No-bend Orthogonal Drawings of Series-Parallel Graphs

Size: px
Start display at page:

Download "No-bend Orthogonal Drawings of Series-Parallel Graphs"

Transcription

1 No-nd Orthoonl Drwns of Srs-Prlll Grphs (Etndd Astrt) Md. Sdur Rhmn, Nortsuu E, nd Tko Nshzk Dprtmnt of Computr Sn nd Ennrn, Bnldsh Unrsty of Ennrn nd Thnoloy (BUET), Dhk 000, Bnldsh Grdut Shool of Informton Sns, Tohoku Unrsty, Ao-ym 05, Snd , Astrt. In no-nd orthoonl drwn of pln rph, h rt s drwn s pont nd h d s drwn s snl horzontl or rtl ln smnt. A plnr rph s sd to h no-nd orthoonl drwn f t lst on of ts pln mddns hs no-nd orthoonl drwn. Ery srs-prlll rph s plnr. In ths ppr w lnr-tm lorthm to mn whthr srs-prlll rph G of th mmum dr thr hs no-nd orthoonl drwn nd to fnd on f G hs. Kywords: Plnr Grph, Alorthm, Grph Drwn, Orthoonl Drwn, Bnd, SPQ tr. Introduton An orthoonl drwn of plnr rph G s drwn of G suh tht h rt s mppd to pont, h d s drwn s squn of ltrnt horzontl nd rtl ln smnts, nd ny two ds do not ross pt t thr ommon nd [NR04, RN0, RNN99, T87]. A nd s pont whr n d hns ts drton n drwn. If G hs rt of dr f or mor, thn G hs no orthoonl drwn. On th othr hnd, f G hs no rt of dr f or mor, tht s, th mmum dr of G s t most four, thn G hs n orthoonl drwn, ut my nd nds. Mnmzton of th numr of nds n n orthoonl drwn s hllnn prolm. A ndmnmum orthoonl drwn of plnr rph G hs th mnmum numr of nds mon ll possl plnr orthoonl drwns of G. Th prolm of fndn nd-mnmum orthoonl drwn s on of th most fmous prolms n th rph drwn ltrtur [BEGKLM04] nd hs n studd oth n th fd mddn sttn [RN0, RNN0, RNN99, T87] nd n th rl mddn sttn [DLV98, GT0]. Som pln rphs wth fd mddns h n orthoonl drwn wthout nds, n whh h d s drwn y P. Hly nd N.S. Nkolo (Eds.): GD 005, LNCS 84, pp , 005. Sprnr-Vrl Brln Hdlr 005

2 40 Md. S. Rhmn, N. E, nd T. Nshzk d l k j m o h n f () l k j m o h n d f () l k j m o n f d () h o n m k j l f d (d) F.. () A no-nd drwn, nd () (d) thr mddns of th sm plnr rph snl horzontl or rtl ln smnt [RNN0]. W ll suh drwn no-nd drwn of pln rph. Fur () dpts no-nd drwn of th pln rph n F. (). As rsult n th fd mddn, Rhmn t l. [RNN0] otnd nssry nd suffnt ondton for pln rph G of to h no-nd drwn, nd lnr-tm lorthm to fnd no-nd drwn f G hs. W sy tht plnr rph G hs no-nd drwn f t lst on of th pln mddn of G hs no-nd drwn. Furs (), () nd (d) dpt thr of ll pln mddns of th sm plnr rph G. Amonthmonly th mddn n F. () hs no-nd drwn s llustrtd n F. (). Thus th plnr rph G hs no-nd drwn. It s n NP-omplt prolm to mn whthr plnr rph G of 4 hs no-nd drwn n th rl mddn sttn [GT0]. Howr, for plnr rph G of, D Bttst t l. [DLV98] n O(n 5 lo n) tm lorthm to fnd ndmnmum orthoonl drwn of G. Ery srs-prlll rph s plnr rph, nd thr lorthm tks tm O(n ) for srs-prlll rph wth. Thus, y thr lorthm on n mn n tm O(n ) whthr srs-prlll rph wth hs no-nd drwn. As nothr rsult n th rl mddn, Rhmn t l. [REN05] lnr tm lorthm to mn whthr sudson G of plnr tronntd u rph hs no-nd drwn, nd to fnd no-nd drwn of G f G hs. In ths ppr w study th prolm of no-nd orthoonl drwns of srsprlll rphs wth n th rl mddn sttn, nd lnr lorthm to fnd no-nd orthoonl drwn f G hs. Th rst of th ppr s ornzd s follows. Ston dsrs som dfntons nd prsnts prlmnry rsults. Ston prsnts our lorthm to fnd no-nd drwn of onntd srs-prlll rph G f G hs. Fnlly Ston 4 s onluson. h Prlmnrs In ths ston w som dfntons nd prsnt prlmnry rsults. Lt G =(V,E) onntd rph wth rt st V nd d st E. Th dr d() ofrt s th numr of ds ndnt to n G. Wdnot th mmum dr of rph G y (G) or smply y. Th onntty κ(g) of rph G s th mnmum numr of rts whos rmol rsults n dsonntd rph or snl-rt rph K.WsythtG s k-onntd f κ(g) k.

