Graph Search Algorithms

Size: px
Start display at page:

Download "Graph Search Algorithms"

Transcription

1 Grp Sr Aortms 1

2 Grp 2 No ~ ty or omputr E ~ ro or t Unrt or Drt A surprsny r numr o omputton proms n xprss s rp proms.

3 3 Drt n Unrt Grps () A rt rp G = (V, E), wr V = {1,2,3,4,5,6} n E = {(1,2), (2,2), (2,4), (2,5), (4,1), (4,5), (5,4), (6,3)}. T (2,2) s s-oop. () An unrt rp G = (V,E), wr V = {1,2,3,4,5,6} n E = {(1,2), (1,5), (2,5), (3,6)}. T vrtx 4 s sot. () T surp o t rp n prt () nu y t vrtx st {1,2,3,6}.

4 4 Trs Tr Forst Grp wt Cy A tr s onnt, y, unrt rp. A orst s st o trs (not nssry onnt)

5 5 Runnn Tm o Grp Aortms Runnn tm otn unton o ot V n E. For onvnn, rop t. n symptot notton,.. O(V+E).

6 6 Rprsnttons: Unrt Grps Sp ompxty: Tm to n nours o vrtx u : Tm to trmn ( uv, ) E: Any Lst θ ( V + E) θ(r( u)) θ(r( u)) Any Mtrx 2 θ( V ) θ ( V ) θ (1)

7 7 Rprsnttons: Drt Grps Sp ompxty: Tm to n nours o vrtx u : Tm to trmn ( uv, ) E: Any Lst θ ( V + E) θ(r( u)) θ(r( u)) Any Mtrx 2 θ( V ) θ ( V ) θ (1)

8 8 Brt-Frst Sr Go: To rovr t sortst pts rom sour no s to otr r nos v n rp. T nt o pt n t pts tmsvs r rturn. Nots: Tr r n xponnt numr o poss pts Ts prom s rr or nr rps tn trs us o ys!? s

9 9 Brt-Frst Sr Input: Grp G = ( V, E) (rt or unrt) n sour vrtx s V. Output: v [ ] = sortst pt stn δ( sv, ) rom sto v, v V. π[ v] = u su tt ( u, v) s st on sortst pt rom s to v. I: sn out sr wv rom s. Kp tr o prorss y oourn vrts: Unsovr vrts r oour Just sovr vrts (on t wvront) r oour r. Prvousy sovr vrts (n wvront) r oour ry.

10 s BFS Frst-In Frst-Out (FIFO) quu stors ust sovr vrts Not Hn Quu m 10

11 s BFS =0 m Not Hn Quu s =0 11

12 s BFS =0 =1 m Not Hn Quu =0 =1 12

13 s BFS =0 =1 m Not Hn Quu =1 13

14 s BFS =0 =1 m Not Hn Quu =2 =1 =2 14

15 s BFS =0 =1 m Not Hn Quu =2 m =1 =2 15

16 s BFS =0 =1 m Not Hn Quu =2 m =1 =2 16

17 s BFS =0 =1 m Not Hn Quu =2 m =1 =2 17

18 s BFS =0 =1 m Not Hn Quu =2 m =2 18

19 s BFS =0 =1 19 m =3 Not Hn Quu =2 m =2 =3

20 s BFS =0 =1 20 m =3 Not Hn Quu =2 m =2 =3

21 s BFS =0 =1 21 m =3 Not Hn Quu =2 =2 =3

22 s BFS =0 =1 22 m =3 Not Hn Quu =2 =2 =3

23 s BFS =0 =1 23 m =3 Not Hn Quu =2 =2 =3

24 s BFS =0 =1 24 m =3 Not Hn Quu =2 =3

25 s =4 BFS =0 =1 25 m =3 Not Hn Quu =2 =3 =4

26 s =4 BFS =0 =1 26 m =3 Not Hn Quu =2 =3 =4

27 s =4 BFS =0 =1 27 m =3 Not Hn Quu =2 =3 =4

28 s =4 BFS =0 =1 28 m =3 Not Hn Quu =2 =4

29 s =4 BFS =0 =1 29 m =3 Not Hn Quu =2 =4 =5

30 30 Brt-Frst Sr Aortm Q s FIFO quu. BLACK E vrtx ssn nt vu t most on. RED Q ontns vrts wt vus {,,, +1,, +1} vus ssn r monotony nrsn ovr tm. BLACK RED GRAY

31 31 Brt-Frst-Sr s Gry Vrts r n: n orr o tr sovry (FIFO quu) Smst vus rst

32 Corrtnss 32 Bs Stps: s u v T sortst pt to u s nt & tr s n rom u to v Tr s pt to v wt nt +1.

33 33 Corrtnss Vrts r sovr n orr o tr stn rom t sour vrtx s. Wn w sovr v, ow o w now tr s not sortr pt to v? Bus tr ws, w wou ry v sovr t! s u v

34 Corrtnss 34 Input: Grp G = ( V, E) (rt or unrt) n sour vrtx s V. Output: v [ ] = stn rom sto v, v V. π[ v] = u su tt ( u, v) s st on sortst pt rom s to v. Two-stp proo: On xt: 1. v [ ] δ( sv, ) v V 2. v [ ] > δ( sv, ) v V

35 35 Cm 1. s nvr too sm: [ v] δ( s, v) v V Proo: Tr xsts pt rom s to v o nt [ v]. By Inuton: Suppos t s tru or vrts tus r sovr ( r n ry). v s sovr rom som nt vrtx u n n. v [ ] = u [ ] + 1 δ(, s u) + 1 δ(, sv) s u v sn vrtx v s ssn vu xty on, t oows tt o n xt, v [ ] δ ( s, v) v V.

