } sown n xprsson (19) to t nw rn snlton st {}, w mpls tt t nomntor p() wll v to sor y t numrtor p() to otn p( ). Tror, t s lso ompll s s n vr y F 1. T ov nlyss rsult n t ollown rn xprssons or t sorptons o nomntors, ontrstn wt tos n t xprssons (16-21), = {, }, (22) = {}, (23) = {, }, (24) = {}, (25) = {, }, (26) = {, }, (27) rom w t ompll s n oun out rt wy nomntor n only sor y x nomntor. Bs on t ov sussons, w tus propos t ollown prour to nty ompll s n vn DAG. T orrtnss o t prour wll vn sortly. PROCEDURE Fn-Compll-Es Input: vn DAG D. Output: Compll s n D ollt n t st E. { 1: Otn t ntrns torzton o t vn D, n lt E =. 2: Lt D = { 1,..., m } multst, wr p( ) s nomntor n t ntrns torzton otn n stp 1. 3: For D, =1,..., m, omput s sorpton st AS( ); 4: For D s.t. =1, =1,..., m, I AS( ) s snlton st, AS( j )=AS( j ) AS( ), or ll j, 5: For D s.t. > 1, =1,..., m, I AS( ) =, AS( j )=AS( j ) AS( ), or ll j, 6: For D, =1,..., m, I k = AS( ) =, E = E {p(y j ) Y j AS( ),j =1,..., k}, 7: Rturn E. } Compll s, rom t prsptv o t ntrns torzton o vn DAG, s otn y ntyn wtr nomntor p(x) n sor y only on numrtor or n possly sor y multpl numrtors. I nomntor p(x) n only sor y only on numrtor p(y ), tn t tor p(y X X) wll ppr n ll possl rsultn Bysn torztons, tror, t s y x, wr y Y X, x X, wll ompll s. Stp 1-5 n t prour omputs t sorpton st or nomntor. In stp 6, or ny nomntor p(x) n ts sorpton st AS(X), wtry to s wtr t n sor y unqu numrtor or y multpl os o rnt numrtors. Tr r two ss: 1. p(x) s nomntor su tt X = 1, onsr AS(X). FLAIRS

5 I AS(X) > 1, notr wors, p(x) n sor y t lst two rnt numrtors, tn tr s no n to v ny ompll s prou y sorn p(x). I AS(X) =1, notr wors, p(x) wll sor y only on nomntor p(y ), tn t tor p(y X X) otn wll v rs to ompll s y x, wr y Y X, x X. 2. p(x) s nomntor su tt X > 1, onsr AS(X). I AS(X) = X, tn tr xsts on-to-on orrsponn twn mmr o Y AS(X) n ourrn o p(x) s nomntor, n w s vry p(x) wll sor y unqu p(y ). Tror, ompll s wll otn y su sorptons. I AS(X) > X, tn t s mor numrtor p(y ), wr Y AS(X) tn t nomntor p(x), n w s nomntor s not unquly sor y numrtor. Tror, tr s no n to otn t ompll s. T nlyss o t two ss s n xtly ptur y stp 6 n t prour. T ov susson tully provs t ollown torm. Torm 3 Gvn DAG D, t output o t prour Fn-Compll-Es ov s xtly t ompll s n D. T prour Fn-Compll-Es only nvolvs som st oprtons n n mplmnt sly. Stuny, M Bysn ntworks rom t pont o vw o n rps. In Prons o t 14t Conrn on Unrtnty n Artl Intllrn (UAI-98), Morn Kumnn. Vrm, T., n Prl, J Equvln n syntss o usl mols. In Sxt Conrn on Unrtnty n Artl Intlln, GE Corport Rsr n Dvlopmnt. Won, S., n Wu, D An lr rtrzton o quvlnt ysn ntworks. In Numnn;, M. M. B., n Stur, R., s., Intllnt Inormton Prossn, T 17t IFIP Worl Computr Conrss, Strm 8, IIP-2002, Kluwr Am Pulsr. 5. Conluson In ts ppr, w v monstrt tt t noton o ntrns torzton n srv s t lr rtrzton o t quvln lss o DAGs, s on w w v prsnt smpl mto or ntyn ompll s n Bysn ntwork. T nw mto s ntutvly smpl n n sly mplmnt. It rvls t mportn o t ntrns torzton o n quvln lss o Bysn ntworks. T pplton o ntrns torzton n ts ppr susts mor rsr on t torzton o t jp n y Bysn ntwork s wort pursun. Rrns Anrsson, S.; Mn, D.; n Prlmn, M A rtrzton o mrkov quvln lsss or yl rps. T Annls o Sttsts 25(2): Ckrn, D A trnsormtonl rtrzton o quvlnt ysn ntwork struturs. In Elvnt Conrn on Unrtnty n Artl Intlln, Morn Kumnn Pulsrs. Frynr, M T n rp mrkov proprty. Snnvn Journl o Sttsts 11: Prl, J Prolst Rsonn n Intllnt Systms: Ntworks o Plusl Inrn. Sn Frnso, Clorn: Morn Kumnn Pulsrs. 520 FLAIRS 2003