3 No-nd Orthoonl Drwns of Srs-Prlll Grphs 4 ArphG =(V,E) s lld srs-prlll rph (wth sour s nd snk t) fthrg onsst of pr of rts onntd y snl d, or thr st two srs-prlll rphs G =(V,E ),=,, wth sour s nd snk t suh tht V = V V,E = E E, nd thr s = s, t = s nd t = t or s = s = s nd t = t = t. Apr{u, } of rts of onntd rph G s splt pr f thr st two surphs G =(V,E )ndg =(V,E ) stsfyn th follown two ondtons:. V = V V, V V = {u, }; nd.e = E E, E E =, E, E. Thus ry pr of djnt rts s splt pr. A splt omponnt of splt pr {u, } s thr n d (u, ) or mml onntd surph H of G suh tht {u, } s not splt pr of H. A splt pr {u, } of G s lld mml splt pr wth rspt to rfrn splt pr {s, t} f, for ny othr splt pr {u, }, rts s, t, u nd r n th sm splt omponnt of {u, }. Lt G onntd srs-prlll rph. Lt (s, t) ndofg. Th SPQ-tr T of G wth rspt to rfrn d =(s, t) dsrs rurs domposton of G ndud y ts splt prs [GL99]. Tr T s rootd ordrd tr whos nods r of thr typs: S, P nd Q. Ehnod of T orrsponds to surph of G, lld ts prtnnt rph G.Ehnod of T hs n ssotd onntdmultrph, lld th sklton of nd dnotd y sklton(). Tr T s rursly dfnd s follows. Trl Cs: Inthss,Gonssts of tly two prlll ds nd jonn s nd t. T onssts of snl Q-nod. Th sklton of s G tslf. Th prtnnt rph G onssts of only th d. Prlll Cs: In ths s, th splt pr {s, t} hs thr or mor splt omponnts G 0,G,,G k,k, nd G 0 onssts of only rfrn d =(s, t). Th root of T s P -nod. Thsklton() onssts of k + prlll ds 0,,, k jonn s nd t. Th prtnnt rph G = G G G k s unon of G,G,,G k.(thsklton of P -nod p n F. onssts of thr prlll ds jonn rts nd. Fur () dpts th prtnnt rph of p.) Srs Cs: In ths s th splt pr {s, t} hs tly two splt omponnts, nd on of thm onssts of th rfrn d. On my ssum tht th othr splt omponnt hs ut-rts,,, k, k, tht prtton th omponnt nto ts loks G,G,,G k n ths ordr from s to t. Thn th root of T s n S-nod. Th sklton of s yl 0,,, k whr 0 =, 0 = s, k = t, nd jons nd, k. Th prtnnt rph G of nod s unon of G,G,,G k.(thsklton of S-nod s n F. s th yl, d,,, h,,. Fur (d) dpts th prtnnt rph G s of s.) In ll ss o, w ll th d th rfrn d of nod. Ept for th trl s, nod of T hs hldrn,,, k n ths ordr; s th root of th SPQ-tr of rph G wth rspt to th rfrn d, k. W ll d th rfrn d of nod, nd ll th ndponts of d th pols of nod. Th tr otnd so fr hs Q-nod ssotd wth h

