Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network


 Berniece Stewart
 1 years ago
 Views:
Transcription
1 Fuy R O B G By Nw HY K D M Du M Hu Cu Uvy 48 Hu Cu R Hu 300 A By w v wy u w w uy. Hwv u uy u By w y u v w uu By w w w u vu vv y. T uy v By w w uy v v uy. B By w uy. T uy v uy. T w w w uy. G By Nw; Fuy R; O; Suy C M R Bu Ov By w 988 C. 996 C y DAG w v u u w v u x y. T By w w y DAG y y y. Ty wy u w vu u uy T S 990 Du. 99 K. 000 Gá. 00. Sv v v v uv By w. Ex x uu w y uy 988 C. 996 C Mw u v v u y w w x 988 C Ry  x w y u u vu v w v 993. O w y
2 v y By w y: y SI y u u S. 990 C. 996 C T u v v By w:. A w v u.. A u u w uuy u. 3. D u . T uy v By w w v uy uy u. B By w uy u w u w. T w By w w uy. Fu v vu. v T u By w u uy.. G By w Gy By w. BN= V L I V v L y w w L V V I u V u. I u uy By w x By w w. GBN = V L 3 I 3 y u uy w w x By w. Fu V x 4. V = { V V V } 4 D R U w V D V R w v By w V U uy w v. By 4 u u.
3 . u W y w uv uy N. 00. C : A uvy uv uy u w u uy. O uu u w Fu N. 00. I Fu w v : u v u w v u. T w u w y w uy. T Fu v T. Bu Fu w uy y w. F L M U A E I N Q Cu B J O Z Su C G D H K S R Fu. A By w w uy L VD = { Z} VR = { X Y } VU = { U} w X Y uy. F w u u v w vu. F x C {0 } y w w C = C = 0. O w u u uy. Evy uy Y * y y y y w y y w u u uy Y * y vu Y. T µ y * = µ y = 0 y y y y. Au Y Y y y u v v T T 3. Ry y u uy u H L Q. T
4 w w u uy uu u x y u M R 983 K 994. T. T Fu N Lv D S C A Cu u vy : : w B Su u : : w C Su R : : w E Cu D : : w F Cu B.O.M uy : : w G Su F y : : w H Su L w u : : w I Cu Su u : : w J Su Su : : w K Su u y : : w L Cu Su u : : w N Cu L u : : w O Su Su xy : : w Q Cu L u : : w R Su Su : : w S Su Vu u : : w Z Su A : uu : x y 3 : x y w Fuy D Su S w M Cu Bu y w Cu S w U Cu Vu u w uy A u Cy C Cy S y y. T v u J = 0 u I = u B = C = G = 0 u y K = u xy O = 0 u / R = u S =.
5 T. T u Fu C = 70 = 90 = 60 = 80 = 0 = 85 = 0 = 40 = 5 = 90 = 0 = 80 6 > = 05 6 = 90 = 80 =.00 = 0 = 50 = 0 = 50 = 60 = 99 = 00 = 50 = 60 = 80 = 50 9 = 0 8 = 90 = 0 = 50 = 00 = 70 = 60 = 95 6 > = 0 6 = 50 = 50 = 70 = 30 Fuy = = = = T 3. T u Z = = 0 = 60 = 0 = 0 Z = = 0 = 30 = 00 = 0 3 Z = 3 = 05 3 = 0 3 = 00 3 = 05 T Z uy U. T u w y S y u. T v u Z ={ 3 } w
6 v uu x uu y w u 3 x y w w uu. T u vy. T uy U = y M Bu y Z w v y u. T v x uy..3 D Nw Cy S u u vy y w v v Ĕ ={ĕ}= { B = C = G =0 I = J =0 K = O =0 R = S = }. T u w y x L = 5. ]. [ ] [ ] [ y x y x L = = = = 5 I Fu x I J N M L. I w x Fu x Fu. T u 5 vv y y u w u u uy. T u u. T w u y y  y w. R : Av uv L ω ω. I v y u v y 6. = ω ω 6
7 I uv y u w. ω = γ 7 ω w γ y u uy. C C uy w u v 6. A E F I L M N U U U F L F L Q M M Q Q E E I N I N A A B J O Z B J O Z B J O Z C G H K S C G H K S C G H K S D R D R D R = = = Fu. T x y w Fu.4 Du F y X w y w X v w X u X X X. T vu X w y v v 0 y x wx x wx. T u v X vu w X v y x wx u y u 988. Sy y Y w Y y w Y y Y Y Y. F uy y w Y 8. w = α 8 D w = α 9 M w = α 0 u = = ψ
8 w α ψ vu. I uy u w..5 A uy T y By w: . T uy uy u u v GBN. u Su_ I = R CS FuyS EvS UwNS. R w UwNS: R UwN UwNS. IF UwN CS THEN X UwN. Ru SSu. ELSE Y UwN. Ru FuySu. E R. E. /* E u Su_ */ u FuySu /* uy uw */ S λ. /* λv u uy */ S y wy. /* 8 */ y [] SAMLE yλ w Y. =. E. /* E u FuySu */ u SSu /* uw */ X = w X = 0 w. X X IF RANDOM THEN X COUNT_X = COUNT_X. ELSE X 0 COUNT_X0 = COUNT_X0. BELX COUNT_X COUNT_X COUNT_X E. /* E u SSu */
9 3 Ru T uy λu uy 5 9. F vy v u w xu 000. T u w 3 u u w λv vy. T uu λ v = 5 T 4. 3 BEL ĕ G uy N uy BEL ĕ G uy N uy BEL ĕ 3 G uy N uy T 4. T u uy λ v = 5 = = = T 5. T u λ v = 5 = = =3 C BEL ĕ BEL ĕ BEL ĕ BEL ĕ BEL ĕ BEL ĕ BEL ĕ Fuy BEL ĕ BEL ĕ T u x u u. B u 3 u x u v. Hwv u w v uy. H u y x u. T u uw λ v = 5 T 5.
