Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article

Size: px
Start display at page:

Download "Available online Journal of Scientific and Engineering Research, 2016, 3(6): Research Article"

Transcription

1 Av Ju St E R, 2016, 3(6): R At ISSN: CODEN(USA): JSERBR Cutvt R Au Su H Lv I y t Mt Btt M Zu H Ut, Su, W Hy Dtt Ay Futy Autu, Uvt Tw, J. Tw N. 9 P, 25136,Wt Sut, I, E-: 65@y. Att I 2013 ut 71,279,709 M y (DGM) uvt t 44,528,434 M ut. Dt t Mty Ht, w xty 100 I, u utt ( ) u t ty t u uttu, ut y y t utt. Dy (F) t, w t, ut t, w t, t tu, v u t. I- I ut 30-60% t u v y t w w u t y utt. T v t t ut 137 t -1 y -1, tuty t t utt, y y t t -tt, wt utvt t y w tt (F) u. T tv t utvty t w F, wt tt >7 M -1 wt tt t t vt v wt tt >30-1. T ut w tt t t t ty t ut v wt t t tt, w t ut w: 1) T u t tt t I 29 vty t t ttt, t u t; 2) Put t t DGM u M vt wt ut wt ttt, y 7,417.9 M; 3) t v, vt wt PGR ttt, w t ut tw It t ty (vt tt + t 10 M -1 + t u [(10 x 10) x 25 x 10x10)] tt u 4 + yu 10 y + PGR) SRI t u t ut tt t y t t -tt z F. Kyw -tt,, Itut R t tt t w', w u u t wt, t tt w tu t t. T t, y y ut (F) ut [1]. A t WHO (2000), y 3 t utt, w -I ut 30-60% u v y t w w u t y utt [1]. T v t t ut 137 t - 1 y -1 [2], tuty t v t utt, y y t t tt. Mt -tt t wy utvt tt ut (F), t t tuy y ut v t t z t t, t vt t tt t. H v v F 2+ t t w, tt tt t xt, t vt wt tt y t t -tt. I ut v y Ju St E R 131

2 Ut MZH t Ju St E R, 2016, 3(6): t t y t t -tt, ut y ttt wt wt ut ut t ux, u t ty t ut t w Su-S t, ty t t [3-4]. T tt tt u t t ut w Dy wt v 2,691 [5], w u y t uty F 2+ A 3+ [6-8], ut u tt wt v. T v utvty y M -1 w t ut w t 4.75 M -1 [2]. T ut t y xt w t t t tt vy wy vy w t vy, y: N tt (0.11% w), v P ( vy w), wt t t t (K w, N w, M vy w, C vy w), w A u, F [9]. Lv u ut t ut F 3+ t F 2+, t t t t tt t t w tty t [8,10], w u t t t wt vt, y t vt w tv t utt t [7, 11-14]. T ut - vt y, utvty vt w wt wt utvt ty t -tt. It t utvt u u t -tt t t wy t y t vtt tt t tuy utvt u u t. T xt ttt t t utvty wt w t t F, wt tt >7 M -1, t t t wt tt >30-1 ; t t t ty t wt ut ux t t t t t. T ut t tuy vy tt t ut, ty vt t t u y w, t utt ty. Mt Mt T xt w ut Fuy t Auut 2014, t w wt t t Sutt Kt Bu, Dtt Dy. T xt u tw-t t Cty Rz D wt t t. T t t w t vty (V) w: V 1 = I 24; V 2 = SBY; V 3 = I 26; V 4 = I 27; V 5 = I 28; V 6 = I 29; V 7 = I 30; V 8 = Cu; V 9 = M; V 10 = A D. T t w t wt ut (Z), y: Z 0 = Ct; Z 1 = Sytt PGR (Aux); Z 2 = Ntu PGR (ut wt). T t ty u t xt, y: (1). tt vt F A; (2). At w 10 M -1 ; (3). S u [(10 x 10 ) x 25 x (10x10 )]; (4). O t t 10 y [8, 13, 15-16]. Ovt t ut t xt u t ut u t t, t u t, u, t, t ty, t wt 1000 ; y (DGM) -1. Lv (F) u wt AA V 240 wt t t SNI t Itt Lty Kt R X P. R, t t ut D, wt tt ut, t tuy 2 x 24 u. R wt wt 7 y, t t t t w u 10 M -1 u t. At tt, t t y tt, wt t t xt t wt z 6.0 x 3.0 t, tt 60 xt t. T t wt ut 2 w t t SRI t. Gt y tu wt tt v, t y v wt tt t. T t ut t ut 10 y y t t t. T t t t t U tz, SP-36 KC t y t (250 NPK P) 170 U, 36 P 2 O 5 60 K 2 O). A ut v U t t 6 w t t w t t tv. W t 2 w t 6 w t t. Wt tt, t Ju St E R 132

3 Ut MZH t Ju St E R, 2016, 3(6): wt w tt. Hvt t t yw 80% t tt ut. Rut Du T xt ut w tt t w vt t wt ut vt tt tt wt wt ut ut ytt tu (ut wt) v t u t t, u t, u, t (T 1), t u t, u -1, wt 1000 ; DGM -1 (T 2), v (F) (T 3). T 1: Pt t, t u, u t v vt utvt y t t -tt Ty R Vty PGR I 24 SBY I 26 I 27 I 28 I 29 I 30 Cu M A D Pt Ht () Ct u (5) u v Cut Wt x w t Σ T () Ct w J (5) Cut Wt u 81.2 t 78.8 v 75.0 x P () Ct t (5) Cut Wt u P Lt () Ct (5) Cut Wt M w y t tt t v ttt w ty t t 5% v y Tuy tt. T wt, w t tty t vt t t F. But t vt t w u w, w T 1 2. T t tt t wt t t y t ut ty vt, tu u vt wt Ju St E R 133