4 4 Md. S. Rhmn, N. E, nd T. Nshzk j h d s p s s 4 s (, ) p (, h) ( h, ) (, d) ( d, ) d j h f () (, j ) ( j, ) (, f ) ( f, ) (, ) s 5 (, ) (, ) f h d s p (, h) ( h, ) p (, d) ( d, ) (, j )( j, ) (, f ) ( f, ) s s 5 (, ) (, ) (, )(, ) (f) s j s 4 f h () d d d j j j f h f f h h () (d) () () (h) d F.. ()A onntd srs-prlll rph G wth =, () SPQ-tr T of G wth rspt to rfrn d (, ), nd skltons of P -nds-nods, () th prtnnt rph G s of S-nod s, (d) th prtnnt rph G s of S-nod s, () th prtnnt rph G p of P -nod p,(f)spq-trt of G wth P -nod p s th root, () th prtnnt rph of S-nod s, nd (h) th or rph of s d of G, pt th rfrn d. W omplt th SPQ-tr T y ddn Q-nod, rprsntn th rfrn d, nd mkn t th prnt of so tht t oms th root of T. An mpl of th SPQ-tr of onntd srs-prlll rph n F. () s llustrtd n F. (), whr th d drwn y thk ln n h sklton s th rfrn d of th sklton. Th SPQ-tr T dfnd o s spl s of n SPQR-tr [DT96, GL99] whr thr s no R-nodndthrootofthtrsQ-nod orrspondn to th rfrn d. On n sly modfy T to n SPQ-tr T wth n rtrry P -nod s th root s llustrtd n F. (f). In th rmndr of ths ppr, w thus onsdr SPQ-tr T wth P -nod s th root. If =, thn onntd srs-prlll rph G s yl, nd ylg hs no-nd drwn f nd only f G hs four or mor rts. On my thus ssum tht, nd tht th root P -nod of T hs thr or mor hldrn. Thn th prtnnt rph G of h nod s th surph of G ndud y th ds orrspondn to ll dsndnt Q-nod of. Th follown fts n sly drd from th ft tht h rt of G hs dr t most thr nd G hs no multpl ds.

5 No-nd Orthoonl Drwns of Srs-Prlll Grphs 4 Ft. Lt (s, t) th rfrn d of n S-nod of T,ndlt,,, k th hldrn of n ths ordr from s to t. Thn () h hld of s thr P -nod or Q-nod; () oth nd k r Q-nods; nd () nd + must Q-nods f s P -nod whr k. Ft. Eh non-root P -nod of T hs tly two hldrn, nd thr oth of th two hldrn r S-nods or on of thm s n S-nod nd th othr s Q-nod. Lt n S-nod of T,ndltund th pols of th prtnnt rph of. Lt,,, k th hldrn of n ths ordr from u to. From Ft, nd k r Q-nods. Thus nd k orrspond to ds (u, u )nd (,)ofg, rsptly. Thn th or rph for s rph otnd from th prtnnt rph of y dltn rts u nd. (Fur () llustrts prtnnt rph of S-nod s for T n F. (f), nd F. (h) llusrts or rph for s.) Vrts u nd r lld th pols of th or rph for, nd ds (u, u )nd(,) r lld hnds of th or rph for. (InFs.() nd (h) th pols of th or rph of S-nod s r rts d nd h.) For P - or Q-nod n T, w dfn th or rph for s th prtnnt rph of, nd th pols of th or rph for s th sm s th pols of th prtnnt rph of. Th or rph of P -orq-nod hs no hnd. A drwn of plnr rph G s lld n orthoonl drwn of G f h rt s mppd to pont, h d s drwn s squn of ltrnt horzontl nd rtl ln smnts, nd ny two ds do not ross pt t thr ommon nd. W ll n orthoonl drwn D of G no-nd drwn f D hs no nd, tht s, h d s drwn s snl horzontl or rtl ln smnt. A polr drwn of srs-prlll rph G s no-nd drwn of G n whh th two pols u nd of G r drwn on th outr f F o of th drwn. W ll polr drwn D of srs-prlll rph G donl drwn f D ntrsts nthr th frst qudrnt wth th orn t pol u nor th thrd qudrnt wth th orn t pol ftr rottn th drwn nd rnmn th pols f nssry, s llustrtd n F. (). Throuhout th ppr qudrnt s onsdrd to losd pln ron. Both drwn of snl rt s pont nd drwn of snl d s strht ln-smnt r donl drwns. u u u u () () () (d) F.. Polr drwns of rph G wth pols u nd : () donl drwn, () sd-on drwn, () n L-shp drwn, (d) nothr polr drwn

