Single Source Shortest Paths (with Positive Weights)

Size: px
Start display at page:

Download "Single Source Shortest Paths (with Positive Weights)"

Transcription

1 Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd

2 In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm wt. Tody w wll s ow to solv t problm n t mor nrl stuton wr t ds n v rbtrry postv wts. W wll dsuss two vrnts of t problm, dpndn on wtr t nput rp s DAG or not. T formr s lrly spl s of t lttr, nd s rsult, dmts fstr lortm.

3 Wtd Grps Lt G = (V, E) b drtd rp. Lt w b funton tt mps d n E to postv ntr vlu. Spflly, for E, w() s postv ntr vlu, w w ll t wt of. A drtd wtd rp s dfnd s t pr (G, w).

4 Exmpl T ntr on d ndts ts wt. For xmpl, w(d, ) =, w(, f ) =, nd w(, ) = 0.

5 Sortst Pt Consdr drtd wtd rp dfnd by drtd rp G = (V, E) nd funton w. Consdr pt n G: (v, v ), (v, v 3 ),..., (v l, v l+ ), for som ntr l. W dfn t lnt of t pt s l w(v, v + ). = Rll tt w my lso dnot t pt s v v... v l+. Gvn two vrts u, v V, sortst pt from u to v s pt from u to v tt s t mnmum lnt mon ll t pts from u to v. If v s unrbl from u, tn t sortst pt dstn from u to v s.

6 Exmpl T pt d s lnt. T pt b d f s lnt 8. T sond pt s sortst pt from to.

7 Snl Sour Sortst Pt (SSSP) wt Postv Wts Lt (G, w) wt G = (V, E) b drtd wtd rp, wr w mps vry d of E to postv vlu. Gvn vrtx s n V, t ol of t SSSP problm s to fnd, for vry otr vrtx t V \ {s}, sortst pt from s to t, unlss t s unrbl from s.

8 A Subsqun Proprty Lmm: If v v... v l+ s sortst pt from v to v l+, tn for vry, j stsfyn < j l +, v v +... v j s sortst pt from v to v j. Proof: Suppos tt ts s not tru. Tn, w n fnd sortr pt to o from v to v j. Usn ts pt to rpl t ornl pt from v to v j ylds sortr pt from v to v l+, w ontrdts t ft tt v v... v l+ s sortst pt.

9 Exmpl Sn b d f s sortst pt, w know tt ny subsqun of of ts pt s lso sortst pt. For xmpl, b d must b sortst pt from b to.

10 Nxt, w wll frst xpln ow to solv t SSSP problm wn t nput rp G s DAG. Utlzn t subsqun proprty, our lortm wll output sortst pt tr tt nods ll t sortst pts from t sour vrtx s.

11 T Ed Rlxton Id For vry vrtx v V, w wll t ll tms mntn vlu dst(v) tt s urntd to b n uppr bound of t sortst pt dstn from s to v. At t nd of t lortm, w wll nsur tt vry dst(v) quls t prs sortst pt dstn from s to v. A or oprton n our lortm s lld d rlxton: Gvn n d (u, v), w rlx t s follows: - If dst(v) < dst(u) + w(u, v), do notn; - Otrws, rdu dst(v) to dst(u) + w(u, v).

12 T Rlxton Lmm Lmm: dst(v) s stll n uppr bound of t sortst pt dstn form s to v ftr t rlxton. Proof: It suffs to prov tt t sortst pt from s to v nnot v lnt rtr tn dst(u) + w(u, v). T vlu of dst(u) ndts t xstn of pt from s to u wos dstn s t most dst(u). W n trfor o from s to v by frst tkn tt pt to o to u, nd tn r v by rossn t d (u, v). Ts vs us pt from s to v wos dstn s t most dst(u) + w(u, v).