4 Ut MZH t Ju St E R, 2016, 3(6): ut t t t t t v vt tt t tt tw ty y vt [17], t t t vt wt t ty t t vt ty vty. T t wt wt t t vt I 29 (t) tu t wt ut ttt (82.27 ). At t t t t w tt t ttt t wt ut y t vt t, vt u I 24, SBY, I 27 I 29, M ut t vt, ttt PGR t t I 28 A D. H w t t t y t t, w w t t t tyt t wt ut t t t t ut tyt [17]. T u t vt I 24 I 26 I 30 Cu, M A D tt wt PGR, ut t t vt t wt ut ttt t t. T t t u t t ttt wt PGR I 24 ytt, 95 t, w t wt u ttt I 29 wt ut wt, w 75 t. T u t uy u t t u t yt [(10 x 10 ) x 25 x (10x10 )] u u (Fu 2B). Itt wt t t, u u t t wt vt u t t tt y t t utt, wt t. I vt ( ), t u t tt ut 20 t, ty t t ttt t wt ut t t u t 4x t t vt utvt (Fu 1A). D t u t, uy u t u t t t yt utvt. Dt t t y y vu ttut t t u utv t u u t [18-20]. A B Fu 1: Gwt t u wt v () u t (A), u (4 ) wt [(10x10) x 25 x (10x10)] u t (B) T t u u I 24 wt ytt t wt ut ttt, 50.4, w t wt t u I PGR 29 wtut ttt (t) wt T t t t utv t [20]. T u u t xt 2-3 t, t t u v t y vt. Nt vt utvt y y u ut [21]. T t u t t t wy utvt, t utvt vt u t 4-6 u (w t) t t ut 21 y, w t ty u ut 12 y u 4 (Fu 1B), wt t t t t t w ty tt tt t y t tt t u Ju St E R 134

5 Ut MZH t Ju St E R, 2016, 3(6): Su vt u v, wt t ut tt t t tt - zt vt t tt tyt u t t tu. R t t xt w t ttt PGR ut wt, w I 27, t t wt t ut t ytt t wt ut ttt t t vty, t t t I W t tt vt A D wt ytt t wt ut ttt, (T 2). T u ty I 24 wt t ytt t wt ut ttt (47.8 ), w t t u I 30 wt PGR ttt ut wt 20.1 ut. T ut vt ( tu) w tt t u t t, ty w t u T 2: Nu t, u, 1000 wt, DGM -1 v vt utvt y t t -tt. Ty R Vty PGR I 24 SBY I 26 I 27 I 28 I 29 I 30 Cu M A D St () Ct B (5) B A K B G P -1 () Ct (5) A K G Wt () Ct (5) A K Dy G M Put (DGM M -1 ) Ct 6,767 6,881 5,912 5,418 4,891 6,346 4,404 3,068 5,552 5,606 (5) 5,974 4,375 4,535 3,903 4,170 4,314 2,024 4,444 3,455 4,216 A K 5,262 3,884 3,887 2,751 1,920 3,953 2,850 3,406 7,418 3,266 M w y t tt t v ttt w ty t t 5% v y Tuy tt. St t vt SBY wt ut wt ttt t wt ut tt 12.2, ty t t I 24 28, w t t vt w t ty t (T 2). Ju St E R 135

6 Ut MZH t Ju St E R, 2016, 3(6): I t t ttt w, v t w v v tt ut t t ttt t wt ut u ytt ut wt, t t; t t, t, t u -1, t wt T uy u t ty t u u (w) x wt w u u 10 M -1, ut t t t t utvt. Pt PGR vy utt, w ut -1. Cw u t t wt ut ux t u, w y tut w, t, v, tt [22-24]. M vt (t) w t u t ty t wt I 26 (t) , w t u -1 wt t vt SBY-tt wt ut wt, w (T 3). R t w w v ut t F, u t vt u tt vt tt t t ut t. I t, ty u u t wt t u t vty utt. At t tu t t (4 t ) t u t y vttv wt tt, t t tt tt t y t [9]. T ty, t u vttv wt tv u t t vy yu. T tv vttv wt, v y t u t wt ut tt t v, t. T 3: Lv (F) vt utvt wt -tt SRI t. Ty R Vty PGR I SBY I I I I I Cu M A D I Ctt R G ( -1 ) Ct (5) Cut Wt M w y t tt t v ttt w ty t t 5% v y Tuy tt. I v vt w utvt y t t -tt w tt vy 18.8 t I v wt t vt A D y ttt wt ut wt ( ), w t v t I 28 ( ) w t ty t t I 27 wt wt ttt u ut ( ), w vt M t ( ), I 29 wt t ttt ( ) t ( ). I v I 28 ( ) w tt wt ut wt y 62% wt t ( ), w t vt A D ( ) w w tt wt ut wt y 19% wt t (23.6-1). I v vt utvt z y F (T 3) u, w wt t v t t y ut (Iz Ayu, 2012). T w tt, uy u vt utvt t wt v v vy w. Cutvt vt (T 3) t-tt vt F [15], t vt t t w. I t, ut utu y y t v ty, t : tt vt F A 3+ t 10 M -1 + S u [(10 x 10 ) x 25 x (10x10) ] + O t t w 10 y [8, 13, 15-16]. Cu T ut w tt t t t ty t ut v wt t t -tt, w w t ut: Ju St E R 136

7 Ut MZH t Ju St E R, 2016, 3(6): T u t tt t I 29 t t ttt, t u t. 2. Put t t DGM u y M vt wt ut wt ttt, M T tt, vt wt PGR ttt w t ut tw It t ty (vt tt + t 10 M -1 + u [10 x 10) x 25 x 10x10)] + yu 10 y + PGR) wt t SRI t u t ut t tt t y t t -tt z F. Awt T t S-Lt H Eut Mty Nt Eut t t tu D Kt W X , t Ltt At Itt R Cttv Gt Nt Pty F Y T t M. S K, t Stu IV V t tut u u Nt E Pyt ty ut t w. R [1]. Ayu P t, uy t. K, 22 Nv Jt. H 13. (I I). [2]. BPS I D A. B Put Sttt. Jt, I. (I I). [3]. H, W.G Itut t Pt Pyy. T Uvty Wt Ot. J Wy S, INC. [4]. Y, J., S. P., Z. Z., Z. W., R.M. V Q. Zu L. Lu G y tt y tt t / y. C S. 42: [5]. BPS Kut Dy. B Dy BPS, Sut Bt, I. (I I). [6]. Ut, M.Z.H P vt t uu. J. A. I. 38 (3): (I I). [7]. Ut, M.Z.H Et NC-t t NO 3-, NH 4+ NO 2- t v vt. J. T S. 15 (3): : /t [8]. Su., I. W., M.Z.H. Ut P vt t F 2+ w u u. J.At A. 13 (1): (I I). [9]. Ut, MZH., Su., W Hy Et t v t t ty ut F 2+. J T S. 18 (3): : / t [10]. Swt, K.L I txty wt t t utt. J.Pt Nut. 27: [11]. M, J. F R txt uu t. Pt y. 41(4): [12]. R, Z M utt, ut t. F ut, Bt. [13]. Ut, M.Z.H., W. Hy., R. Mu, Su P vt t t w D Kut P St. J. A. I. 37(2): (I I). [14]. N, A., I. Lu, M. Gu, M.A. Cz, K. Aw, D. W Pu t ut t u tuu t. J. A. I. 40 (2): (I I). [15]. Ut, M.Z.H., I. W., Su R utv z wt F 2+ w tu wt ut ty. J T S. 17 (3): : /t Ju St E R 137