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Isomorphism In Kinematic Chains

Isomorphism In Kinematic Chains Intrntonl Journl o Rsr n Ennrn n Sn (IJRES) ISSN (Onln): 0-, ISSN (Prnt): 0- www.rs.or Volum Issu ǁ My. 0 ǁ PP.0- Isomorpsm In Knmt Cns Dr.Al Hsn Asstt.Prossor, Dprtmnt o Mnl Ennrn, F/O- Ennrn & Tnoloy,

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn

More information

An Introduction to Clique Minimal Separator Decomposition

An Introduction to Clique Minimal Separator Decomposition Alortms 2010, 3, 197-215; o:10.3390/3020197 Rvw OPEN ACCESS lortms ISSN 1999-4893 www.mp.om/ournl/lortms An Introuton to Clqu Mnml Sprtor Domposton Ann Brry 1,, Romn Poorln 1 n Gnvèv Smont 2 1 LIMOS UMR

More information

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010

Phylogenetic Tree Inferences Using Quartet Splits. Kevin Michael Hathcock. Bachelor of Science Lenoir-Rhyne University 2010 Pylont Tr Inrns Usn Qurtt Splts By Kvn Ml Htok Blor o Sn Lnor-Ryn Unvrsty 2010 Sumtt n Prtl Fulllmnt o t Rqurmnts or t Dr o Mstr o Sn n Mtmts Coll o Arts n Sns Unvrsty o Sout Croln 2012 Apt y: Év Czrk,

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

A RANKING PROCEDURE FOR FUZZY DECISION-MAKING IN PRODUCT DESIGN

A RANKING PROCEDURE FOR FUZZY DECISION-MAKING IN PRODUCT DESIGN Ornl rtl rons o IDMME - Vrtl Conpt 2008 jn Cn Otor 8 0 2008 RNKING ROCEDURE FOR FUZZY DECISION-MKING IN RODUCT DESIGN Mro rjs r r 2 ): Déprtmnt Mtémtqs t Gén Instrl Éol olytnq Montrél C.. 6079 S. Cntr-vll

More information

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query

An Application to Search for High-Priority War Opponent in Spatial Games Using Dynamic Skyline Query Intrntonl Journl o Appl Ennrn Rsr ISSN 973-4562 Volum 13, Numr 2 (218) pp. 1496-15 An Applton to Sr or H-Prorty Wr Opponnt n Sptl Gms Usn Qury Jonwn Km Smt Lrl Arts Coll, Smyook Unvrsty, 815 Hwrn-ro, Nowon-u,

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

a ( b ) ( a ) a ( c ) ( d )

a ( b ) ( a ) a ( c ) ( d ) Lzy Complton o Prtl Orr to t Smllst Ltt Krll Brtt 1, Ml Morvn 1, Lour Nourn 2 1 LITP/IBP - Unvrst Dns Drot Prs 7 Cs 7014 2, pl Jussu 75256 Prs Cx 05 Frn. ml: (rtt,morvn)@ltp.p.r. 2 Dprtmnt 'Inormtqu Fonmntl

More information

Fun sheet matching: towards automatic block decomposition for hexahedral meshes

Fun sheet matching: towards automatic block decomposition for hexahedral meshes DOI 10.1007/s00366-010-0207-5 ORIGINAL ARTICLE Fun st mtn: towrs utomt lok omposton or xrl mss Nols Kowlsk Frnk Loux Mttw L. Sttn Stv J. Own Rv: 19 Frury 2010 / Apt: 22 Dmr 2010 Ó Sprnr-Vrl Lonon Lmt 2011

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Mechanisms of 10 Links, 13-Joints, 1-F Kinematic Chains of Group B

Mechanisms of 10 Links, 13-Joints, 1-F Kinematic Chains of Group B IJSTE Intrntonl Journl o Sn Tnoloy & Ennrn Volum 2 Issu 08 Frury 201 ISSN (onln): 2349784X Mnsms o Lnks, 13Jonts, 1F Knmt Cns o Group B Dr. Al Hsn Dprtmnt o Mnl Ennrn Jm Mll Islm, Nw Dl Astrt Autor s otv

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks.