6 44 Md. S. Rhmn, N. E, nd T. Nshzk W ll polr drwn D of G sd-on drwn f D ntrsts nthr th frst qudrnt wth th orn t u nor th fourth qudrnt wth th orn t ftr rottn th drwn nd rnmn th pols f nssry, s llustrtd n F. (). A drwn of snl rt s pont s rrdd not to sd-on drwn, whl drwn of snl d s strht ln-smnt s sd-on drwn. A polr drwn D s lld n L-shp drwn f D ntrsts nthr th frst qudrnt wth th orn t u nor th frst qudrnt wth th orn t ftr rottn th drwn nd rnmn th pols f nssry, s llustrtd n F. (). A drwn of snl rt s pont s rrdd not to n L-shp drwn. A drwn of snl d s strht ln-smnt s not n L-shp drwn. W sy tht polr drwn s ood f t s donl, sd-on or L-shp drwn. Not ry polr drwn D s ood. For mpl, th polr drwn n F. (d) s not ood, us t s not donl, sd-on drwn or L-shp drwn. In th nt ston w n lorthm for onstrutn no-nd drwn of onntd srs-prlll rph G wth =. Ourdssfollows.LtT n SPQ-tr of G. Th or rph of h lf-nod of T onssts of snl d. For h lf-nod of T w frst drw th or rph y ln smnt s donl or sd-on drwn. Thn, n ottom up fshon, w fnd donl drwn, sd-on drwn, nd n L- shp drwn of th or rph for h ntrnl nod of T y mrn th drwns orrspondn to th hldrn of f thy st. Th drwn of th rph orrspondn to th root-nod of T ylds no-nd drwn of G f G hs polr drwn wth th splt pr, orrspondn to th root P -nod, s th pols. Our lorthm ntully hooss n pproprt SPQ-tr T of G suh tht th drwn of pln rph orrspondn to th root-nod of T ylds no-nd drwn of G f G hs. (S F. 8 for llustrton.) As w s ltr, w onstrut no-nd drwn of th or rph for nod n T y mrn th no-nd drwns of th or rphs for th hldrns of ; th no-nd drwn of th or rph for h hldrn of must polr drwn wth th two pols of th or rph. A sd-on drwn s found mor sutl for mrn thn donl drwn, nd n L-shp drwn s found mor sutl for mrn thn sd-on drwn. Intutly, to onnt th two pols y squn of horzontl nd rtl ln smnts, t lst thr turns r rqurd for donl drwn, t lst two turns r rqurd for sd-on drwn nd only on turn s rqurd for n L-shp drwn. A rph my h donl drwn lthouh t hs no sd-on or L-shp drwn nd rph my h sd-on drwn lthouh t hs no L-shp drwn. W ll polr drwn D of or rph H() fornod n T dsrl drwn f on of th follown (), () nd () holds: () D s n L-shp drwn; () D s sd-on drwn, nd H() hs no L-shp drwn; () D s donl drwn, nd H() hs nthr n L-shp drwn nor sd-on drwn. Throuhout th ppr w dnot y D() dsrl drwn of th or rph H() for nod n T.