8 Ut MZH t Ju St E R, 2016, 3(6): [16]. Hy, W., K., I. Suy., A. Sy., T.B. Pty T vt w ut u t. J.A. I. 40(2): (I I) [17]. Lt, A.P., B. Au, A. Ju, H. Aw Y tty tty t w t ty. J. A I. 38: [18]. Pu, T., S Iy, M. Mu, E.Wt Ct yt utu t tuu t. J. A. I 41(3): (I I). [19]. Putwt, M.D., Suyt, I A Pt ut t utu u uu P w. J. A. I 41(3): (I I). [20]. Ut, MZH., Su., W Hy A A Cutu t y F u v wt tt t. Itt x Pt u t. Uvty Buu, Buu, Ot [21]. Ayu Dt vt uu. Put Pt T P, B Pt P Pt. tt:// (I I). [22]. C-U, S., B. S, A. Pu, C. K A t u y u ut u t t tu t utu t t (Oyz tv L. u ). I Vt C.Dv.B. Pt 45: [23]. Ku, L., R. S, S.M. B, K. Ut, V. Sy Et ttt v t utu (Oyz tv L.) J. Ex.B. A. S.2: [24]. Gu, C., Puw, B.S., Dw, I.S Syuu M Pt t tzt t utu 6 F. J. A. I 44 (2): Ju St E R 138

Simulation of Natural Convection in a Complicated Enclosure with Two Wavy Vertical Walls

Simulation of Natural Convection in a Complicated Enclosure with Two Wavy Vertical Walls A Mtt S, V. 6, 2012,. 57, 2833-2842 Sut Ntu Cvt Ct Eu wt Tw Wvy Vt W P S Dtt Mtt, Futy S K K Uvty, K K 40002, T Ct E Mtt CHE, S Ayutty R., B 10400, T y 129@t. Sut Wtyu 1 Dtt Mtt, Futy S K K Uvty, K K 40002,

More information

/99 $10.00 (c) 1999 IEEE

/99 $10.00 (c) 1999 IEEE P t Hw Itt C Syt S 999 P t Hw Itt C Syt S - 999 A Nw Atv C At At Cu M Syt Y ZHANG Ittut Py P S, Uvty Tuu, I 0-87, J Att I t, w tv t t u yt x wt y tty, t wt tv w (LBSB) t. T w t t x t tty t uy ; tt, t x

More information

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts

Differentiation of allergenic fungal spores by image analysis, with application to aerobiological counts 15: 211 223, 1999. 1999 Kuw Puss. Pt t ts. 211 tt u ss y yss, wt t t uts.. By 1, S. s 2,EuR.Tvy 2 St 3 1 tt Ss, R 407 Bu (05), Uvsty Syy, SW, 2006, ust; 2 st ty, v 4 Bu u (6), sttut Rsty, Uvsty Syy, SW,

More information

SHORT WAY SYMMETRY/SYMMETRICAL SYNTHETIC TREAD TELEVISION VERTICAL VITREOUS VOLUME. 1 BID SET No. Revisions / Submissions Date CAR

SHORT WAY SYMMETRY/SYMMETRICAL SYNTHETIC TREAD TELEVISION VERTICAL VITREOUS VOLUME. 1 BID SET No. Revisions / Submissions Date CAR //0 :: T U 0 : /" = '-0" 0 0 0 View ame T W T U T UT 0 0 T T U 0 U T T TT TY V TT TY T. 00' - 0" T U T T U T T U U ( ) '-" T V V U T W T T U V T U U ( ) T T 0 T U XT W T WW Y TT T U U ( ) U WW00 T U W

More information

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X. A M W A A A A R A O C A () A 6 A A G A A A A A A-C Au A A P 0 V A T < Au J Az01 Az02 A Au A A A A R 5 Z 6 M B G B B B P T Bu B B B B S B / X B A Cu A, S, W A: S Hu Ru A: C L A, S, F, S A, u F C, R C F

More information

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network

Fuzzy Reasoning and Optimization Based on a Generalized Bayesian Network Fuy R O B G By Nw H-Y K D M Du M Hu Cu Uvy 48 Hu Cu R Hu 300 Tw. @w.u.u.w A By w v wy u w w uy. Hwv u uy u By w y u v w uu By w w w u vu vv y. T uy v By w w uy v v uy. B By w uy. T uy v uy. T w w w- uy.