10 4 Cu T uy x By w By w w uy u y y u uy. D u w. T w v uy u w u By w. T u x u vu y u uy. 5 R C E. J.M. Gu A.S. H A Nw M Sy I By Nw. Nw 8:343. C E. J.M. Gu A.S. H Ex Sy Nw M. SV I. Nw Y. Du. A. G E. Hv. 99. Dy Nw M F. 8 C Uy A I UAI 9 S Uvy S F CA M Ku u S F Gá S.F. F. Au F.J. Díé J. M. 00. NN M S Ny C w Nw Ev D T. A I M. 53: K H.Y. J.J. Su H.L. L. 00 R Suy C M. T 5 I C Iu E Tw. K D.L Cy Euv T DDu Ax. M S 406: M A.C. III T.R. R D Ax y Du. M S 9: N M.M.. Cu S.M. Dy D.R. Tw. 00. A Suy C D My: D V C. Cu Iu E. 43: J R I Sy: Nw u I. M Ku u I. J. 00 CuyM R I. C Uvy D AvC Ay S A E By Nw w Ex. 3 I J C A I 3: S R.D. B. D'A B. DF. 99 "Sy I B Nw." 0 C Uy A I M Ku u S F T J.A. R.D. S. 99 Dy Iu D. IEEE T Sy M Cy. 0:
D ON MY HONOR, I WILL TRY.. AISI S E R S O DASS A B BR AM OWNI S E R S I GIRL SCOUTS! JUN SENIO IORS CAD E TTES
ON MY HONOR, I WILL TRY.. DAISI ES AMBASSADORS BROWNI ES I JUNIORS 20172018 GIRL SCOUTS! CAD E TTES SENIORS Wm! W' I? W'v Pm G, v, m m G S x. I, y' m w x m, v, v v G S G W M. T v wm.. I y v y q q m, 888.474.9686
More informationGNSSBased Orbit Determination for Highly Elliptical Orbit Satellites
Bd D f Hghy p Q,*, ug, Ch Rz d Jy u Cg f u gg, g Uvy f u d u, Ch :6987, :.q@ud.uw.du. h f uvyg d p If y, Uvy f w uh W, u : h Hghy p H ufu f y/yhu f h dgd hv w ud pg h d hgh ud pg h f f h f. Du h g
More informationA L A BA M A L A W R E V IE W
A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N
More informationAdvanced Radiology Reporting and Analytics with rscriptor vrad results after 10 million radiology reports
Av Ry R Ay wh vr 10 y I, w, v,  y y h, v, z yz y. I wh vy y v y hhqy y z. A h h h N L P (NLP) h w y y. h w w vr Jy 2014 h h h 10 y. F h  w vr hv wk h v h qy wkw. h wh h h. I I /v h h wk wh vy y v w
More informationNoBend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs
NB Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, Ay 05, S 9808579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I  h w f h, ch vx w ch w hz vc. A h hv  h w f f h  h w.