7 No-nd Orthoonl Drwns of Srs-Prlll Grphs 45 No-nd Drwns of Bonntd Srs-Prlll Grphs In ths ston w n lorthm to onstrut no-nd orthoonl drwn of onntd srs-prlll rph G whnr G hs. If G s yl, thn t s sy to fnd no-nd drwn of G; G hs no-nd drwn f nd only f G hs four or mor rts. W thus ssum tht G s not yl. Lt T n SPQ-tr of G whos root s P -nod p hn thr hldrn. (S F. (f).) W now h th follown lmm. Lmm. Lt G srs-prlll rph wth, ltt n SPQ-tr wth P -nod p s th root, nd lt non-root nod n T.Ifthor rph H() of hs no-nd drwn, thn th follown () nd () hold: () H() hs sd-on or donl drwn, nd hn H() hs dsrl drwn D(); nd() f dsrl drwn of H() s donl drwn, thn ry no-nd drwn of H() s donl drwn for th pols of H(). Proof. W wll pro th lm y nduton sd on T. W frst ssum tht s lf-nod, tht s, Q-nod. In ths s H() onssts of snl d =(u, ), nd u nd r th pols of H(). W thus drw s snl rtl ln smnt, whh s sd-on drwn D() ofh(). Sn H() hs no L-shp drwn, D() s dsrl drwn. Thus () nd () hold. W nt ssum tht s n nnr nod othr thn th root p nd tht H() hs no-nd drwn. Lt u nd r th pols of H(). Lt,,, k (k ) th hldrn of n ths ordr from u to. SnH() hs no-nd drwn, h H( ) hs no-nd drwn. Thus w suppos ndutly tht () nd () hold for h hld of. W now h two ss to onsdr. Cs : s n S-nod. Suppos tht hs tly two hldrn. Thn H() onssts of snl rt. W drw H() s pont. Thn th donldrwns dsrl drwn D(). Thus () nd () hold. W thus ssum tht hs tly k hldrn nd k. Thn H() = H( ) H( ) H( k ), whr H( ) s th or rph of.thhypothss mpls tht, for h, k, () nd () hold for th or rph H( ). W now h th follown four suss to onsdr. Cs (): k =. In ths s H() =H( ), hn () nd () hold for H(). Cs (): k =4. In ths s H() =H( ) H( ). Ft () mpls tht thr oth nd r Q-nods or on of thm s P -nod nd th othr on s Q-nod. If nd r Q-nods, thn w n onstrut oth n L-shp drwn nd sd-on drwn of H(), s llustrtd n Fs. 4() nd 5(). Thus dsrl drwn of H() s n L-shp drwn, nd hn () nd () hold. W thus ssum tht on of thm, sy,sp -nod nd th othr s Q-nod.

8 46 Md. S. Rhmn, N. E, nd T. Nshzk () () () (d) F. 4. Dsrl drwns of th or rph for S-nods wth four hldrn W frst onsdr th s whr dsrl drwn D( )ofh( )s donl drwn. In ths s w n onstrut sd-on drwn D() ofh() s llustrtd n F. 4(). Sn th dsrl drwn of H( ) s donl drwn, H( ) hs nthr n L-shp drwn nor sd-on drwn, nd hn lrly H() hs no L-shp drwn. Thrfor th sd-on drwn D() of H() s dsrl drwn. Hn () nd () hold. W nt onsdr th s whr th dsrl drwn D( )ofh( )s sd-on drwn. Thn w n onstrut oth n L-shp drwn D() nd sd-on drwn of H() s llustrtd n Fs. 4() nd 5(). Hn () nd () hold. W fnlly onsdr th s whr th dsrl drwn D( )ofh( )s n L-shp drwn. Thn w n onstrut n L-shp drwn D() of H() s llustrtd n F. 4(d). H( ) hs sd-on or donl drwn. From t on n sly onstrut sd-on drwn of H() s llustrtd n Fs. 5() nd (). Thrfor () nd () hold. () () () F. 5. Sd-on drwns of th or rph for S-nods wth four hldrn Cs (): k =5. In ths s, H = H( ) H( ) H( 4 ). Ft () mpls tht t lst on of, nd 4 s Q-nod. In ths s w n onstrut no-nd drwn of H() suh tht () nd () hold. Th dtls r omttd n ths tndd strt. Cs (d): k 6. In ths s H = H( ) H( ) H( k ),k 6. Ft () mpls tht thr r two or mor Q-nods mon,, k. Thrfor w n sly