36 36 Cm 1. s nvr too sm: [ v] δ( s, v) v V Proo: Tr xsts pt rom s to v o nt [ v]. BLACK RED s u v <LI>: v [ ] δ( sv, ) 'sovr' ( r or r y) v V BLACK RED δ(, su) + 1 δ(, sv) GRAY

37 37 Cm 2. s nvr too : [ v] δ( s, v) v V Proo y ontrton: Suppos on or mor vrts rv vu rtr tn δ. Lt v t vrtx wt mnmum δ( s, v) tt rvs su vu. Suppos tt v s sovr n ssn ts vu wn vrtx x s quu. Lt u v's prssor on sortst pt rom s to v. Tn δ (, s v ) < [] v δ(, s v) 1 < [] v 1 u [ ] < x [ ] s x [ ] = v [ ] 1 [ u] = δ( s, v) 1 x u v R : vrts r quu n nrsn orr o v u. u ws quu or x. [ v] = [ u] + 1 =δ( s, v) Contrton!

38 38 Corrtnss Cm 1. s nvr too sm: [ v] δ( s, v) v V Cm 2. s nvr too : [ v] δ( s, v) v V s ust rt: [ v] = δ( s, v) v V

39 Prorss? 39 On vry trton on vrtx s pross (turns ry). BLACK RED BLACK RED GRAY

40 40 Runnn Tm E vrtx s nquu t most on O( V) E ntry n t ny sts s snn t most on Tus run tm s OV ( + E). O(E) BLACK RED BLACK RED GRAY

41 41 Optm Sustrutur Proprty T sortst pt prom s t optm sustrutur proprty: Evry supt o sortst pt s sortst pt. sortst pt s u v sortst pt sortst pt T optm sustrutur proprty s mr o ot ry n ynm prormmn ortms. ows us to omput ot sortst pt stn n t sortst pts tmsvs y storn ony on vu n on prssor vu pr vrtx.

42 Rovrn t Sortst Pt 42 For no v, stor prssor o v n π(v). s u π(v) v Prssor o v s π(v) = u.

43 43 Rovrn t Sortst Pt PRINT-PATH( G, s, v ) Pronton: s n v r vrts o rp G Postonton: t vrts on t sortst pt rom s to v v n prnt n orr v = s tn prnt s s π[] v = NI L tn prnt " no pt rom" s "to" v "xsts" s PRINT-PATH( G, s, π[ v]) prnt v

44 Coours r tuy not rqur 44

45 45 Dpt Frst Sr (DFS) I: Contnu srn pr nto t rp, unt w t stu. I t s vn v v n xpor w tr to t vrtx rom w v ws sovr. Dos not rovr sortst pts, ut n usu or xtrtn otr proprts o rp,.., Topoo sorts Dtton o ys Extrton o strony onnt omponnts

46 46 Dpt-Frst Sr Inp u t: Grp G = ( V, E) (rt or unrt ) Output: 2 tmstmps on vrtx: v [ ] = sovry tm. v [ ] = nsn tm. Expor vry, strtn rom rnt vrts nssry. As soon s vrtx sovr, xpor rom t. Kp tr o prorss y oourn vrts: B: unsovr vrts 1 v [ ] < v [ ] 2 V R: sovr, ut not ns (st xporn rom t) Gry: ns (oun vrytn r rom t).