More information2 BSRAC A v u m bm gu g S my G Cmmuy F my G Gv m FR k m vg uy m m my gvm u?, mmuy my gvm g m vb m bm u uy? mmuy z m qu m ug m 7 m 17 my A my g m gv 1
O Y M G Su Suv: J Ryöm M y, 211 ROBLEMS FACED BY FEMALE RMARY SCHOOL EACHERS N VLLA GE KOH HUSSAN KHEL ESHAWAR F RONER REGON (FR) COMARA VE SUDY OF FEDERAL CO MMUNY RMARY SCHOOL AND G OVERNMEN G RLS RMARY
More informationARTICLE INFO. c Accepted28June2010
I J T V m I ( J 0 0 ) T m: www m/ M S T P mw C y m I B * U y m B y m I m D m O R m D m á B 8 B S R @ ABSTRACT Z Č č á U y m B y m I m D m O R m D m á B 8 B S R @ J P á U y m B y m I m D m O R m D m á B
More informationTHE ROOST. Thanks, Brad. Sad faced hurdygurdy girl, City of cobbles, Where the muddy Meuse Marks cathedral floors With fingers of flood.
THE ROOST H f Bg, vy, b kw wy f b cc. Hwv b cgz, g g, f y f p, w kw cy. W p cfy w pc bg pb cp w Uvy f Lg. H y w f c c f f Lg' b Fcp p (W pb pc fg F p 2007 fw cp vb f $6.50) Sc bg pb Lg I g I g c p I
More information53 NRODUCION I y m mzz y mzz ymm zz 155mm my US mzz vy m zz m mm ymm m my mzz ymm y j k j x vy m x m mzz k m 1800 W II W 199 my 0 CKGROUND B y C 9 C E
52 6H INERNIONL SYPOSIU ON BLLISICS 2 SEPEBER 12 FL II 1 201 6 1 SYERICL UZZLE WER ISORICL PERSPECIVE H Bk Hm J E 1 B S E C Dvm R mm L Bé NY v W 9 218 1 m mzz ymm m m vv 155mm v m x z q v k mzz ymm mzz
More informationWeb Solutions for How to Read and Do Proofs
Web Solutions for How to Read and Do Proofs An Introduction to Mathematical Thought Processes Sixth Edition Daniel Solow Department of Operations Weatherhead School of Management Case Western Reserve University
More informationYou don t need a better car, you need to learn how to drive
O h Imp f CybDf L Am Y d d b, y d hw dv E Lv, F Hm, Phpp Lwk m AG 2017 m.m Wh w? m AG 2017 Pg 3 Y d d b, y d hw dv Wh h k b Wh w dd Wh w h p Wh h k NOT b C pbyp hw fx hg Cd Vd bhg A mk
More informationGradient, Divergence and Curl in Curvilinear Coordinates
Gradient, Divergence and Curl in Curvilinear Coordinates Although cartesian orthogonal coordinates are very intuitive and easy to use, it is often found more convenient to work with other coordinate systems.
More informationSOIL MECHANICS AND PLASTIC ANALYSIS OR LIMIT DESIGN*
157 SOIL MECHANICS AND PLASTIC ANALYSIS OR LIMIT DESIGN* BY D. C. DRUCKER and W. PRAGER Brown University 1. Introduction. Problems of soil mechanics involving stability of slopes, bearing capacity of foundation
More informationReview for Ma 221 Final Exam
Review for Ma 22 Final Exam The Ma 22 Final Exam from December 995.a) Solve the initial value problem 2xcosy 3x2 y dx x 3 x 2 sin y y dy 0 y 0 2 The equation is first order, for which we have techniques
More informationSYMBOL NAME DESCRIPTION EXAMPLES. called positive integers) negatives, and 0. represented as a b, where
EXERCISE A1 Things to remember: 1. THE SET OF REAL NUMBERS SYMBOL NAME DESCRIPTION EXAMPLES N Natural numbers Counting numbers (also 1, 2, 3,... called positive integers) Z Integers Natural numbers, their
More informationABLE OF CONENS E xuv I I I uy Bkgu 9 Objv III Mgy 3 Suy g u u uy 3 2 uvy Dv 3 3 Sg U S z 2 3 Pu 2 3 O gz 3 3 F g D y 3 8 E v IV Ru C u v y G C u
WORLD VISION PACIFIC IMORL ESE B ASELINE SURVEY RESULS M AKIRA MAERNAL CHILD HEALH A ND NURIION PROJEC D Ru S, H Mg WVPDG Juy 202 ABLE OF CONENS E xuv I I I uy Bkgu 9 Objv III Mgy 3 Suy g u u uy 3 2 uvy
More informationAnalysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball
Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fuch, Chkuku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fuch, Chkuku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f
More information1 h 9 e $ s i n t h e o r y, a p p l i c a t i a n
T : 99 9 \ E \ : \ 4 7 8 \ \ \ \  \ \ T \ \ \ : \ 99 9 T : 999 9 E : 4 7 8 / T V 9 \ E \ \ : 4 \ 7 8 / T \ V \ 9 T  w   V w w  T w w \ T \ \ \ w \ w \  \ w \ \ w \ \ \ T \ w \ w \ w \ w \ \ w \
More informationElliptically Contoured Distributions
Elliptically Contoured Distributions Recall: if X N p µ, Σ), then { 1 f X x) = exp 1 } det πσ x µ) Σ 1 x µ) So f X x) depends on x only through x µ) Σ 1 x µ), and is therefore constant on the ellipsoidal
More informationPartial Differential Equations
Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for OneDimensionl Eqution The reen s function provides complete solution to boundry
More informationStrongly chordal and chordal bipartite graphs are sandwich monotone
Strongly chordal and chordal bipartite graphs are sandwich monotone Pinar Heggernes Federico Mancini Charis Papadopoulos R. Sritharan Abstract A graph class is sandwich monotone if, for every pair of its
More informationMap A2. Riparian Reserves, LateSuccessional Reserves, and Adaptive Management Area Land Management Allocations.