More information

BLUE LINE TROLLEY STATION IMPROVEMENTS

BLUE LINE TROLLEY STATION IMPROVEMENTS TUT GT DD T T TUT HU GT WTH HG GHT G TZ # - + V Y 0/00 HZ GT WTH HG - + = U& PV-50 #555- P JUT X GHT G & DD. HG GHT D P UT UT Y TW P GT WTH HG GHT G & P DT P UT # - + U& P-50 #500-0 UT Y W/HVY DUTY TT

More information

Econometric modelling and forecasting of intraday electricity prices

Econometric modelling and forecasting of intraday electricity prices E y y Xv:1812.09081v1 [q-.st] 21 D 2018 M Nw Uvy Duu-E F Z Uvy Duu-E D 24, 2018 A I w w y ID 3 -P G Iy Cuu Ey M u. A uv u uy qu-uy u y. W u qu u-- vy - uy. T w u. F u v w G Iy Cuu Ey M y ID 3 -P vu. T

More information

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y H HE 1016 M EEING OF HE ODIE CLU 1,016 Cu 7:30.. D 11, 2007 y W L Uvy. C : Pu A y: Ov 25 x u. Hk, u k MA k D u y Hu, u G, u C C, MN C, Nk Dv Hu, MN, u K A u vu v. W y A Pku G, G u. N EW UINE: D, Cu, 22

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

CONSTRUCTION DOCUMENTS

CONSTRUCTION DOCUMENTS //0 :: 0 0 OV Y T TY O YTO: TY O YTO W # : U.. O OVTO 00 WT V V, OO OTUTO OUT U 0, 0 UTO U U \\d\ayton rojects\ayton nternational irport\.00 Y ustoms acility\\rchitecture\ rocessing enovation_entral.rvt

More information

Trade Patterns, Production networks, and Trade and employment in the Asia-US region

Trade Patterns, Production networks, and Trade and employment in the Asia-US region Trade Patterns, Production networks, and Trade and employment in the Asia-U region atoshi Inomata Institute of Developing Economies ETRO Development of cross-national production linkages, 1985-2005 1985

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Section 2.4 Linear Equations

Section 2.4 Linear Equations Section 2.4 Linear Equations Key Terms: Linear equation Homogeneous linear equation Nonhomogeneous (inhomogeneous) linear equation Integrating factor General solution Variation of parameters A first-order

More information

Map A-2. Riparian Reserves, Late-Successional Reserves, and Adaptive Management Area Land Management Allocations.

Map A-2. Riparian Reserves, Late-Successional Reserves, and Adaptive Management Area Land Management Allocations. Appix A: Mp Mp A-. G pjt p. Mp A-. ipi v, Lt-Sui v, Aptiv Mgt A L Mgt Ati. Mp A-. t P gt ti witi t pjt (t giy Digt A u Wi Ivti A i t pjt buy). Mp A-. Attiv B Lggig yt,, u f uit i t pjt. Mp A-. Attiv B

More information

A TYP A-602 A-304 A-602 A-302 GRADE BEAM SEE 95% COMPACTED STRUCTURAL FILL A '-0"

A TYP A-602 A-304 A-602 A-302 GRADE BEAM SEE 95% COMPACTED STRUCTURAL FILL A '-0 W W/TITI -0 X U I I X TITI TY S W TYS TIS X W S SU XISTI -0-0 -0-0 -0-0 ' - " ' - " ' - " ' - " ' - " ' - /" ' - /" ' - " -STUTU I -0 ' - ' - " " ' - " " 0' - " ' - U I S STUT W'S TY UTI W S STUT W'S TY

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

T H E S C I E N C E B E H I N D T H E A R T

T H E S C I E N C E B E H I N D T H E A R T A t t R u r s - L x C t I. xtr turs t Lx Ct Rurs. Rr qurtr s s r t surt strutur. Ts Att Rurs rv ut us, s srt t tr t rtt rt yur t w yu ru. T uqu Lx st ut rv ss ts ss t t y rt t tys t r ts w wr rtts. Atrx

More information

T T - PTV - PTV :\er\en utler.p\ektop\ VT \9- T\_ T.rvt T PT P ode aterial. Pattern / olor imenion omment PT T T ode aterial. Pattern / olor imenion omment W T ode aterial. Pattern / olor imenion omment

More information

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k

N C GM L P, u u y Du J W P: u,, uy u y j S, P k v, L C k u, u GM L O v L v y, u k y v v QV v u, v- v ju, v, u v u S L v: S u E x y v O, L O C u y y, k Qu V vu P O B x 1361, Bu QLD 4575 C k N 96 N EWSLEE NOV/ DECE MBE 2015 E N u uu L O C 21 Nv, 2 QV v Py Cu Lv Su, 23 2 5 N v, 4 2015 u G M v y y : y quu u C, u k y Bu k v, u u vy v y y C k! u,, uu G M u

More information

Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes

Mouse-Human Experimental Epigenetic Analysis Unmasks Dietary Targets and Genetic Liability for Diabetic Phenotypes C M Ru Mu-Hu Ex E Ay U Dy T G Ly D Py M L. Muu,,, Mu M. S,,, Aw E. J,,, X L,, H K, P M, Yuyu L, V Ruz,, Ax D, M Hu, C L, M MCy,,, E Näu, Ju R. Z, G. W W,, Aw P. F,, * D M, J H Uvy S M, N W S, B, MD, USA

More information

FilfidatiPm 51mazi6umn1I40171mhz4nnin15miTtiuvintfr, b 1,1411.1

FilfidatiPm 51mazi6umn1I40171mhz4nnin15miTtiuvintfr, b 1,1411.1 'h ldflu D w ) l blv JLfffTU f8fltflud dbw uuu vultj @@ @ DJ b bub LD ftujf:ttvtt t:9u zfty f/d:thlvtuuzytvvu (Ttulu) lfdt zuhzttuvtf b uvj:ulludlutluwul'ut'jj/fll ltttvtulvlztvfvt tt tluu bb b(ttd ulfu

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Contents FREE!

Contents FREE! Fw h Hu G, h Cp h w bu Vy Tu u P. Th p h pk wh h pp h. Th u y D 1 D 1 h h Cp. Th. Th hu K E xp h Th Hu I Ch F, bh K P pp h u. Du h p, K G u h xp Ch F. P u D 11, 8, 6, 4, 3. Th bk w K pp. Wh P p pp h p,

More information

duct end blocks filters lamps filters duct end blocks filters lamps filters metric

duct end blocks filters lamps filters duct end blocks filters lamps filters metric S Iu N 33 t t ut ut t t ut t ut t t t ut t ut ut t t t ut t ut ut t ut t t t ut ut t t t ut t ut ut t t t ut t ut ut t t t ut t ut t t t ut t t t t ut ut t t t ut t ut t ut t t t t ut ut t t ut t t t t