47 DFS s Not: St s Lst-In Frst-Out (LIFO) Not Hn St <no,# s> 47 m

48 s 1 DFS Not Hn St <no,# s> 48 m s,0

49 2 s 1 DFS Not Hn St <no,# s> 49 m,0 s,1

50 2 s 1 DFS Not Hn St <no,# s> 3 50 m,0,1 s,1

51 2 s 1 DFS Not Hn St <no,# s> m,0,1,1 s,1

52 2 s 1 DFS Not Hn St <no,# s> m,0,1,1,1 s,1

53 2 s 1 DFS Not Hn St <no,# s> 3 Pt on St 4 Tr E m,1,1,1 s,1

54 2 s 1 DFS Not Hn St <no,# s> m,1,1 s,1

55 2 s 1 DFS Not Hn St <no,# s> m,0,2,1 s,1

56 Cross E to n no: []<[] s DFS 1 56 m Not Hn St <no,# s>,1,2,1 s,1

57 2 s 1 DFS Not Hn St <no,# s> m,2,2,1 s,1

58 2 s 1 DFS Not Hn St <no,# s> m,0,3,2,1 s,1

59 2 s 1 DFS Not Hn St <no,# s> m,1,3,2,1 s,1

60 2 s 1 DFS Not Hn St <no,# s> m,3,2,1 s,1

61 2 s 1 DFS Not Hn St <no,# s> m,0,4,2,1 s,1

62 2 s 1 DFS Not Hn St <no,# s> m 12,0,1,4,2,1 s,1

63 B E to no on St: 2 s 1 DFS Not Hn St <no,# s> m 12,1,1,4,2,1 s,1

64 2 s 1 DFS Not Hn St <no,# s> m m,0,2,1,4,2,1 s,1

65 2 s 1 DFS Not Hn St <no,# s> m m,1,2,1,4,2,1 s,1

66 2 s 1 DFS Not Hn St <no,# s> m ,2,1,4,2,1 s,1

67 2 s 1 DFS Not Hn St <no,# s> m ,1,4,2,1 s,1

68 2 s 1 DFS Not Hn St <no,# s> m ,4,2,1 s,1

69 2 s 1 DFS Not Hn St <no,# s> m ,0,5,2,1 s,1

70 2 s 1 DFS Not Hn St <no,# s> m ,1,5,2,1 s,1

71 2 s 1 DFS Not Hn St <no,# s> m ,5,2,1 s,1

72 2 s 1 DFS Not Hn St <no,# s> m ,2,1 s,1

73 Forwr E 2 s 1 DFS Not Hn St <no,# s> m ,3,1 s,1

74 2 s 1 DFS Not Hn St <no,# s> m ,1 s,1

75 2 s 1 DFS Not Hn St <no,# s> m ,2 s,1

76 220 s 1 DFS Not Hn St <no,# s> m s,1

77 220 s 1 DFS Not Hn St <no,# s> m ,0 s,2

78 220 s 1 DFS Not Hn St <no,# s> m ,1 s,2

79 220 s 1 DFS Not Hn St <no,# s> m ,2 s,2

80 220 s 1 DFS Not Hn St <no,# s> m ,0,3 s,2

81 220 s 1 DFS Not Hn St <no,# s> m ,1,3 s,2

82 220 s 1 DFS Not Hn St <no,# s> m ,3 s,2

83 220 s 1 DFS Not Hn St <no,# s> m s,2

84 220 s 1 DFS Not Hn St <no,# s> m s,3

85 220 s 1 DFS 25 Not Hn St <no,# s> m ,0 s,4

86 220 s 1 DFS 25 Not Hn St <no,# s> m ,1 s,4

87 220 s 1 DFS 25 Not Hn St <no,# s> m ,2 s,4

88 220 s 1 DFS 25 Not Hn St <no,# s> m ,3 s,4

89 220 s 1 DFS 2526 Not Hn St <no,# s> m s,4

90 Tr Es B Es Forwr Es Cross Es s DFS Fns! m Not Hn St <no,# s>

91 Csston o Es n DFS 1. Tr s r s n t pt-rst orst G π. E (u, v) s tr v ws rst sovr y xporn (u, v). 2. B s r tos s (u, v) onntn vrtx u to n nstor v n pt-rst tr. 3. Forwr s r non-tr s (u, v) onntn vrtx u to snnt v n pt-rst tr. 4. Cross s r otr s. Ty n o twn vrts n t sm pt-rst tr, s on s on vrtx s not n nstor o t otr s m

92 Csston o Es n DFS 1. Tr s: E (u, v) s tr v ws wn (u, v) trvrs. 2. B s: (u, v) s v ws r wn (u, v) trvrs. 3. Forwr s: (u, v) s orwr v ws ry wn (u, v) trvrs n [v] > [u]. 4. Cross s (u,v) s ross v ws ry wn (u, v) trvrs n [v] < [u]. Cssyn s n p to nty proprts o t rp,.., rp s y DFS ys no s s m

93 93 Unrt Grps In pt-rst sr o n unrt rp, vry s tr tr or. Wy?

94 94 Unrt Grps Suppos tt (u,v) s orwr or ross n DFS o n unrt rp. (u,v) s orwr or ross wn v s ry n (ry) wn ss rom u. Ts mns tt vrts r rom v v n xpor. Sn w r urrnty nn u, u must r. Cry v s r rom u. Sn t rp s unrt, u must so r rom v. Tus u must ry v n n: u must ry. Contrton! u v

95 95 DFS(G) Dpt-Frst Sr Aortm BLACK BLACK DFS-Vst ( u ) Pronton: vrtx u s unsovr Postonton: vrts r rom u v n pross RED BLACK BLACK GRAY GRAY

96 96 DFS(G) Dpt-Frst Sr Aortm BLACK DFS-Vst ( u ) BLACK Pronton: vrtx u s unsovr tot wor = θ( V ) Tus runnn tm = θ ( V + E) Postonton: vrts r rom u v n pross RED BLACK BLACK tot wor = A [ v] = θ( E ) vv GRAY GRAY

97 Topoo Sortn (.., puttn tss n nr orr) An ppton o Dpt-Frst Sr

98 98 Lnr Orr unrwr sos pnts sos unrwr pnts sos sos sos unrwr pnts sos

99 99 Lnr Orr unrwr sos pnts sos Too mny vo ms?