Appix A: Mp Mp A. G pjt p. Mp A. ipi v, LtSui v, Aptiv Mgt A L Mgt Ati. Mp A. t P gt ti witi t pjt (t giy Digt A u Wi Ivti A i t pjt buy). Mp A. Attiv B Lggig yt,, u f uit i t pjt. Mp A. Attiv B
More informationLecture No 1 Introduction to Diffusion equations The heat equat
Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and
More informationMath 311, Partial Differential Equations, Winter 2015, Midterm
Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There
More informationHOMEWORK 5. Proof. This is the diffusion equation (1) with the function φ(x) = e x. By the solution formula (6), 1. e (x y)2.
HOMEWORK 5 SHUANGLIN SHAO. Section 3.. #. Proof. This is the diffusion equation with the function φx e x. By the solution formula 6, vx, t e x y e x+y φydy e x y e x+y e x y y dy e y dy e x+y y dy To compute
More informationRaman Amplifier Simulations with Bursty Traffic
R S h y Tc h N., k F, Jy K. c D Ecc E C Scc Uy ch b 3, Oc b, ch 489 X Cc, c. 5 W. hy D, S, Tx 753 Th h h bh R h bjc by c. y c c h h z c c c. Sch by c h k c cy b. cc c, h c  h h ych c k SONET), hch c
More informationCubic systems with invariant lines of total multiplicity eight and with four distinct infinite singularities
Cubic systems with invariant lines of total multiplicity eight and with four distinct infinite singularities Cristina BUJAC and Nicolae VULPE Institute of Mathematics and Computer Science Academy of Science
More informationINTELLIGENT ROBOT USED IN THE FIELD OF PRACTICAL APPLICATION OF ARTIFICIAL NEURAL NETWORK & MACHINE VISION
T m3 D T g jmpg: www. g.m/ j NTEGENT OBOT UED N THE FED OF CTC CTON OF TFC NEU NETWO & MCHNE VON M. M d* Dpm M Egg..Cg Egg d Tgy C D 64 Tm Nd d EM dd: pmmpd@gm.m T. V m Dpm M Egg..Cg Egg d Tgy C D 64
More informationInner Product Spaces 5.2 Inner product spaces
Inner Product Spaces 5.2 Inner product spaces November 15 Goals Concept of length, distance, and angle in R 2 or R n is extended to abstract vector spaces V. Sucn a vector space will be called an Inner
More informationRandom Variables and Probability Distributions
CHAPTER Random Variables and Probability Distributions Random Variables Suppose that to each point of a sample space we assign a number. We then have a function defined on the sample space. This function
More informationMATH 423 Linear Algebra II Lecture 12: Review for Test 1.