13 SSSP Alortm on DAG Obtn topolol ordr L on G St dst(s) = 0, nd dst(v) = for ll otr vrts v V 3 St prnt(v) = nl for ll vrts v V 4 Rmov ll t vrts n L tt r bfor s 5 Rpt t follown untl L s mpty: 5. rmov t frst vrtx u of L /* nxt w rlx ll t outon ds of u */ 5. for vry outon d (u, v) of u 5.. f dst(v) > dst(u) + w(u, v) tn st dst(v) = dst(u) + w(u, v), nd prnt(v) = u

14 Exmpl Suppos tt t sour vrtx s vrtx v dst(v) prnt(v) nl b nl 0 nl d nl nl f nl nl nl nl Frst, obtn n rbtrry topolol ordr,.., L = (, b,,, d,,, f, ). Intlz dst(v) nd prnt(v). Rmov ll vrts bfor n L, ftr w L = (,, d,,, f, ).

15 Exmpl Rlx ll t outon ds of vrtx v dst(v) prnt(v) nl b nl 0 nl d 0 f nl nl nl nl L = (, d,,, f, ).

16 Exmpl Rlx ll t outon ds of vrtx v dst(v) prnt(v) nl b nl 0 nl d 0 f nl nl nl nl L = (d,,, f, ).

17 Exmpl Rlx ll t outon ds of d vrtx v dst(v) prnt(v) nl b nl 0 nl d 7 d f nl 3 d nl nl L = (,, f, ).

18 Exmpl Rlx ll t outon ds of vrtx v dst(v) prnt(v) nl b nl 0 nl d 7 d f 5 3 d nl 4 L = (, f, ).

19 Exmpl Rlx ll t outon ds of vrtx v dst(v) prnt(v) nl b nl 0 nl d 7 d f 5 3 d nl 4 L = (f, ).

20 Exmpl Rlx ll t outon ds of f vrtx v dst(v) prnt(v) nl b nl 0 nl d 6 f f 5 3 d nl 4 L = ().

21 Exmpl Rlx ll t outon ds of vrtx v dst(v) prnt(v) nl b nl 0 nl d 6 f f 5 3 d nl 4 L = (). At ts pont, w v omputd t sortst pt dstns from to ll t otr vrts.

22 Construtn t Sortst Pt Tr For vry vrtx v, f u = prnt(v) s not nl, tn mk v ld of u. Exmpl vrtx v b d f prnt(v) nl nl nl f d nl sortst pt tr f d

23 Tm Anlyss Stp (on Sld 30) n on n O( V + E ) tm (DFS). Stps -4 obvously tk O( V ) tm. Rrdn Stp 5, not tt vry outon d s rlxd only on. Sn rlxton tks only O() tm, w know tt Stp 5 n b mplmntd n O( V + E ) tm (O() tm spnt rmovn vrtx from L). Construtn t sortst pt tr t t nd obvously tks O( V ) tm. Ovrll t lortm runs n O( V + E ) tm (w s optml).

24 W now prov tt our lortm s orrt. In prtulr, w wll prov tt wn t lortm fnss, dst(v) olds t orrt sortst pt dstn from s to v. Strtly spkn, w lso nd to prov tt t flds of prnt(v) llow us to onstrut t sortst pt tr orrtly, but ts s ssntlly smpl orollry of t bov lm (nd s lft for you).

25 Corrtnss Not tt dst(v) wll nvr n ftr v s rmovd from L (nd s ts out-on ds rlxd). W wll prov: Lmm: Wn dst(v) s rmovd from L, dst(v) quls t sortst pt dstn from s to v. T lmm s suffnt for stblsn t orrtnss of our lortm.

26 Corrtnss Proof: Rll tt t t bnnn of t lortm, w drtly rmov ll t vrts v tt prd s n L, lvn dst(v) =. Ts s orrt bus non of tos vrts r rbl from s (by dfnton of topolol ordr). W wll prov tt t lmm lso olds for t otr vrts. W wll do so by nduton on t ordr tt vrts r rmovd from L, strtn from s. Bs Cs: Wn s s rmovd, dst(s) = 0, s rqurd by t lmm.