More information

Solutions to Homework 3

Solutions to Homework 3 Solutions to Homework 3 Section 3.4, Repeated Roots; Reduction of Order Q 1). Find the general solution to 2y + y = 0. Answer: The charactertic equation : r 2 2r + 1 = 0, solving it we get r = 1 as a repeated

More information

Mathematical Models of Systems

Mathematical Models of Systems Mathematical Models of Systems Transfer Function and Transfer functions of Complex Systems M. Bakošová and M. Fikar Department of Information Engineering and Process Control Institute of Information Engineering,

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

r R N S Hobbs P J Phelan B E A Edmeaes K D Boyce 2016 Membership ams A P Cowan D D J Robinson B J Hyam J S Foster A NAME MEMBERSHIP NUMBER

r R N S Hobbs P J Phelan B E A Edmeaes K D Boyce 2016 Membership ams A P Cowan D D J Robinson B J Hyam J S Foster A NAME MEMBERSHIP NUMBER ug bb K S bb h B E E ch Smth K t Sth E ugh m Cw b C w h T B ug bb K C t tch S bb h B E ch Smth K t Sth E ugh m Cw b S B C w Shh T ug bb K C tch S bb h ch Smth K t u Sth E m Cw b h S B C w O Shh T ug bb

More information

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks T Aytl Lo Flow o Fou-W Dtuto Ntwo M. Mo *, A. M. Dy. M. A Dtt o Eltl E, A Uvty o Toloy Hz Av., T 59, I * El: o8@yoo.o Att-- Mjoty o tuto two ul u to ul lo, yty to l two l ut. T tt o tuto yt ult y o ovt

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Fall 2001, AM33 Solution to hw7

Fall 2001, AM33 Solution to hw7 Fall 21, AM33 Solution to hw7 1. Section 3.4, problem 41 We are solving the ODE t 2 y +3ty +1.25y = Byproblem38x =logt turns this DE into a constant coefficient DE. x =logt t = e x dt dx = ex = t By the

More information

Exam 2, Solution 4. Jordan Paschke

Exam 2, Solution 4. Jordan Paschke Exam 2, Solution 4 Jordan Paschke Problem 4. Suppose that y 1 (t) = t and y 2 (t) = t 3 are solutions to the equation 3t 3 y t 2 y 6ty + 6y = 0, t > 0. ( ) Find the general solution of the above equation.

More information

Lecture 6c: Green s Relations

Lecture 6c: Green s Relations Lecture 6c: Green s Relations We now discuss a very useful tool in the study of monoids/semigroups called Green s relations Our presentation draws from [1, 2] As a first step we define three relations

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Computer Graphics. Viewing & Projections

Computer Graphics. Viewing & Projections Vw & Ovrvw rr : rss r t -vw trsrt: st st, rr w.r.t. r rqurs r rr (rt syst) rt: 2 trsrt st, rt trsrt t 2D rqurs t r y rt rts ss Rr P usuy st try trsrt t wr rts t rs t surs trsrt t r rts u rt w.r.t. vw vu

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS

A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS MATTHIAS GERDTS A BRIEF INTRODUCTION INTO SOLVING DIFFERENTIAL EQUATIONS Universität der Bundeswehr München Addresse des Autors: Matthias Gerdts Institut für Mathematik und Rechneranwendung Universität

More information

Help parents get their kids settled in with this fun, easy-to-supervise coloring activity. A Fun Family Portrait... 3

Help parents get their kids settled in with this fun, easy-to-supervise coloring activity. A Fun Family Portrait... 3 K u R C d C! m m m k m u y g H p u R Cd C g d g b u d yu g p m d fu g f pg m g w Tk yu C g p D Ng kd pg u bk! T y g b fm dy m d md g g p By pvdg ud d ug yu u f D Ng Cg v, yu b pg up g u d g v bf W v pvdd

More information

Review. To solve ay + by + cy = 0 we consider the characteristic equation. aλ 2 + bλ + c = 0.

Review. To solve ay + by + cy = 0 we consider the characteristic equation. aλ 2 + bλ + c = 0. Review To solve ay + by + cy = 0 we consider the characteristic equation aλ 2 + bλ + c = 0. If λ is a solution of the characteristic equation then e λt is a solution of the differential equation. if there

More information

MASSALINA CONDO MARINA

MASSALINA CONDO MARINA p p p p p G.. HWY. p p.. HWY... HWY. : HG, 00 T. TY, 0 Y 0 T o. B WG T T 0 okia 0 icrosoft orporatio - VY - T - T - GG - HBT - TT - T - TT T - TWT T 0 - T TT T - T TT T T T - TTY T - - T VT - K T ( H ),±

More information

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients Cent. Eur. J. Eng. 4 24 64-7 DOI:.2478/s353-3-4-6 Central European Journal of Engineering The variational iteration method for solving linear and nonlinear ODEs and scientific models with variable coefficients

More information

Distributed Set Reachability

Distributed Set Reachability Dstt St Rty S Gj Mt T Mx-P Isttt Its, Usty U Gy SIGMOD 2016, S Fs, USA Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St Rty 2 Dstt St Rty Dstt St Rty (DSR) s zt ty xt t sts stt stt Dstt St

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme

The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme The Equivalent Differential Equation of the Gas-Kinetic BGK Scheme Wei Gao Quanhua Sun Kun Xu Abstract The equivalent partial differential equation is derived for the gas-kinetic BGK scheme (GKS) [Xu J.