100 Lnr Orr Pronton: A Drt Ay Grp (DAG) Post Conton: Fn on v nr orr Aortm: Fn trmn no (sn). Put t st n squn. Dt rom rp & rpt Θ(V) Θ(V 2 ) W n o ttr!

101 Lnr Orr A: DFS Not Hn St 101..

102 Lnr Orr A: DFS 102 Not Hn St Wn no s popp o st, nsrt t ront o nry-orr to o st. Lnr Orr:..

103 Lnr Orr A: DFS Not Hn St Lnr Orr: 103,

104 Lnr Orr A: DFS Not Hn St Lnr Orr: 104,,

105 Lnr Orr A: DFS Not Hn St Lnr Orr: 105,,,

106 Lnr Orr A: DFS Not Hn St Lnr Orr: 106,,,,

107 Lnr Orr A: DFS Not Hn St Lnr Orr: 107,,,,

108 Lnr Orr A: DFS Not Hn St Lnr Orr: 108,,,,,

109 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,, 109

110 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,, 110

111 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,, 111

112 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,,, 112

113 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,,,, 113

114 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,,,, 114

115 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,,,,, 115

116 Lnr Orr A: DFS Not Hn St Lnr Orr:,,,,,,,,,,, Don! 116

117 Lnr Orr Proo: Consr Cs 1: u os on st rst or v. Bus o, v os on or u oms o v oms o or u oms o v os tr u n orr. Not Hn St v u u v 117 u v

118 Lnr Orr Proo: Consr Cs 1: u os on st rst or v. Cs 2: v os on st rst or u. v oms o or u os on. v os tr u n orr. Not Hn St v u u v 118 u v

119 Lnr Orr Proo: Consr Cs 1: u os on st rst or v. Cs 2: v os on st rst or u. v oms o or u os on. Cs 3: v os on st rst or u. u os on or v oms o. Pn: u os tr v n orr. Cy mns nr orr s mposs 119 Not Hn St u v T nos n t st orm pt strtn t s. u v v u

120 Lnr Orr A: DFS Anyss: Θ(V+E) Not Hn St Lnr Orr:,,,,,,,,,,, Don! 120

121 Sortst Pts Rvst

122 122 B to Sortst Pt BFS ns t sortst pts rom sour no s to vry vrtx v n t rp. Hr, t nt o pt s smpy t numr o s on t pt. But wt s v rnt osts? s δ (, sv) = 3 δ (, sv) = 12 v s v

123 Sn-Sour (Wt) Sortst Pts

124 124 T Prom Wt s t sortst rvn rout rom Toronto to Ottw? (.. MAPQust, Goo Mps) Input: Drt Grp G = ( V, E) E wts w: E Wt o pt p =< v, v,..., v > = w( v, v) = 1 Sortst-pt wt rom u to v : p δ ( uv, ) = mn{ w( p) : u L v} pt u L v, otrws. Sortst pt rom u to v s ny pt p su tt w( p) = δ( u, v).

125 125 Exmp Sn-sour sortst pt sr nus sr tr root t s. Ts tr, n n t pts tmsvs, r not nssry unqu.

126 126 Sortst pt vrnts Sn-sour sortst-pts prom: t sortst pt rom s to vrtx v. (.. BFS) Sn-stnton sortst-pts prom: Fn sortst pt to vn stnton vrtx t rom vrtx v. Sn-pr sortst-pt prom: Fn sortst pt rom u to v or vn vrts u n v. A-prs sortst-pts prom: Fn sortst pt rom u to v or vry pr o vrts u n v.

127 127 Ntv-wt s OK, s on s no ntv-wt ys r r rom t sour. I w v ntv-wt y, w n ust p on roun t, n t w(s, v) = or v on t y. But OK t ntv-wt y s not r rom t sour. Som ortms wor ony tr r no ntv-wt s n t rp.

128 128 Optm sustrutur Lmm: Any supt o sortst pt s sortst pt Proo: Cut n pst. Suppos ts pt p s sortst pt rom u to v. Tn δ ( uv, ) = w( p) = w( p ) + w( p ) + w( p ). Now suppos tr xsts sortr pt x L y. Tn w( pʹ ) < w( p ). xy Construt p ʹ : xy ux xy yv Tn w( pʹ ) = w( p ) + w( pʹ ) + w( p ) < w( p ) + w( p ) + w( p ) = w( p). ux xy yv So p wsn't sortst pt tr! ʹ p xy ux xy yv

129 129 Cys Sortst pts n t ontn ys: Ary ru out ntv-wt ys. Postv-wt: w n t sortr pt y omttn t y. Zro-wt: no rson to us tm ssum tt our soutons won t us tm.