MATH 423 Linear Algebra II Lecture 12: Review for Test 1. Topics for Test 1 Vector spaces (F/I/S 1.1 1.7, 2.2, 2.4) Vector spaces: axioms and basic properties. Basic examples of vector spaces (coordinate
More informationCOINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE pharmonic OPERATOR
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 95, Number 3, November 1985 COINCIDENCE SETS IN THE OBSTACLE PROBLEM FOR THE pharmonic OPERATOR SHIGERU SAKAGUCHI Abstract. We consider the obstacle
More informationStudy Guide/Practice Exam 3
Study Guide/Practice Exam 3 This study guide/practice exam covers only the material since exam. The final exam, however, is cumulative so you should be sure to thoroughly study earlier material. The distribution
More informationSample Solutions of Assignment 10 for MAT3270B
Sample Solutions of Assignment 1 for MAT327B 1. For the following ODEs, (a) determine all critical points; (b) find the corresponding linear system near each critical point; (c) find the eigenvalues of
More informationPartial Differential Equations
Partial Differential Equations Lecture Notes Dr. Q. M. Zaigham Zia Assistant Professor Department of Mathematics COMSATS Institute of Information Technology Islamabad, Pakistan ii Contents 1 Lecture 01
More informationMinimal Surfaces: Nonparametric Theory. Andrejs Treibergs. January, 2016
USAC Colloquium Minimal Surfaces: Nonparametric Theory Andrejs Treibergs University of Utah January, 2016 2. USAC Lecture: Minimal Surfaces The URL for these Beamer Slides: Minimal Surfaces: Nonparametric
More informationI n m V n Hoc tha hiehest number r i e a w i m xamuies, a n a o i u e r s tralned skuls 1
C H E R M A R I N E C O R P S R V AIR V H 43 STATION  C H E R R Y * P O I N T M C S 8 945 G M Tk H O O V Dy Ov T I P y M A v ;  k M G R M y V y Sy C y R k M T y P T k 22 k U N G M  y v y v P vy y v
More informationCalculus of Variations and Computer Vision
Calculus of Variations and Computer Vision Sharat Chandran Page 1 of 23 Computer Science & Engineering Department, Indian Institute of Technology, Bombay. http://www.cse.iitb.ernet.in/ sharat January 8,
More informationLIST OF FORMULAS FOR STK1100 AND STK1110
LIST OF FORMULAS FOR STK1100 AND STK1110 (Version of 11. November 2015) 1. Probability Let A, B, A 1, A 2,..., B 1, B 2,... be events, that is, subsets of a sample space Ω. a) Axioms: A probability function
More informationCHAPTER X. SIMULTANEOUS EQUATIONS.
CHAPTER X. SIMULTANEOUS EQUATIONS. 140. A SINGLE equation which contains two or more unknown quantities can be satisfied by an indefinite number of values of the unknown quantities. For we can give any
More informationStudents Elect New Queen; Court Reigns Campus Night. Outing Club Plans Climb. Voting for Campus Queen took. JLper peristyle, but a s U. of Conn.
GE 8 WC j j g E D g W C g R 08 WC E x g g N g W C C C g x E COLLEGE NEW RDY NOVEBER 3 96 U + K D C 62 X Og g 80 B Z D E 62 K B g g D W 62 K B g C E B 62 35 E N Q C Rg C Ng Og C C Vg C Q L]  = * L U
More informationPartial Differential Equations
Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1
More informationThe Fine Triangle Intersection Problem for Minimum Kite Coverings
42Æ 5 Vol.42, No.5 2013 10 ADVANCES IN MATHEMATICS Oct., 2013 The Fine Triangle Intersection Problem for Minimum Kite Coverings ZHANG Guizhi 1,2, CHANG Yanxun 1,, FENG Tao 1 (1. Institute of Mathematics,
More informationHash Property and Fixedrate Universal Coding Theorems
1 Hash Property and Fixedrate Universal Coding Theorems Jun Muramatsu Member, IEEE, Shigeki Miyake Member, IEEE, Abstract arxiv:0804.1183v1 [cs.it 8 Apr 2008 The aim of this paper is to prove the achievability
More informationGame Engineering: 2D
Game Engineering: 2D CS4202010F06 2D Math David Galles Department of Computer Science University of San Francisco 060: Back to Basics A Vector is a displacement Vector has both direction and length
More informationOn disconnected cuts and separators
On disconnected cuts and separators Takehiro Ito 1, Marcin Kamiński 2, Daniël Paulusma 3 and Dimitrios M. Thilikos 4 1 Graduate School of Information Sciences, Tohoku University, Aobayama 6605, Sendai,
More informationGet Funky this Christmas Season with the Crew from Chunky Custard
Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos
More informationExplicit inverse of a tridiagonal (p, r) Toeplitz matrix
Explicit inverse of a tridiagonal (p, r Toeplitz matrix A.M. Encinas, M.J. Jiménez Dpt. Matemàtiques, Universitat Politècnica de Catalunya  BarcelonaTech Abstract Tridiagonal matrices appears in many
More informationr y The angle theta defines a vector that points from the boat to the top of the cliff where rock breaks off. That angle is given as 30 0
From a boat in the English Channel, you slowly approach the White Cliffs of Dover. You want to know how far you are from the base of the cliff. Then suddenly you see a rock break off from the top and hit
More informationVector Spaces 4.2 Vector Spaces
4.2 September 27 4.2 Goals Give definition of Give examples and nonexamples of 4.2 Abstruct Definition of A List of Important Properties of Operations on Sets On the set of integers Z, or on the set of
More informationThe Utility Frontier
The Utility Frontier Any allocation (x i ) n 1 to a set N = {1,..., n} of individuals with utility functions u 1 ( ),..., u n ( ) yields a profile (u 1,..., u n ) of resulting utility levels, as depicted
More informationIterative Methods for Linear Systems
Iterative Methods for Linear Systems 1. Introduction: Direct solvers versus iterative solvers In many applications we have to solve a linear system Ax = b with A R n n and b R n given. If n is large the
More informationof & includ al ethics,
TIC JUS S ER M T S N S I O I P N I M A H C f & E d W v O f J C? p w f j f gy v p w ; d f bd b y d gv v S j b g v. Ud y bg b w d w f B dy p g W v p w  f f d w y H H p p d vy df ff. d v p gv g f v bg f
More informationSolutions Chapter 9. u. (c) u(t) = 1 e t + c 2 e 3 t! c 1 e t 3c 2 e 3 t. (v) (a) u(t) = c 1 e t cos 3t + c 2 e t sin 3t. (b) du
Solutions hapter 9 dode 9 asic Solution Techniques 9 hoose one or more of the following differential equations, and then: (a) Solve the equation directly (b) Write down its phase plane equivalent, and
More informationFinal: Solutions Math 118A, Fall 2013
Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or
More informationLecture 9: Implicit function theorem, constrained extrema and Lagrange multipliers
Lecture 9: Implicit function theorem, constrained extrema and Lagrange multipliers Rafikul Alam Department of Mathematics IIT Guwahati What does the Implicit function theorem say? Let F : R 2 R be C 1.