More information

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual

Lecture Notes in Mathematics. A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Lecture Notes in Mathematics A First Course in Quasi-Linear Partial Differential Equations for Physical Sciences and Engineering Solution Manual Marcel B. Finan Arkansas Tech University c All Rights Reserved

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

Ex. Utility. Ex. Transformers. Ex. 8" Fire Hydrant. Ex. 12" DIP Waterline. Ex. 12" DIP. Waterline 2" BLOWOFF (TYP) Ex. TBM 'BOX CUT' El

Ex. Utility. Ex. Transformers. Ex. 8 Fire Hydrant. Ex. 12 DIP Waterline. Ex. 12 DIP. Waterline 2 BLOWOFF (TYP) Ex. TBM 'BOX CUT' El Drawing: :\U\B\DT\\\UBH_\-UTTD ayout Tab:UT lotted by: B n this date: Thu, arch - :am :, D: x x TB ' ut lev ' ' T D VD VB DTH UB UTT T x Tel T D V ( td H ( BD H- x Blowo Valve UVT ' T T Top nv in nv out

More information

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u) Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

More information

A Step by Step Guide Chris Dew: Clinical Indicators Programme Manager Health and Social Care Information Centre

A Step by Step Guide Chris Dew: Clinical Indicators Programme Manager Health and Social Care Information Centre Mug Quy ug C Quy I, M Db A S by S Gu C Dw: C I Pg Mg H S C If C 1 Ev Cx Sy w g: A w y f g, vg, ug f, ub u Nw uu b bw NHS Eg, Pub H Eg, H S C If C (HSCIC), D f H (DH) Gv A gu vu g Nw guy fu f uy b T Quy

More information

A B C D E F G H I J K

A B C D E F G H I J K 3 5 6 7 8 9 0 3 4 5 6 7 8 9 Cu D. R P P P 3 P 4 P 5 P 6 P 7 M ASHP 33 P C PAP P C PAP AP S AP S P C PAP P C PAP ASHP 3 AP C AB AP C BC AP C AB AP C AB AP C AB AP C AB M ASHP N405, 9 C S I 9 C S I 9 C S

More information

FH6 GENERAL CW CW CHEMISTRY # BMC10-4 1BMC BMC10-5 1BMC10-22 FUTURE. 48 x 22 CART 1BMC10-6 2NHT-14,16,18 36 X x 22.

FH6 GENERAL CW CW CHEMISTRY # BMC10-4 1BMC BMC10-5 1BMC10-22 FUTURE. 48 x 22 CART 1BMC10-6 2NHT-14,16,18 36 X x 22. 0 //0 :0: TR -00 A 0-W -00 00-W -00 A 00-W R0- W- & W- U RTAY TA- RAT WT AA TRATR R AT ' R0- B U 0-00 R0- B- B0- B0- R0- R0- R0- R0- B0- R0-0 B0- B0- A. B0- B0- UTR TAT 0-00 R0-,, T R-,,0 0-0 A R- R0-,

More information

Honors Differential Equations

Honors Differential Equations MIT OpenCourseWare http://ocw.mit.edu 18.034 Honors Differential Equations Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE 13. INHOMOGENEOUS

More information

Weak Singular Optimal Controls Subject to State-Control Equality Constraints

Weak Singular Optimal Controls Subject to State-Control Equality Constraints Int. Journal of Math. Analysis, Vol. 6, 212, no. 36, 1797-1812 Weak Singular Optimal Controls Subject to State-Control Equality Constraints Javier F Rosenblueth IIMAS UNAM, Universidad Nacional Autónoma

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

Marine Harvest Herald

Marine Harvest Herald Hv H T u 6-2013. u! u v v u up uu. F u - p u u u u u u pu uu x. W xu u u, u u k, O uu u u v v, u p. T, v u u u, u, k. p, u u u. v v,, G, pp u. W v p pv u x p v u v p. T v x u p u vu. u u v u u k upp, p

More information

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC

68X LOUIE B NUNN PKWYLOUIE B NUNN PKWY NC B v Lk Wf gmt A Ix p 86 12'W 86 1'W 85 56'W 85 54'W 85 52'W 85 5'W 37 'N 68X Ggw LOI B NNN KWYLOI B NNN KWY N 36 58'N WAN p 1 36 56'N utt' v vt A S p 4 B v Lk Bg Stt Ntu v BAN 36 52'N 36 5'N p 2 Spg B

More information

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL 1. Optimal regulator with noisy measurement Consider the following system: ẋ = Ax + Bu + w, x(0) = x 0 where w(t) is white noise with Ew(t) = 0, and x 0 is a stochastic

More information

Flatness Properties of Acts over Commutative, Cancellative Monoids

Flatness Properties of Acts over Commutative, Cancellative Monoids Wilfrid Laurier University Scholars Commons @ Laurier Mathematics Faculty Publications Mathematics 6-1999 Flatness Properties of Acts over Commutative, Cancellative Monoids Sydney Bulman-Fleming Wilfrid

More information

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch. Wnn f gn ht Wnn Song A g t ht Tn ong to A k g wnd A ong d no. no Sh Wnn Wnn th Wth. y t d to A ong k t Bg gn y H go wth Wnn Whn h f. wnd ootk H Wu Wu th t. Ptu Dtony oo hopt oon okt hng gd ho y ktod nh

More information

Problem Set 1. This week. Please read all of Chapter 1 in the Strauss text.

Problem Set 1. This week. Please read all of Chapter 1 in the Strauss text. Math 425, Spring 2015 Jerry L. Kazdan Problem Set 1 Due: Thurs. Jan. 22 in class. [Late papers will be accepted until 1:00 PM Friday.] This is rust remover. It is essentially Homework Set 0 with a few

More information

TH THE 997 M EETING OF THE BRODIE CLUB th The 997 meeting of The Brodie Club was held on Nov. 15, R amsay Wright Zoological Laboratories at the Univer

TH THE 997 M EETING OF THE BRODIE CLUB th The 997 meeting of The Brodie Club was held on Nov. 15, R amsay Wright Zoological Laboratories at the Univer H HE 997 M EENG OF HE RODE CLU 997 m d Cu w d Nv 15, R my W Z L U 2005 Rm 432 C m: K Am S y: Ov w 19 mm d v u R my d P Add d M R, u Ed Add J my Hu, u Dvd Hu J Sdm, u J Yu mu 995 m w ppvd w m R Pwy d d

More information

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t.