9 No-nd Orthoonl Drwns of Srs-Prlll Grphs 47 onstrut oth n L-shp drwn nd sd-on drwn D of H(), nd hn () nd () hold. Cs : s P -nod. In ths s k = nd hs tly two hldrn nd. Thn th hypothss mpls tht, for =,, () nd () hold for H( ). By Ft thr oth nd r S-nods or on of nd s n S-nod nd th othr s Q-nod. W frst ssum tht on of nd,sy,sq-nod, thn w h th follown two suss. Cs (): Th dsrl drwn D( ) of H( ) s donl drwn. In ths s H( ) hs nthr n L-shp drwn nor sd-on drwn. Furthrmor, ry no-nd drwn of H( ) s donl drwn y nduton hypothss. Thn D( ),D( ) nd th drwns of hnds of H( ) nnot mrd wthout nds s llustrtd n F. 6(). Thrfor H() dosnoth no-nd drwn, ontrry to th ssumpton tht H() hs no-nd drwn. Thrfor ths s dos not our. Cs (): Th dsrl drwn D( ) of H( ) s sd-on or L-shp drwn. In ths s w n onstrut no-nd drwn D() ofh() suh tht () nd () hold s llustrtd n Fs. 6() (). Q.E.D. W ll th lorthm dsrd n th proof of Lmm for fndn dsrl drwn D() ofh() Alorthm Dsrl-Drwn whnr H() hs nond drwn. Clrly Alorthm Dsrl-Drwn tks lnr-tm. In th rst of th ston w Alorthm Bonntd-Drw for fndn no-nd drwn of G whnr G hs. Rmmr tht th root nod p n T donl drwn no no nd drwn () donl drwn (d) sd on drwn sd on drwn () sd on drwn () sd on drwn () L shp drwn sd on drwn () L shp drwn (f) L shp drwn (h) L shp drwn () D( ) ln donl drwn sd on drwn L shp drwn D( ) Q nod S nod F. 6. Drwns of H() forp -nod p

10 48 Md. S. Rhmn, N. E, nd T. Nshzk hs thr hldrn s dptd n F. (f). Lt, nd th thr hldrn of p n T.IfGhs no-nd drwn, thn H( ),, hs no-nd drwn. For, w fnd dsrl drwn D( )ofh( ) y Alorthm Dsrl-Drwn. IfG hs polr drwn for th pols orrspondn to p, thn w now fnd no-nd drwn of G = H( p ) y mrn th drwns of D( ),D( ),D( ) nd th drwns of thr hnds. Othrws, w fnd pproprt pols for whh G hs no-nd polr drwn. Sn G s smpl rph, t most on of, nd s Q-nod. W now h th follown two ss to onsdr. Cs : on of thm, sy,sq-nod. In ths s only s Q-nod. If t lst on of D( )ndd( )s donl drwn, Thn G dos not h no-nd drwn s llustrtd n F. 7()-(). Othrws, G hs no-nd drwn s llustrtd n F. 7(d)-(f). Th dtls r omttd. donl drwn no no nd drwn () sd on drwn L shp drwn no no nd drwn () no no nd drwn () (d) () (f) D( ) D( ) donl drwn sd on drwn L shp drwn F. 7. Illustrton for Cs of Alorthm Bonntd-Drw Cs : ll of, nd r S-nods. If t most on of D( ),D( )ndd( ) s donl drwn, thn w n sly onstrut no-nd drwn of G.IfllofD( ),D( )ndd( ) r donl drwns, thn on n sly osr tht G dos not h no-nd drwn. W thus onsdr th s whr tly two of D( ),D( )ndd( )r donl drwns. If two of D( ),D( )ndd( ) r donl drwns nd th othr s n L-shp drwn, thn lrly w n onstrut no-nd drwn of G. W my thus ssum tht two of D( ),D( )ndd( ) r donl drwns nd th othr s sd-on drwn. W my ssum wthout loss of nrlty tht D( )ndd( ) r donl drwns nd D( ) s sd-on drwn. By Lmm () ry no-nd drwn of h of H( )ndh( ) s donl drwn. By mrn D( )ndd( )