130 130 Output o sn-sour sortst-pt ortm For vrtx v n V: [v] = δ(s, v). Inty, [v]=. Ru s ortm prorsss. But wys mntn [v] δ(s, v). C [v] sortst-pt stmt. π[v] = prssor o v on sortst pt rom s. I no prssor, π[v] = NIL. π nus tr sortst-pt tr.

131 131 Intzton A sortst-pts ortms strt wt t sm ntzton: INIT-SINGLE-SOURCE(V, s) or v n V o [v] [s] 0 π[v] NIL

132 132 Rxn n Cn w mprov sortst-pt stmt or v y on trou u n tn (u,v)? RELAX(u, v,w) [v] > [u] + w(u, v) tn [v] [u] + w(u, v) π[v] u

133 133 Gnr sn-sour sortst-pt strty 1. Strt y n INIT-SINGLE-SOURCE 2. Rx Es Aortms r n t orr n w s r tn n ow mny tms s rx.

134 134 Exmp: Sn-sour sortst pts n rt y rp (DAG) Sn rp s DAG, w r urnt no ntv-wt ys.

135 135 Aortm Tm: Θ ( V + E)

136 Exmp 136

137 Exmp 137

138 Exmp 138

139 Exmp 139

140 Exmp 140

141 Exmp 141

142 142 Corrtnss: Pt rxton proprty (Lmm 24.15) Lt p =< v, v,..., v > sortst pt rom s = v to v I w rx, n orr, ( v, v ), ( v, v ),..., ( v, v ), vn ntrmx wt otr rxtons, tn v [ ] = δ( s, v).

143 143 Corrtnss o DAG Sortst Pt Aortm Bus w pross vrts n topooy sort orr, s o ny pt r rx n orr o pprn n t pt. Es on ny sortst pt r rx n orr. By pt-rxton proprty, orrt.

144 144 Exmp: Dstr s ortm Apps to nr wt rt rp (my ontn ys). But wts must non-ntv. Essnty wt vrson o BFS. Inst o FIFO quu, uss prorty quu. Kys r sortst-pt wts ([v]). Mntn 2 sts o vrts: S = vrts wos n sortst-pt wts r trmn. Q = prorty quu = V-S.

145 145 Dstr s ortm Dstr s ortm n vw s ry, sn t wys ooss t tst vrtx n V S to to S.

146 146 Dstr s ortm: Anyss Anyss: Usn mnp, quu oprtons ts O(oV) tm OV ( ) O(o V ) OV ( ) trtons O(o V ) O( E) trtons Runnn Tm s OE ( o V)

147 147 Exmp Ky: Wt Gry Not Hnn B Hn

148 Exmp 148

149 Exmp 149

150 Exmp 150

151 Exmp 151

152 Exmp 152

153 153 Corrtnss o Dstr s ortm Loop nvrnt: [v] = δ(s, v) or v n S. Intzton: Inty, S s mpty, so trvy tru. Trmnton: At n, Q s mpty S = V [v] = δ(s, v) or v n V. Mntnn: N to sow tt [u] = δ(s, u) wn u s to S n trton. [u] os not n on u s to S.

154 154 Corrtnss o Dstr s Aortm: Uppr Boun Proprty Uppr Boun Proprty: 1. v [ ] δ( sv, ) v V 2. On v [ ] = δ( sv, ), t osn't n Proo: By nuton. Bs Cs : v [ ] δ( sv, ) v V mmty tr ntzton, sn s [ ] = 0 = δ( ss, ) v [ ] = v s Inutv Stp: Suppos x [ ] δ( sx, ) x V Suppos w rx ( uv, ). I v [ ] ns, tn v [ ] = u [ ] + wuv (, ) δ(, su) + wuv (, ) δ(, sv)

155 155 Corrtnss o Dstr s Aortm C m : Wn u s to S, [ u] = δ( s, u) Proo y Contrton: Lt u t rst vrtx to S su tt u [ ] δ( su, ) wn us. Lt y rst vrtx n V S on sortst pt to u Lt x t prssor o y on t sortst pt to u C m: y [ ] = δ( sy, ) wn us to S. Proo: x [ ] = δ( sx, ), sn x S. ( xy, ) ws rx wn xws to S y [ ] = δ( sx, ) + wxy (, ) = δ( sy, ) Hn

156 156 Corrtnss o Dstr s Aortm Tus y [ ] = δ( sy, ) wn us to S. y [ ] = δ( sy, ) δ( su, ) u [ ] (uppr oun proprty) But u [ ] y [ ] wn u to S Tus y [ ] = δ( sy, ) = δ( su, ) = u [ ]! Tus wn u s to S, [ u] = δ( s, u) Consquns: Tr s sortst pt to u su tt t prssor o u π[ u] S wn u s to S. T pt trou y n ony sortst pt w[ p ] = 0. 2 Hn π [ u]

157 157 Corrtnss o Dstr s ortm Loop nvrnt: [v] = δ(s, v) or v n S. Mntnn: N to sow tt [u] = δ(s, u) wn u s to S n trton. [u] os not n on u s to S. Rx(u,v,w) n ony rs v [ ]. By t uppr oun proprty, v [ ] δ( sv, ). Tus on v [ ] = δ( sv, ), t w not n.?