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t. . Solve the initial value problem which factors into Jim Lambers MAT 85 Spring Semester 06-7 Practice Exam Solution y + 4y + 3y = 0, y(0) =, y (0) =. λ + 4λ + 3 = 0, (λ + )(λ + 3) = 0. Therefore, the roots

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo

Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algo Dierential Geometry Curves and surfaces Local properties Geometric foundations (critical for visual modeling and computing) Quantitative analysis Algorithm development Shape control and interrogation Curves

More information

and the ANAVETS Unit Portage Ave, Winnipeg, Manitoba, Canada May 23 to May E L IBSF

and the ANAVETS Unit Portage Ave, Winnipeg, Manitoba, Canada May 23 to May E L IBSF t NVET Uit 283 IR FO RE VET ER N N N I MY NVY & R 3584 Pt, Wii, Mitb, IN O RPORTE E IL L I GU VET IF N ENG R H LI E My 23 t My 28-2015 R LE YOUR ONE TOP HOP FOR QULITY POOL UE & ILLIR EORIE GMEROOM 204-783-2666

More information

The Hilltopper-20 a compact 20M CW transceiver. Offered by the 4-State QRP Group

The Hilltopper-20 a compact 20M CW transceiver. Offered by the 4-State QRP Group T H-2 m 2M CW v Off 4-S QRP Gu T H-2 Tv KSWL v O 28 u: u v: 4 43 MHz Tu: Hz /2 Hz Tm uu: W m Rv u : x 6 ma Sz: 43 x 39 x 7, 8 z u- k- O--f CW, m m A/B, 8-3 m Ajum: BO m, -m u C u u: Au M SMT P 2: P- D:

More information

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES.

MAT292 - Calculus III - Fall Solution for Term Test 2 - November 6, 2014 DO NOT WRITE ON THE QR CODE AT THE TOP OF THE PAGES. MAT9 - Calculus III - Fall 4 Solution for Term Test - November 6, 4 Time allotted: 9 minutes. Aids permitted: None. Full Name: Last First Student ID: Email: @mail.utoronto.ca Instructions DO NOT WRITE

More information

BUILDER SERIES BALL KNOBSETS

BUILDER SERIES BALL KNOBSETS BU B NBT FTU NTT P N Y HN GUNT YWY 5 PN -YB, WT PTY YNG NTUTN YNG () T YNG () FT 1 3 8" T 1 3 4" TH 2 1 1 4" U N JUTB T TH 2 3 8" 2 3 4" BT UTTN PTN FNH # QTY. G B NB N T FNT/B NTY PH B (U3) 36-4410 30

More information

93 Analytical solution of differential equations

93 Analytical solution of differential equations 1 93 Analytical solution of differential equations 1. Nonlinear differential equation The only kind of nonlinear differential equations that we solve analytically is the so-called separable differential

More information

Handout 30. Optical Processes in Solids and the Dielectric Constant

Handout 30. Optical Processes in Solids and the Dielectric Constant Haut Otal Sl a th Dlt Ctat I th ltu yu wll la: La ut Ka-Kg lat Dlt tat l Itba a Itaba tbut t th lt tat l C 47 Sg 9 Faha Raa Cll Uty Chag Dl, Dl Mt, a lazat Dty A hag l t a gat a a t hag aat by ta: Q Q

More information

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone. OUL O GR SODRY DUTO, ODS,RT,SMTUR,USWR.l ntuctin f cnuct f Kbi ( y/gil)tunent f 2L-Lg t. 2.. 4.. 6. Mtche hll be lye e K ule f ene f tie t tie Dutin f ech tch hll be - +0 (Rece)+ = M The ticint f ech Te

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkuts Unniversity of Technology Thonburi Thailand Linear Matrix Inequalities A linear matrix inequality (LMI)

More information

Lecture two. January 17, 2019

Lecture two. January 17, 2019 Lecture two January 17, 2019 We will learn how to solve rst-order linear equations in this lecture. Example 1. 1) Find all solutions satisfy the equation u x (x, y) = 0. 2) Find the solution if we know

More information

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations Hyperbolic Partial Differential Equation Evolution equation aociated with irreverible phyical procee like diffuion heat conduction lead to parabolic partial differential equation. When the equation i a

More information

Second-Order Linear ODEs

Second-Order Linear ODEs Second-Order Linear ODEs A second order ODE is called linear if it can be written as y + p(t)y + q(t)y = r(t). (0.1) It is called homogeneous if r(t) = 0, and nonhomogeneous otherwise. We shall assume

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order

Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Lecture Notes for Math 251: ODE and PDE. Lecture 13: 3.4 Repeated Roots and Reduction Of Order Shawn D. Ryan Spring 2012 1 Repeated Roots of the Characteristic Equation and Reduction of Order Last Time:

More information

MATH107 Vectors and Matrices

MATH107 Vectors and Matrices School of Mathematics, KSU 20/11/16 Vector valued functions Let D be a set of real numbers D R. A vector-valued functions r with domain D is a correspondence that assigns to each number t in D exactly

More information

Using Hybrid Functions to solve a Coupled System of Fredholm Integro-Differential Equations of the Second Kind

Using Hybrid Functions to solve a Coupled System of Fredholm Integro-Differential Equations of the Second Kind Advances in Dynamical Systems and Applications ISSN 973-532, Volume 9, Number, pp 5 (24) http://campusmstedu/adsa Using Hybrid Functions to solve a Coupled System of Fredholm Integro-Differential Euations

More information

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order

Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order Linear Homogeneous ODEs of the Second Order with Constant Coefficients. Reduction of Order October 2 6, 2017 Second Order ODEs (cont.) Consider where a, b, and c are real numbers ay +by +cy = 0, (1) Let

More information

MAPPING AND ITS APPLICATIONS. J. Jeyachristy Priskillal 1, P. Thangavelu 2

MAPPING AND ITS APPLICATIONS. J. Jeyachristy Priskillal 1, P. Thangavelu 2 International Journal of Pure and Applied Mathematics Volume 11 No. 1 017, 177-1 ISSN: 1311-00 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.173/ijpam.v11i1.14 PAijpam.eu

More information

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm

Sheet Title: Building Renderings M. AS SHOWN Status: A.R.H.P.B. SUBMITTAL August 9, :07 pm 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 orthstar expressly reserves its common law copyright and other property rights for all ideas, provisions and plans represented or indicated by these drawings,

More information

2. Time-Domain Analysis of Continuous- Time Signals and Systems

2. Time-Domain Analysis of Continuous- Time Signals and Systems 2. Time-Domain Analysis of Continuous- Time Signals and Systems 2.1. Continuous-Time Impulse Function (1.4.2) 2.2. Convolution Integral (2.2) 2.3. Continuous-Time Impulse Response (2.2) 2.4. Classification

More information

Lecture 2. Classification of Differential Equations and Method of Integrating Factors