11 No-nd Orthoonl Drwns of Srs-Prlll Grphs 49 p P S S S donl donl sd on P 4 5 sd on 6 S 4 5 sd on S sd on D( ) D( ) D( ) () () () (d) P S S S S donl 4 5 donl sd on sd on p P donl S donl D ( ) D( ) D( ) () (f) " () (h) F. 8. () (d) A no-nd drwn of G nnot found usn tr T, nd () (h) no-nd drwn of G n found usn tr T w n otn only donl drwn D.SnD( ) s sd-on drwn, D nd D( ) nnot mrd to produ no-nd drwn of G. Howr, w n onstrut no-nd drwn of G f H( ) hs nothr pproprt no-nd drwn. W n llustrt mpl n Fur 8 nd omt th dtls of th proof. G hs no polr drwn wth th pols orrspondn to p s llustrtd n F. 8(d). Howr, G my h no-nd drwn whn on onsdrs som othr splt pr s pols. W thrfor onsdr n SPQ-tr T of G wth s th root, s llustrtd n F. 8(f), whr, 4 nd 5 r th hldrn of.ehof D( 4 )ndd( 5 ) rmns sm s on otnd for th SPQ-tr T. Consdrn T, D( ) s donl drwn D. W n thus fnd no-nd drwn of G y rursly pplyn Alorthm Bonntd-Drw rrdn D( ),D( 4 ) nd D( 5 )snwd( ),D( )ndd( ), rsptly. (Fur 8(h) shows tht G hs no-nd polr drwn wth th pols orrspondn to root.) If w nnot drw no-nd orthoonl drwn of G y rptn th oprton o, thn G dos not h no-nd drwn. Thus Alorthm Bonntd-Drw fnds no-nd drwn of G f G hs. On n ffntly mplmnt Alorthm Bonntd-Drw so tht t tks tm O(n). Th dtls r omttd n ths tndd strt. Thorm. Lt G onntd srs-prlll rph of th mmum dr thr. Thn Alorthm Bonntd-Drw fnds no-nd drwn of G n tm O(n) whnr G hs, whr n s th numr of rts of G.

12 40 Md. S. Rhmn, N. E, nd T. Nshzk 4 Conlusons In ths ppr, w lnr-tm lorthm to fnd no-nd drwn of onntd srs-prlll rph G of mmum dr t most thr. W lso n lorthm to fnd no-nd drwn of srs-prlll rph G whh s not lwys onntd. Howr, th lorthm s omttd n ths tndd strt du to p lmtton. It s lft s futur work to fnd nd-mnmum drwn of srs-prlll rphs nd to fnd lnr-tm lorthm for lrr lss of plnr rphs. Rfrns [BEGKLM04] F. Brndnur, D. Eppstn, M. T. Goodrh, S. Koouro, G. Lott nd P. Mutzl, Sltd opn prolms n rph drwns, Pro. ofgd 0, Lt, Nots n Computr Sn, 9, pp , 004. [DLV98] G. D Bttst, G. Lott nd F. Vru, Sprlty nd optml orthoonl drwns, SIAM J. Comput., 7(6), pp , 998. [DT96] G. D Bttst nd R. Tmss, On-ln plnrty tstn, SIAMJ. Comput., 5(5), pp , 996. [GL99] A. Gr nd G. Lott, Almost nd-optml plnr orthoonl drwns of onntd dr- plnr rphs n qudrt tm, Pro.of GD 99, Lt. Nots n Computr Sn, 7, pp. 8-48, 999. [GT0] A. Gr nd R. Tmss, On th omputtonl omplty of upwrd nd rtlnr plnrty tstn, SIAM J. Comput., (), pp , 00. [NR04] T. Nshzk nd M. S. Rhmn, Plnr Grph Drwn, World Sntf, Snpor, 004. [REN05] M. S. Rhmn, N. E nd T. Nshzk, No-nd orthoonl drwns of sudsons of plnr tronntd u rphs, IEICE Trns. Inf. & Syst., E88-D (), pp.-0, 005. [RN0] M. S. Rhmn nd T. Nshzk, Bnd-mnmum orthoonl drwns of pln -rphs, Pro. of WG 0, Lt. Nots n Computr Sn, [RNN0] 57, pp , 00. M. S. Rhmn, M. Nznn nd T. Nshzk, Orthoonl drwns of pln rphs wthout nds, Journl of Grph Al. nd Appl., 7(4), pp. 5-6, 00. [RNN99] M.S. Rhmn, S. Nkno nd T. Nshzk, A lnr lorthm for nd-optml orthoonl drwns of tronntd u pln rphs, Journl of Grph Al. nd Appl., (4), pp. -6, 999. [T87] R. Tmss, On mddn rph n th rd wth th mnmum numr of nds, SIAM J. Comput., 6, pp , 987.