27 Corrtnss Proof (ont.): Indutv Cs: Suppos tt w r rmovn v from L, nd tt t lmm olds on ll t vrts rmovd bfor v. Lt π b sortst pt from s to v, nd u t vrtx on π mmdtly bfor v. It tus follows tt u must b bfor v n L, nd n, must v bn rmovd. It follows tt dst(u) must b t sortst pt dstn from s to u. Tus, by rlxn d (u, v), t lortm nsurs tt dst(v) nnot b r tn dst(u) + w(u, v), w s xtly t sortst pt dstn from s to v. Tn t lmm follows from t ft tt dst(v) lwys rmns n uppr bound of t sortst pt dstn (t rlxton lmm).

28 Nxt, w wll xtnd t bov lortm to solv t SSSP problm wn t nput rp G s nrl drtd rps (.., yls my xst). T mjor dffrn s t ordr tt vrts r prossd (rll tt yl rp s no topolol ordrs). T xtndd lortm s lld Djkstr s lortm.

29 T Ed Rlxton Id Sm d s bfor! For vry vrtx v V, w wll t ll tms mntn vlu dst(v) tt s urntd to b n uppr bound of t sortst pt dstn from s to v. At t nd of t lortm, w wll nsur tt vry dst(v) quls t prs sortst pt dstn from s to v. Ed rlxton: Gvn n d (u, v), w rlx t s follows: - If dst(v) < dst(u) + w(u, v), do notn; - Otrws, rdu dst(v) to dst(u) + w(u, v). T rlxton lmm stll olds.

30 Djkstr s Alortm St prnt(v) = nl for ll vrts v V St dst(s) = 0, nd dst(v) = for ll otr vrts v V 3 St S = V 4 Rpt t follown untl S s mpty: 5. Rmov from S t vrtx u wt t smllst dst(u). /* nxt w rlx ll t outon ds of u */ 5. for vry outon d (u, v) of u 5.. f dst(v) > dst(u) + w(u, v) tn st dst(v) = dst(u) + w(u, v), nd prnt(v) = u

31 Exmpl Suppos tt t sour vrtx s vrtx v dst(v) prnt(v) nl b nl 0 nl d nl nl f nl nl nl nl S = {, b,, d,, f,,, }.

32 Exmpl Rlx t out-on ds of (bus dst() s t smllst n S): vrtx v dst(v) prnt(v) nl b nl 0 nl d 0 f nl nl nl nl S = {, b, d,, f,,, }. Not tt s bn rmovd!

33 Exmpl Rlx t out-on ds of d (bus dst(d) s t smllst n S): vrtx v dst(v) prnt(v) 8 d b nl 0 nl d 0 f nl 3 d nl nl S = {, b,, f,,, }.

34 Exmpl Rlx t out-on ds of : vrtx v dst(v) prnt(v) 8 d b nl 0 nl d 0 f 5 3 d nl 4 S = {, b,, f,, }.

35 Exmpl Rlx t out-on ds of : vrtx v dst(v) prnt(v) 8 d b nl 0 nl d 0 f 5 3 d nl 4 S = {, b,, f, }.

36 Exmpl Rlx t out-on ds of f : vrtx v dst(v) prnt(v) 8 d b nl 0 nl d 6 f f 5 3 d nl 4 S = {, b,, }.

37 Exmpl Rlx t out-on ds of : vrtx v dst(v) prnt(v) 8 d b nl 0 nl d 6 f f 5 3 d nl 4 S = {, b, }.

38 Exmpl Rlx t out-on ds of : vrtx v dst(v) prnt(v) 8 d b 9 0 nl d 6 f f 5 3 d nl 4 S = {b, }.

39 Exmpl Rlx t out-on ds of b: vrtx v dst(v) prnt(v) 8 d b 9 0 nl d 6 f f 5 3 d nl 4 S = {}.

40 Exmpl Rlx t out-on ds of : vrtx v dst(v) prnt(v) 8 d b 9 0 nl d 6 f f 5 3 d nl 4 S = {}. All t sortst pt dstns r now fnl.

41 Construtn t Sortst Pt Tr For vry vrtx v, f u = prnt(v) s not nl, tn mk v ld of u. Exmpl vrtx v b d f prnt(v) d nl f d nl sortst pt tr f d b

42 Corrtnss nd Runnn Tm It wll b lft s n xrs for you to prov tt Djkstr s lortm s orrt (by xtndn t orrtnss of our DAG lortm). Just s qully nstrutv s n xrs for you to mplmnt Djkstr s lortm n O(( V + E ) lo V ) tm. You v lrdy lrnd ll t dt struturs for ts purpos. Now t s t tm to prt pplyn tm.