More informationHomework #6 Solutions
Problems Section.1: 6, 4, 40, 46 Section.:, 8, 10, 14, 18, 4, 0 Homework #6 Solutions.1.6. Determine whether the functions f (x) = cos x + sin x and g(x) = cos x sin x are linearly dependent or linearly
More informationArc Length and Surface Area in Parametric Equations
Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length
More informationSTRONG CONVERSE FOR GEL FANDPINSKER CHANNEL. Pierre Moulin
STROG COVERSE FOR GEL FADPISKER CHAEL Pierre Moulin Beckman Inst., Coord. Sci. Lab and ECE Department University of Illinois at UrbanaChampaign, USA ABSTRACT A strong converse for the Gel fandpinsker
More informationieski. a n d H. A. Lange.
G 34 D 0 D 90 : 5S D Vz S D NEWS W Vz z F D <  ;»( S S C S W C  z z! L D F F V Q4 R U O G P O N G34 q O G
More informationREMARKS ON THE CLASSIFICATION OF REVERSIBLE CUBIC SYSTEMS WITH CENTER. Henryk Żołądek
Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 8, 1996, 5 4 REMARKS ON THE CLASSIFICATION OF REVERSIBLE CUBIC SYSTEMS WITH CENTER Henryk Żołądek The paper [8] from
More informationLecture Notes on PDEs
Lecture Notes on PDEs Alberto Bressan February 26, 2012 1 Elliptic equations Let IR n be a bounded open set Given measurable functions a ij, b i, c : IR, consider the linear, second order differential
More informationA Simple Representation of the Weighted NonCentral ChiSquare Distribution
SSN: 9875 raoa Joura o ovav Rarch Scc grg a Tchoogy (A S 97: 7 Cr rgaao) Vo u 9 Sbr A S Rrao o h Wgh NoCra ChSquar Drbuo Dr ay A hry Dr Sahar A brah Dr Ya Y Aba Proor D o Mahaca Sac u o Saca Su a Rarch
More informationz x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.
Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These
More informationTesting Structural Equation Models: The Effect of Kurtosis
Testing Structural Equation Models: The Effect of Kurtosis Tron Foss, Karl G Jöreskog & Ulf H Olsson Norwegian School of Management October 18, 2006 Abstract Various chisquare statistics are used for
More information5.4 Variation of Parameters
202 5.4 Variation of Parameters The method of variation of parameters applies to solve (1) a(x)y + b(x)y + c(x)y = f(x). Continuity of a, b, c and f is assumed, plus a(x) 0. The method is important because
More informationChem 6 Sample exam 2 (150 points total) NAME:
hem 6 Sample exam 2 (150 points total) @ This is a closed book exam to which the onor Principle applies. @ The last page contains equations and physical constants; you can detach it for easy reference.
More informationConditional densities, mass functions, and expectations
Conditional densities, mass functions, and expectations Jason Swanson April 22, 27 1 Discrete random variables Suppose that X is a discrete random variable with range {x 1, x 2, x 3,...}, and that Y is
More informationGeometry Advanced Fall Semester Exam Review Packet  CHAPTER 1
Name: Class: Date: Geometry Advanced Fall Semester Exam Review Packet  CHAPTER 1 Multiple Choice. Identify the choice that best completes the statement or answers the question. 1. Which statement(s)
More informationInverse Iteration on Defective Matrices*
MATHEMATICS OF COMPUTATION, VOLUME 31, NUMBER 139 JULY 1977, PAGES 726732 Inverse Iteration on Defective Matrices* By Naifu Chen Abstract. Very often, inverse iteration is used with shifts to accelerate
More informationReliability Equivalence of Independent Nonidentical Parallel and Series Systems.