Lecture 2. Classification of Differential Equations and Method of Integrating Factors Math 245 - Mathematics of Physics and Engineering I Lecture 2. Classification of Differential Equations and Method of Integrating Factors January 11, 2012 Konstantin Zuev (USC) Math 245, Lecture 2 January

More information

6.241 Dynamic Systems and Control

6.241 Dynamic Systems and Control 6.241 Dynamic Systems and Control Lecture 24: H2 Synthesis Emilio Frazzoli Aeronautics and Astronautics Massachusetts Institute of Technology May 4, 2011 E. Frazzoli (MIT) Lecture 24: H 2 Synthesis May

More information

University lthcare scholarship,

University lthcare scholarship, y s Dv c H p s C c c Sv by S RMH M P yu s A! s Su c c? pusu cuu? b u c A yu b sy H sp, Dv sc S RMH Appy f s: f yu : cku, c b s v Fm y Rc, c Lu R sucu, fmy xu S s m sb c ys P sus - f s: ccmc S y c u c s

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

Title. Author(s) 井上, 貴翔. Citation 研究論集, 11: 199( 左 )-212( 左 ) Issue Date Doc URL. Type. File Information

Title. Author(s) 井上, 貴翔. Citation 研究論集, 11: 199( 左 )-212( 左 ) Issue Date Doc URL. Type. File Information T D F / mm F Au() 井上 貴翔 C 研究論集 11: 199( 左 )-212( 左 ) u D 2011-12-26 D URL :///2115/47879 T bu () F m 11_RONSHU_11_NOUE u u Hkk U C S A D F / mm F K u Summ A b w qu m u U S J u u m O u E u w 1908 u T u

More information

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide

MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide MATH 4B Differential Equations, Fall 2016 Final Exam Study Guide GENERAL INFORMATION AND FINAL EXAM RULES The exam will have a duration of 3 hours. No extra time will be given. Failing to submit your solutions

More information

Chapter 3: Second Order Equations

Chapter 3: Second Order Equations Exam 2 Review This review sheet contains this cover page (a checklist of topics from Chapters 3). Following by all the review material posted pertaining to chapter 3 (all combined into one file). Chapter

More information

Cataraqui Source Protection Area Stream Gauge Locations

Cataraqui Source Protection Area Stream Gauge Locations Cqu u P m Gu s Ts Ez K Ts u s sp E s ms P Ps s m m C Y u u I s Ts x C C u R 4 N p Ds Qu H Em us ms p G Cqu C, s Ks F I s s Gqu u Gqu s N D U ( I T Gqu C s C, 5 Rs p, Rs 15, 7 N m s m Gus - Ps P f P 1,

More information

144 Chapter 3. Second Order Linear Equations

144 Chapter 3. Second Order Linear Equations 144 Chapter 3. Second Order Linear Equations PROBLEMS In each of Problems 1 through 8 find the general solution of the given differential equation. 1. y + 2y 3y = 0 2. y + 3y + 2y = 0 3. 6y y y = 0 4.

More information

< < or a. * or c w u. "* \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * *

< < or a. * or c w u. * \, w * r? ««m * * Z * < -4 * if # * « * W * <r? # *» */>* - 2r 2 * j j. # w O <» x <» V X * M <2 * * * * - W # a a 2T. mj 5 a a s " V l UJ a > M tf U > n &. at M- ~ a f ^ 3 T N - H f Ml fn -> M - M. a w ma a Z a ~ - «2-5 - J «a -J -J Uk. D tm -5. U U # f # -J «vfl \ \ Q f\ \ y; - z «w W ^ z ~ ~ / 5 - - ^

More information

i t 1 v d B & N 1 K 1 P M 1 R & H 1 S o et al., o 1 9 T i w a s b W ( 1 F 9 w s t t p d o c o p T s a s t b ro

i t 1 v d B & N 1 K 1 P M 1 R & H 1 S o et al., o 1 9 T i w a s b W ( 1 F 9 w s t t p d o c o p T s a s t b ro Pgm PII: S0042-6989(96)00205-2 VR, V 37, N 6, 705 720,1997 01997 E S L Pd G B 0042-698997$1700+ 000 P M L I B L P S M S E C S W A U O S R E R O 1 f 1 A 1 f fm J 1 A bqu g vy bd z gu u vd mvg z d,, -dg

More information

3 The Life Cycle, Tax Policy,

3 The Life Cycle, Tax Policy, 3 The Life Cycle, Tax Policy, and the Current Account C 1 + I 1 + C 2 + I 2 = Y 1 T 1 + Y 2 T 2. (1) G 1 + G 2 = T 1 + T 2, (2) C 1 + I 1 + C 2 + I 2 = Y 1 G 1 + Y 2 G 2, Foundations of International Macroeconomics

More information

LEVEL 2 ASSESSMENT TASK. WRITING Can write a Personal Response

LEVEL 2 ASSESSMENT TASK. WRITING Can write a Personal Response W f f N Su W S 4 6 Vu A Sybu d f S 4 6 P, Vd d D Im d S 5 6 Vu D Sybu. LEVEL 2 ASSESSMENT TASK ASSESSMENT CONDITIONS Tm d: u 50 mu E d/ Bu d MAY NOT b ud U m f vbuy Gmm d d f m dmb TASK: W k: H D C/A By

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

THE SCHOOL DISTRICT OF OSCEOLA COUNTY, FLORIDA

THE SCHOOL DISTRICT OF OSCEOLA COUNTY, FLORIDA THE HOOL DITIT OF OEOLA OUTY FLOIDA D. DEBA AE UEITEDET 8 B Bu K F 3-9 HOE: (0) 80-00 FAX: (0) 80-00 www.. HOOL BOAD MEMBE J D K 0-93- K D K 0-80-009 T D 3 K 0-3-035 T D K 0-80-009 M T: :00.M. ALL TO ODE

More information

MATH 308 Differential Equations

MATH 308 Differential Equations MATH 308 Differential Equations Summer, 2014, SET 6 JoungDong Kim Set 6: Section 3.3, 3.4, 3.5, 3.6 Section 3.3 Complex Roots of the Characteristic Equation Recall that a second order ODE with constant

More information