43 Ts onluds our dsusson on t SSSP problm. W v lrnd ow to solv t problm n 3 sttns: Unt wt for ll ds nd rbtrry rps: BFS, runnn tm O( V + E ). Arbtrry wts nd DAGs: T frst lortm n ts ltur, runnn tm O( V + E ). Postv wts nd rbtrry rps: Djkstr s, runnn tm O(( V + E ) lo V ). Rmrk: Usn n dvnd dt strutur (lld t Fbon Hp) tt wll not b ovrd n ts ours, w n tully mprov t runnn tm of Djkstr s lortm to O( V lo V + E ).

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Graph Search Algorithms

Graph Search Algorithms Grp Sr Aortms 1 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms. 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2),

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Minimum Spanning Trees

Minimum Spanning Trees Yufi Tao ITEE Univrsity of Qunslan In tis lctur, w will stuy anotr classic prolm: finin a minimum spannin tr of an unirct wit rap. Intrstinly, vn tou t prolm appars ratr iffrnt from SSSP (sinl sourc sortst

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Graphs Breadth First Search

Graphs Breadth First Search Grp Brdt Frt Sr SFO ORD LAX DFW - 1 - Outo Ø By undrtndn t tur, you oud to: q L rp ordn to t ordr n w vrt r dovrd n rdt-rt r. q Idnty t urrnt tt o rdt-rt r n tr o vrt tt r prvouy dovrd, ut dovrd or undovrd.

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017.

Spanning Tree. Preview. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree. Minimum Spanning Tree 10/17/2017. 0//0 Prvw Spnnng Tr Spnnng Tr Mnmum Spnnng Tr Kruskl s Algorthm Prm s Algorthm Corrctnss of Kruskl s Algorthm A spnnng tr T of connctd, undrctd grph G s tr composd of ll th vrtcs nd som (or prhps ll) of

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d)

Functions and Graphs 1. (a) (b) (c) (f) (e) (d) 2. (a) (b) (c) (d) Functions nd Grps. () () (c) - - - O - - - O - - - O - - - - (d) () (f) - - O - 7 6 - - O - -7-6 - - - - - O. () () (c) (d) - - - O - O - O - - O - -. () G() f() + f( ), G(-) f( ) + f(), G() G( ) nd G()

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,...

a g f 8 e 11 Also: Minimum degree, maximum degree, vertex of degree d 1 adjacent to vertex of degree d 2,... Warmup: Lt b 2 c 3 d 1 12 6 4 5 10 9 7 a 8 11 (i) Vriy tat G is connctd by ivin an xampl o a walk rom vrtx a to ac o t vrtics b. (ii) Wat is t sortst pat rom a to c? to? (iii) Wat is t lonst pat rom a

More information

Graph Search Algorithms CSE

Graph Search Algorithms CSE Grp Src Aortms 1 Grp b No ~ cty or computr E ~ ro or t cb c Unrct or Drct A surprsny r numbr o computton probms cn b xprss s rp probms. 2 Drct n Unrct Grps () A rct rp G = (V, E), wr V = {1,2,3,4,5,6}

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn

More information

An Introduction to Clique Minimal Separator Decomposition

An Introduction to Clique Minimal Separator Decomposition Alortms 2010, 3, 197-215; o:10.3390/3020197 Rvw OPEN ACCESS lortms ISSN 1999-4893 www.mp.om/ournl/lortms An Introuton to Clqu Mnml Sprtor Domposton Ann Brry 1,, Romn Poorln 1 n Gnvèv Smont 2 1 LIMOS UMR

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Last time: introduced our first computational model the DFA.