Graph Search Algorithms CSE

Graph Search Algorithms CSE Grp Src Aortms 1 Grp b No ~ cty or computr E ~ ro or t cb c Unrct or Drct A surprsny r numbr o computton probms cn b xprss s rp probms. 2 Drct n Unrct Grps () A rct rp G = (V, E), wr V = {1,2,3,4,5,6}

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

Graphs Depth First Search

Graphs Depth First Search Grp Dpt Frt Sr SFO 337 LAX 1843 1743 1233 802 DFW ORD - 1 - Grp Sr Aort - 2 - Outo Ø By unrtnn t tur, you ou to: q L rp orn to t orr n w vrt r ovr, xpor ro n n n pt-rt r. q Cy o t pt-rt r tr,, orwr n ro

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Planar convex hulls (I)

Planar convex hulls (I) Covx Hu Covxty Gv st P o ots 2D, tr ovx u s t sst ovx oyo tt ots ots o P A oyo P s ovx or y, P, t st s try P. Pr ovx us (I) Coutto Gotry [s 3250] Lur To Bowo Co ovx o-ovx 1 2 3 Covx Hu Covx Hu Covx Hu

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Applications of trees

Applications of trees Trs Apptons o trs Orgnzton rts Attk trs to syst Anyss o tr ntworks Prsng xprssons Trs (rtrv o norton) Don-n strutur Mutstng Dstnton-s orwrng Trnsprnt swts Forwrng ts o prxs t routrs Struturs or nt pntton

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Rll t nton o spnnn tr: Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Any unrt, onnt rp s spnnn tr. Atully, rp

More information

Graphs Breadth First Search

Graphs Breadth First Search Grp Brdt Frt Sr SFO ORD LAX DFW - 1 - Outo Ø By undrtndn t tur, you oud to: q L rp ordn to t ordr n w vrt r dovrd n rdt-rt r. q Idnty t urrnt tt o rdt-rt r n tr o vrt tt r prvouy dovrd, ut dovrd or undovrd.

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

CS 103 BFS Alorithm. Mark Redekopp

CS 103 BFS Alorithm. Mark Redekopp CS 3 BFS Aloritm Mrk Rkopp Brt-First Sr (BFS) HIGHLIGHTED ALGORITHM 3 Pt Plnnin W'v sn BFS in t ontxt o inin t sortst pt trou mz? S?? 4 Pt Plnnin W xplor t 4 niors s on irtion 3 3 3 S 3 3 3 3 3 F I you

More information

Strongly connected components. Finding strongly-connected components

Strongly connected components. Finding strongly-connected components Stronly onnt omponnts Fnn stronly-onnt omponnts Tylr Moor stronly onnt omponnt s t mxml sust o rp wt rt pt twn ny two vrts SE 3353, SMU, Dlls, TX Ltur 9 Som sls rt y or pt rom Dr. Kvn Wyn. For mor normton

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Lecture II: Minimium Spanning Tree Algorithms

Lecture II: Minimium Spanning Tree Algorithms Ltur II: Mnmum Spnnn Tr Alortms Dr Krn T. Hrly Dprtmnt o Computr Sn Unvrsty Coll Cork Aprl 0 KH (/0/) Ltur II: Mnmum Spnnn Tr Alortms Aprl 0 / 5 Mnmum Spnnn Trs Mnmum Spnnn Trs Spnnn Tr tr orm rom rp s

More information

2 Trees and Their Applications

2 Trees and Their Applications Trs n Tr Appltons. Proprts o trs.. Crtrzton o trs Dnton. A rp s ll yl (or orst) t ontns no yls. A onnt yl rp s ll tr. Quston. Cn n yl rp v loops or prlll s? Notton. I G = (V, E) s rp n E, tn G wll not

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Graph Search (6A) Young Won Lim 5/18/18

Graph Search (6A) Young Won Lim 5/18/18 Grp Sr (6A) Youn Won Lm Copyrt () 2015 2018 Youn W. Lm. Prmon rnt to opy, trut n/or moy t oumnt unr t trm o t GNU Fr Doumntton Ln, Vron 1.2 or ny ltr vron pul y t Fr Sotwr Founton; wt no Invrnt Ston, no

More information

CSE 332. Data Structures and Parallelism

CSE 332. Data Structures and Parallelism Am Blnk Ltur 20 Wntr 2017 CSE 332 Dt Struturs n Prlllsm CSE 332: Dt Struturs n Prlllsm Grps 1: Wt s Grp? DFS n BFS LnkLsts r to Trs s Trs r to... 1 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus,

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 19 Summr 2015 CSE 332: Dt Astrtons CSE 332 Grps 1: Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... 1 A Grp s Tny... 2 Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps,

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Minimum Spanning Trees (CLRS 23)

Minimum Spanning Trees (CLRS 23) Mnmum Spnnn Trs (CLRS 3) T prolm Gvn onnt, unrt rp G = (V, E), sust o s o G su tt ty onnt ll vrts n G n orm no yls s ll spnnn tr (ST) o G. Clm: Any unrt, onnt rp s spnnn tr (n nrl rp my v mny spnnn trs).