Lf Scc Jua 0;9(3) h://wwwfccc aby Euvac f Idd Ndca Paa ad S Sy Yuy Abdad 3 ; A I Shawy ad M I AOhay D f Mah acuy f Scc Uvy f Daa KSA D f Sac acuy f Scc Kg Abduazz Uvy PO Bx 8003 Jddah 589 Saud Aaba 3
More informationProcedure used to solve equations of the form
Equations of the form a d 2 y dx 2 + bdy dx + cy = 0 (5) Procedure used to solve equations of the form a d 2 y dx 2 + b dy dx 1. rewrite the given differential equation + cy = 0 (1) a d 2 y dx 2 + b dy
More information42. Change of Variables: The Jacobian
. Change of Variables: The Jacobian It is common to change the variable(s) of integration, the main goal being to rewrite a complicated integrand into a simpler equivalent form. However, in doing so, the
More informationANALYSIS HW 5 CLAY SHONKWILER
ANALYSIS HW 5 CLAY SHONKWILER Let X be a normed linear space and Y a linear subspace. The set of all continuous linear functionals on X that are zero on Y is called the annihilator of Y and denoted by
More informationMAPPING AND ITS APPLICATIONS. J. Jeyachristy Priskillal 1, P. Thangavelu 2
International Journal of Pure and Applied Mathematics Volume 11 No. 1 017, 1771 ISSN: 131100 (printed version); ISSN: 13143395 (online version) url: http://www.ijpam.eu doi: 10.173/ijpam.v11i1.14 PAijpam.eu
More informationMusical Instruments. Answers
m w Wkh 1 m my Wdwd my g my my m m V m 3. W h m f h m h Y V,, D 4. W h m f h m h Y. h h, 5. W h m f h m h U Y Dm, g, 6. W h m f h m h WDWD Y,, 7. whh fmy d h XY g? Wkh 2 g my h fwg m g m. m m hk Whh g
More informationChapter 6. WorkedOut Solutions. Chapter 6 Maintaining Mathematical Proficiency (p. 299)
hapter 6 hapter 6 Maintaining Mathematical Proficiency (p. 99) 1. Slope perpendicular to y = 1 x 5 is. y = x + b 1 = + b 1 = 9 + b 10 = b n equation of the line is y = x + 10.. Slope perpendicular to y
More informationPacing Calendar Mathematics Algebra I AU G U S T
AU G U S T 2 0 1 6 Unit 0: Basic Calculator Applications Students use the graphing calculator as a tool for solving problems. This unit may be completed as needed. Unit 1: Equations and Inequalities Students
More informationNOTE ON GREEN'S THEOREM.
1915.] NOTE ON GREEN'S THEOREM. 17 NOTE ON GREEN'S THEOREM. BY MR. C. A. EPPERSON. (Read before the American Mathematical Society April 24, 1915.) 1. Introduction, We wish in this paper to extend Green's
More informationMath Refresher Course
Math Refresher Course Columbia University Department of Political Science Fall 2007 Day 2 Prepared by Jessamyn Blau 6 Calculus CONT D 6.9 Antiderivatives and Integration Integration is the reverse of differentiation.
More informationIsoperimetric inequalities for cartesian products of graphs
Isoperimetric inequalities for cartesian products of graphs F. R. K. Chung University of Pennsylvania Philadelphia 19104 Prasad Tetali School of Mathematics Georgia Inst. of Technology Atlanta GA 30330160
More informationUndecidability of C(T 0,T 1 )
Undecidability of C(T 0,T 1 ) David A. Pierce 1997; recompiled, April 4, 2017 Mathematics Dept Mimar Sinan Fine Arts University, Istanbul david.pierce@msgsu.edu.tr http://mat.msgsu.edu.tr/~dpierce/ We
More informationQUANTUM ADVICE ENHANCES SOCIAL OPTIMALITY IN THREEPARTY CONFLICTING INTEREST GAMES
Quantum Information and Computation, Vol. 16, No. 7&8 (016) 0588 0596 c Rinton Press QUANTUM ADVICE ENHANCES SOCIAL OPTIMALITY IN THREEPARTY CONFLICTING INTEREST GAMES HAOZHEN SITU a College of Mathematics
More informationLecture 10. Semidefinite Programs and the MaxCut Problem Max Cut
Lecture 10 Semidefinite Programs and the MaxCut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion
More informationViscosity Approximation Methods for Equilibrium Problems and a Finite Family of Nonspreading Mappings in a Hilbert Space
Π46fiΠ2ffl μ ff ρ Vol. 46, No. 2 2017ffi3ß ADVANCES IN MATHEMATICS (CHINA) Mar., 2017 doi: 10.11845/sxjz.2015056b Viscosity Approximation Methods for Equilibrium Problems and a Finite Family of Nonspreading
More informationS ) is wf as well. (Exercise) The main example for a wf Relation is the membership Relation = {( x, y) : x y}
(October 14/2010) 1 Wellfoundedness Let R be a Relation on the class X ( R X X ) We say that the structure ( X, R ) is wellfounded (wf) if the following holds true: Y X { x X [ y( yrx y Y) x Y]} Y =
More informationTransformations from R m to R n.