Last time: introduced our first computational model the DFA. Lctur 7 Homwork #7: 2.2.1, 2.2.2, 2.2.3 (hnd in c nd d), Misc: Givn: M, NFA Prov: (q,xy) * (p,y) iff (q,x) * (p,) (follow proof don in clss tody) Lst tim: introducd our first computtionl modl th DFA. Tody

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c. AP CALCULUS BC SUMMER ASSIGNMENT DO NOT SHOW YOUR WORK ON THIS! Complt ts problms during t last two wks of August. SHOW ALL WORK. Know ow to do ALL of ts problms, so do tm wll. Itms markd wit a * dnot

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

No-bend Orthogonal Drawings of Series-Parallel Graphs

No-bend Orthogonal Drawings of Series-Parallel Graphs No-nd Orthoonl Drwns of Srs-Prlll Grphs (Etndd Astrt) Md. Sdur Rhmn, Nortsuu E, nd Tko Nshzk Dprtmnt of Computr Sn nd Ennrn, Bnldsh Unrsty of Ennrn nd Thnoloy (BUET), Dhk 000, Bnldsh sdurrhmn@s.ut..d Grdut

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

18 Basic Graph Properties

18 Basic Graph Properties O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

Chapter Interval Scheduling. Greedy Algorithms. What is a Greedy Algorithm? Interval Scheduling

Chapter Interval Scheduling. Greedy Algorithms. What is a Greedy Algorithm? Interval Scheduling Wht s Grdy Algorthm? Chptr Grdy Algorthms Grdy lgorthm Hrd to gv prs dfnton It ulds up soluton n smll stps, hoosng dson t h stp to optmz som undrlyng rtron Mk lol dsons, nd mglly gt glol optmum Vry ffnt

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca**

ERDOS-SMARANDACHE NUMBERS. Sabin Tabirca* Tatiana Tabirca** ERDO-MARANDACHE NUMBER b Tbrc* Tt Tbrc** *Trslv Uvrsty of Brsov, Computr cc Dprtmt **Uvrsty of Mchstr, Computr cc Dprtmt Th strtg pot of ths rtcl s rprstd by rct work of Fch []. Bsd o two symptotc rsults

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

Ch 1.2: Solutions of Some Differential Equations

Ch 1.2: Solutions of Some Differential Equations Ch 1.2: Solutions of Som Diffrntil Equtions Rcll th fr fll nd owl/mic diffrntil qutions: v 9.8.2v, p.5 p 45 Ths qutions hv th gnrl form y' = y - b W cn us mthods of clculus to solv diffrntil qutions of

More information

Formal Concept Analysis

Formal Concept Analysis Forml Conpt Anlysis Conpt intnts s losd sts Closur Systms nd Implitions 4 Closur Systms 0.06.005 Nxt-Closur ws dvlopd y B. Gntr (984). Lt M = {,..., n}. A M is ltilly smllr thn B M, if B A if th smllst

More information

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014

Graph Algorithms and Combinatorial Optimization Presenters: Benjamin Ferrell and K. Alex Mills May 7th, 2014 Grp Aloritms n Comintoril Optimiztion Dr. R. Cnrskrn Prsntrs: Bnjmin Frrll n K. Alx Mills My 7t, 0 Mtroi Intrstion In ts ltur nots, w mk us o som unonvntionl nottion or st union n irn to kp tins lnr. In

More information

(4, 2)-choosability of planar graphs with forbidden structures

(4, 2)-choosability of planar graphs with forbidden structures (4, )-ooslty o plnr rps wt orn struturs Znr Brkkyzy 1 Crstopr Cox Ml Dryko 1 Krstn Honson 1 Mot Kumt 1 Brnr Lký 1, Ky Mssrsmt 1 Kvn Moss 1 Ktln Nowk 1 Kvn F. Plmowsk 1 Drrk Stol 1,4 Dmr 11, 015 Astrt All

More information

Fractions. Mathletics Instant Workbooks. Simplify. Copyright

Fractions. Mathletics Instant Workbooks. Simplify. Copyright Frctons Stunt Book - Srs H- Smplfy + Mthltcs Instnt Workbooks Copyrht Frctons Stunt Book - Srs H Contnts Topcs Topc - Equvlnt frctons Topc - Smplfyn frctons Topc - Propr frctons, mpropr frctons n mx numbrs

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information