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts 15: 211 223, 1999. 1999 Kuw Puss. Pt t ts. 211 tt u ss y yss, wt t t uts.. By 1, S. s 2,EuR.Tvy 2 St 3 1 tt Ss, R 407 Bu (05), Uvsty Syy, SW, 2006, ust; 2 st ty, v 4 Bu u (6), sttut Rsty, Uvsty Syy, SW,

More information

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2

SAMPLE CSc 340 EXAM QUESTIONS WITH SOLUTIONS: part 2 AMPLE C EXAM UETION WITH OLUTION: prt. It n sown tt l / wr.7888l. I Φ nots orul or pprotng t vlu o tn t n sown tt t trunton rror o ts pproton s o t or or so onstnts ; tt s Not tt / L Φ L.. Φ.. /. /.. Φ..787.

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments

Platform Controls. 1-1 Joystick Controllers. Boom Up/Down Controller Adjustments Ston 7 - Rpr Prours Srv Mnul - Son Eton Pltorm Controls 1-1 Joystk Controllrs Mntnn oystk ontrollrs t t propr sttns s ssntl to s mn oprton. Evry oystk ontrollr soul oprt smootly n prov proportonl sp ontrol

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2

CSE 332. Graphs 1: What is a Graph? DFS and BFS. Data Abstractions. CSE 332: Data Abstractions. A Graph is a Thingy... 2 Am Blnk Ltur 0 Autumn 0 CSE 33: Dt Astrtons CSE 33 Grps : Wt s Grp? DFS n BFS Dt Astrtons LnkLsts r to Trs s Trs r to... A Grp s Tny... Wr W v Bn Essntl ADTs: Lsts, Stks, Quus, Prorty Quus, Hps, Vnll Trs,

More information

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP

BASIC CAGE DETAILS SHOWN 3D MODEL: PSM ASY INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SPRING FINGERS CLOSED TOP MO: PSM SY SI TIS SOWN SPRIN INRS OS TOP INNR W TS R OIN OVR S N OVR OR RIIITY. R TURS US WIT OPTION T SINS. R (UNOMPRSS) RR S OPTION (S T ON ST ) IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+)

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY

BASIC CAGE DETAILS D C SHOWN CLOSED TOP SPRING FINGERS INNER WALL TABS ARE COINED OVER BASE AND COVER FOR RIGIDITY SI TIS SOWN OS TOP SPRIN INRS INNR W TS R OIN OVR S N OVR OR RIIITY. R IMNSIONS O INNR SIN TO UNTION WIT QU SM ORM-TOR (zqsp+) TRNSIVR. R. RR S OPTION (S T ON ST ) TURS US WIT OPTION T SINS. R (INSI TO

More information

23 Minimum Spanning Trees

23 Minimum Spanning Trees 3 Mnmum Spnnn Trs Eltron rut sns otn n to mk t pns o svrl omponnts ltrlly quvlnt y wrn tm totr. To ntronnt st o n pns, w n us n rrnmnt o n wrs, onntn two pns. O ll su rrnmnts, t on tt uss t lst mount o

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4"C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48" AFF.

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48 AFF. 0 NOOY SYMO S N NOOY NOS: NO: his is a standard symbol list and not all items listed may be used. bbreviations () XSN OV NS OO NMW - UNOUN ONU OY ONO UNS ONO NS O ONO UNS OWN NS OX OX U OP SUON UN OO,

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow

w x a f f s t p q 4 r u v 5 i l h m o k j d g DT Competition, 1.8/1.6 Stainless, Black S, M, L, XL Matte Raw/Yellow HELION CARBON TEAM S, M, L, XL M R/Y COR XC Py, FOC U Cn F, 110 T Innn Dn 27. AOS Snn Sy /F Ln, P, 1 1/8"-1 1/2" In H T, n 12 12 M D F 32 FLOAT 27. CTD FIT /A K, 110 T, 1QR, / FIT D, L & Rn A, T Ay S DEVICE

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

17 Basic Graph Properties

17 Basic Graph Properties Ltur 17: Bs Grp Proprts [Sp 10] O look t t sn y o. Tn t t twnty-svn 8 y 10 olor lossy pturs wt t rls n rrows n prrp on t k o on... n tn look t t sn y o. An tn t t twnty-svn 8 y 10 olor lossy pturs wt t

More information

A ' / 1 6 " 5 ' / 4 " A4.2 48' - 0" 3 12' - 7" 13' - 11" 10' - 0" 9' - 0" 2' - 6" 1. 2: 12 INDICATES SHOW MELT TYP ABV ABV