Transformations from R m to R n 1 Differentiablity First of all because of an unfortunate combination of traditions (the fact that we read from left to right and the way we define matrix multiplication
More informationSPACE TYPES & REQUIREMENTS
SPACE TYPES & REQUIREENTS 2 Fby 2012 Gys Sh Typ: K E H 1 2 3 5 6 7 8 9 10 11 12 Ajy D (Hh Sh) F A Dsps Th fs f phys hs vv sps f h hhy fsy f vs. Phys s hf w fss wss hh vy hybs s f hhy fsy hs. Gy sps sh
More informationHilbert s Metric and Gromov Hyperbolicity
Hilbert s Metric and Gromov Hyperbolicity Andrew Altman May 13, 2014 1 1 HILBERT METRIC 2 1 Hilbert Metric The Hilbert metric is a distance function defined on a convex bounded subset of the ndimensional
More informationQuasiNewton methods for minimization
QuasiNewton methods for minimization Lectures for PHD course on Numerical optimization Enrico Bertolazzi DIMS Universitá di Trento November 21 December 14, 2011 QuasiNewton methods for minimization 1
More informationStability of flow past a confined cylinder
Stability of flow past a confined cylinder Andrew Cliffe and Simon Tavener University of Nottingham and Colorado State University Stability of flow past a confined cylinder p. 1/60 Flow past a cylinder
More informationInformation flow and causality of streakroll interactions in wallbounded turbulence
Information flow and causality of roll interactions in wallbounded turbulence Adrián LozanoDurán Center for Turbulence Research, Stanford University January 9, 2017 Introduction and Motivation Collaborators:
More informationChapter 3 Answers to Problems
Chapter 3 Answers to Problems 3.1 (a) a = A 1 + B 2 + E (b) b = 3A 1 + A 2 + 4E (c) c = 2A 1' + E' + A 2" (d) d = 4A 1 + A 2 + 2B 1 + B 2 + 5E (e) e = A 1g + A 2g + B 2g + E 1g + 2E 2g + A 2u + B 1u +
More informationLinear, Cyclic and Constacyclic Codes over S 4 = F 2 + uf 2 + u 2 F 2 + u 3 F 2
Filomat 28:5 (2014), 897 906 DOI 10.2298/FIL1405897O Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Linear, Cyclic and Constacyclic
More informationLOGARITHMIC CONVEXITY OF EXTENDED MEAN VALUES
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 130, Number 6, Pages 1787 1796 S 00029939(01)06275X Article electronically published on December 20, 2001 LOGARITHMIC CONVEXITY OF EXTENDED MEAN
More informationEE 6882 Visual Search Engine
EE 6882 Visual Search Engine Prof. Shih Fu Chang, Feb. 13 th 2012 Lecture #4 Local Feature Matching Bag of Word image representation: coding and pooling (Many slides from A. Efors, W. Freeman, C. Kambhamettu,
More informationMath512 PDE Homework 2
Math51 PDE Homework October 11, 009 Exercise 1.3. Solve u = xu x +yu y +(u x+y y/ = 0 with initial conditon u(x, 0 = 1 x. Proof. In this case, we have F = xp + yq + (p + q / z = 0 and Γ parameterized as
More informationUMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM
UMA Putnam Talk LINEAR ALGEBRA TRICKS FOR THE PUTNAM YUFEI ZHAO In this talk, I want give some examples to show you some linear algebra tricks for the Putnam. Many of you probably did math contests in
More informationReading: P1P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering)
Chapter 1. Partial Differential Equations Reading: P1P0 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Before even looking
More informationADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS
J. OPERATOR THEORY 44(2000), 243 254 c Copyright by Theta, 2000 ADJOINTS, ABSOLUTE VALUES AND POLAR DECOMPOSITIONS DOUGLAS BRIDGES, FRED RICHMAN and PETER SCHUSTER Communicated by William B. Arveson Abstract.
More information