Data-Parallel Primitives for Spatial Operations Using PM. Quadtrees* primitives that are used to construct the data. concluding remarks. Dt-rlll rmtvs or Sptl Oprtons Usn M Qutrs* Erk G. Hol Hnn Smt Computr Sn Dprtmnt Computr Sn Dprtmnt Cntr or Automton Rsr Cntr or Automton Rsr Insttut or Avn Computr Sns Insttut or Avn Computr Sns Unvrsty

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

A New Interface to Render Graphs Using Rgraphviz

A New Interface to Render Graphs Using Rgraphviz A Nw Intr to Rnr Grps Usn Rrpvz Florn Hn Otor 30, 2017 Contnts 1 Ovrvw 1 2 Introuton 1 3 Dult rnrn prmtrs 3 3.1 Dult no prmtrs....................... 4 3.2 Dult prmtrs....................... 6 3.3 Dult

More information

One-Dimensional Computational Topology

One-Dimensional Computational Topology Wr rltn so n Stz: Dnn un nur nn, wnn s Sm s Grpn I) ur nn Umsltunsoprton U n BZ-R lrt, II) ur Umrunsoprton wr us r BZ-R ntstt, stllt s Sm nn u r Kullä rlsrrn Grpn r. Dmt st n Gusss Prolm ür n llmnstn Grpn

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Boosting Margin Based Distance Functions for Clustering

Boosting Margin Based Distance Functions for Clustering Boostn Mrn Bs Dstn Funtons or Clustrn Tomr Hrtz TOMBOY@CS.HUJI.AC.IL Aron Br-Hlll AHARONBH@CS.HUJI.AC.IL Dpn Wnsll DAPHNA@CS.HUJI.AC.IL Sool o Computr Sn n Ennrn n t Cntr or Nurl Computton, T Hrw Unvrsty

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

EFFICIENT EXTRACTION OF CLOSED MOTIVIC PATTERNS IN MULTI-DIMENSIONAL SYMBOLIC REPRESENTATIONS OF MUSIC

EFFICIENT EXTRACTION OF CLOSED MOTIVIC PATTERNS IN MULTI-DIMENSIONAL SYMBOLIC REPRESENTATIONS OF MUSIC EFFICIENT EXTRACTION OF CLOSED MOTIVIC PATTERNS IN MULTI-DIMENSIONAL SYMBOLIC REPRESENTATIONS OF MUSIC Olvr Lrtllot Unvrsty o Jyväskylä Dprtmnt o Mus ABSTRACT In ts ppr, w prsnt n nt mol or sovrn rpt pttrns

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Introduction to Fourier optics. Textbook: Goodman (chapters 2-4) Overview:

Introduction to Fourier optics. Textbook: Goodman (chapters 2-4) Overview: Introuton to ourr opts Ttbook: Goon (ptrs -) Ovrv: nr n nvrnt ssts T ourr trnsor Slr rton rsnl n runor pprotons. . nr ssts n ourr trnsor tutorl (rnr) sst onnts n nput to n output su tt: It s s to b lnr

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

Detecting Change in Snapshot Sequences

Detecting Change in Snapshot Sequences Dttn Cn n Snpsot Squns Mnzn S n Stpn Wntr Dprtnt o Gots, Unvrsty o Mourn, Vtor, 3010, ustr.s@pr.un.u.u, wntr@un.u.u strt. Wrss snsor ntwors r poy to ontor yn orp pnon, or ots, ovr sp n t. Ts ppr prsnts

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

A Gentle Introduction to Matroid Algorithmics

A Gentle Introduction to Matroid Algorithmics A Gntl Introuton to Mtro Alortms Mtts F. Stllmnn Aprl, 06 Mtro xoms T trm mtro ws rst us n 9 y Hsslr Wtny []. ovrvw oms rom t txtooks o Lwlr [] n Wls []. Most o t mtrl n ts A mtro s n y st o xoms wt rspt

More information

A Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks. Saeedeh Javanmardi 1, Ahmad Makui 2.

A Multi Objective Graph Based Model for Analyzing Survivability of Vulnerable Networks. Saeedeh Javanmardi 1, Ahmad Makui 2. Journl of Inustrl n Systms Engnrng Vol., No., pp Summr 00 Mult Otv Grp Bs Mol for nlyzng Survvlty of Vulnrl Ntworks S Jvnmr, m Mku Dprtmnt of Inustrl Engnrng, Irn Unvrsty of Sn n Tnology, Trn, Irn mku@ust..r

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Fractions. Mathletics Instant Workbooks. Simplify. Copyright Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

Re-synthesis for Delay Variation Tolerance

Re-synthesis for Delay Variation Tolerance 49.1 R-sytss or Dly Vrto Tolr S-C C Dprtmt o CS Ntol Ts Hu Uvrsty Hsu, Tw s@s.tu.u.tw C-To Hs Dprtmt o CS Ntol Ts Hu Uvrsty Hsu, Tw s@tu.s.tu.u.tw K-C Wu Dprtmt o CS Ntol Ts Hu Uvrsty Hsu, Tw Alx@tu.s.tu.u.tw

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information