A ' / 1 6  5 ' / 4  A4.2 48' - 0 3 12' - 7 13' - 11 10' - 0 9' - 0 2' - 6 1. 2: 12 INDICATES SHOW MELT TYP ABV ABV 4. 4. 4. K ' - / " ' - / 4 " 0 ' - / " ' - 0 " ' - 0 " ' - / " 4 ' - 0 " 4. M U PPR 48' - 0" ' - ' - " 0' - 0" ' - 0" ' - ". : WOM ' - 0 " OT: PROV URROU TR OUT SVS OR UTUR SP UTTY T OR QUSTR MPUS OTO

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

SAN JOSE CITY COLLEGE PHYSICAL EDUCATION BUILDING AND RENOVATED LAB BUILDING SYMBOL LIST & GENERAL NOTES - MECHANICAL

SAN JOSE CITY COLLEGE PHYSICAL EDUCATION BUILDING AND RENOVATED LAB BUILDING SYMBOL LIST & GENERAL NOTES - MECHANICAL S SRUUR OR OORO SU sketch SYO SRPO OO OU O SUPPOR YP SUPPOR O UR SOS OVR SOS (xwx) X W (S) RR RWS U- R R OR ROO OR P S SPR SO S OS OW "Wx00"x0" 000.0, 8/7.0 Z U- R R UPPR ROO S S S SPR SO S OS OW 0"Wx0"x90"

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

0# E % D 0 D - C AB

0# E % D 0 D - C AB 5-70,- 393 %& 44 03& / / %0& / / 405 4 90//7-90/8/3 ) /7 0% 0 - @AB 5? 07 5 >0< 98 % =< < ; 98 07 &? % B % - G %0A 0@ % F0 % 08 403 08 M3 @ K0 J? F0 4< - G @ I 0 QR 4 @ 8 >5 5 % 08 OF0 80P 0O 0N 0@ 80SP

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Dental PBRN Study: Reasons for replacement or repair of dental restorations

Dental PBRN Study: Reasons for replacement or repair of dental restorations Dntl PBRN Stuy: Rsons or rplmnt or rpr o ntl rstortons Us ts Dt Collton Form wnvr stuy rstorton s rpl or rpr. For nrollmnt n t ollton you my rpl or rpr up to 4 rstortons, on t sm ptnt, urn snl vst. You

More information

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network Fuy R O B G By Nw H-Y K D M Du M Hu Cu Uvy 48 Hu Cu R Hu 300 Tw. @w.u.u.w A By w v wy u w w uy. Hwv u uy u By w y u v w uu By w w w u vu vv y. T uy v By w w uy v v uy. B By w uy. T uy v uy. T w w w- uy.

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H

The Constrained Longest Common Subsequence Problem. Rotem.R and Rotem.H T Constrn Lonst Common Susqun Prolm Rotm.R n Rotm.H Prsntton Outln. LCS Alortm Rmnr Uss o LCS Alortm T CLCS Prolm Introuton Motvton For CLCS Alortm T CLCS Prolm Nïv Alortm T CLCS Alortm A Dynm Prormmn

More information

DOCUMENT STATUS: RELEASE

DOCUMENT STATUS: RELEASE RVSON STORY RV T SRPTON O Y 0-4-0 RLS OR PROUTON 5 MM -04-0 NS TRU PLOT PROUTON -- S O O OR TLS 30 MM 03-3-0 3-044 N 3-45, TS S T TON O PROTTV RM OVR. 3 05--0 LT 3-004, NOT, 3-050 3 0//00 UPT ST ROM SN,

More information

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION

DOCUMENT STATUS: MINTP0 E-ST5080, BASE, NO DISPLAY VENDOR: 15.5 INCH MATERIAL SEE BOM FINISH REVISION HISTORY ITEM NO. PART NUMBER DESCRIPTION RV T RVSON STORY SRPTON O Y 0-0-0 PROUTON RLS K. N NOTS:. SRL LL NORMTON: a) VOLTS: V b) MPS:.0 c) YLS: N/ d) WTTS: W e) PS: N/ f) PX #: PX. RTTON LOOS: S / / LN R WT SOPROPYL LOLOL PROR TO PLN.. PK M:

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Maximum Matching Width: new characterizations and a fast algorithm for dominating set

Maximum Matching Width: new characterizations and a fast algorithm for dominating set Maxmum Matcn Wdt: nw caractrzatons and a ast alortm or domnatn st 정지수 (KAIST) jont work wt Sv Hortmo Sætr and Jan Arn Tll (Unvrsty o Brn) 1st Koran Worksop on Grap Tory 2015.8.27. KAIST Grap wdt paramtrs

More information

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem.

Outlines: Graphs Part-4. Applications of Depth-First Search. Directed Acyclic Graph (DAG) Generic scheduling problem. Outlins: Graps Part-4 Applications o DFS Elmntary Grap Aloritms Topoloical Sort o Dirctd Acyclic Grap Stronly Connctd Componnts PART-4 1 2 Applications o Dpt-First Sarc Topoloical Sort: Usin dpt-irst sarc

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information