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Single Source Shortest Paths (with Positive Weights)

Single Source Shortest Paths (with Positive Weights) Snl Sour Sortst Pts (wt Postv Wts) Yuf To ITEE Unvrsty of Qunslnd In ts ltur, w wll rvst t snl sour sortst pt (SSSP) problm. Rll tt w v lrdy lrnd tt t BFS lortm solvs t problm ffntly wn ll t ds v t sm

More information

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex.

A general N-dimensional vector consists of N values. They can be arranged as a column or a row and can be real or complex. Lnr lgr Vctors gnrl -dmnsonl ctor conssts of lus h cn rrngd s column or row nd cn rl or compl Rcll -dmnsonl ctor cn rprsnt poston, loct, or cclrton Lt & k,, unt ctors long,, & rspctl nd lt k h th componnts

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

DOI: /jam.v14i2.7401

DOI: /jam.v14i2.7401 Nutrosoph Soft oduls Kml Vlyv Sd Byrmov Dprtmnt of Algbr nd Gomtry of Bku Stt Unvrsty ZKhllov str AZ48 Bku Azrbjn Abstrt kml607@mlru bysd@gmlom olodtsov nttd th onpt of soft sts n [7] j t l dfnd som oprtons

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

minimize c'x subject to subject to subject to

minimize c'x subject to subject to subject to z ' sut to ' M ' M N uostrd N z ' sut to ' z ' sut to ' sl vrls vtor of : vrls surplus vtor of : uostrd s s s s s s z sut to whr : ut ost of :out of : out of ( ' gr of h food ( utrt : rqurt for h utrt

More information

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V, " = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =?

b.) v d =? Example 2 l = 50 m, D = 1.0 mm, E = 6 V,  = 1.72 #10 $8 % & m, and r = 0.5 % a.) R =? c.) V ab =? a.) R eq =? xmpl : An 8-gug oppr wr hs nomnl mtr o. mm. Ths wr rrs onstnt urrnt o.67 A to W lmp. Th nsty o r ltrons s 8.5 x 8 ltrons pr u mtr. Fn th mgntu o. th urrnt nsty. th rt vloty xmpl D. mm,.67 A, n N 8.5" 8

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017

CMSC 451: Lecture 4 Bridges and 2-Edge Connectivity Thursday, Sep 7, 2017 Rn: Not ovr n or rns. CMSC 451: Ltr 4 Brs n 2-E Conntvty Trsy, Sp 7, 2017 Hr-Orr Grp Conntvty: (T ollown mtrl ppls only to nrt rps!) Lt G = (V, E) n onnt nrt rp. W otn ssm tt or rps r onnt, t somtms t

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Minimum Spanning Trees

Minimum Spanning Trees Mnmum Spnnng Trs Spnnng Tr A tr (.., connctd, cyclc grph) whch contns ll th vrtcs of th grph Mnmum Spnnng Tr Spnnng tr wth th mnmum sum of wghts 1 1 Spnnng forst If grph s not connctd, thn thr s spnnng

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

On the vierbein formalism of general relativity

On the vierbein formalism of general relativity On th vrn formlsm of nrl rltvty T. M Dprtmnt of Journl Cntrl Chn Norml Unvrsty Wuhn Hu PRO Popl s Rpul of Chn E-Ml: mto@ml.nu.du.n mtowh@pul.wh.h.n Astrt: Both th Enstn-Hlrt ton nd th Enstn qutons r dsussd

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued...

a b c cat CAT A B C Aa Bb Cc cat cat Lesson 1 (Part 1) Verbal lesson: Capital Letters Make The Same Sound Lesson 1 (Part 1) continued... Progrssiv Printing T.M. CPITLS g 4½+ Th sy, fun (n FR!) wy to tch cpitl lttrs. ook : C o - For Kinrgrtn or First Gr (not for pr-school). - Tchs tht cpitl lttrs mk th sm souns s th littl lttrs. - Tchs th

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x)

INTEGRALS. Chapter 7. d dx. 7.1 Overview Let d dx F (x) = f (x). Then, we write f ( x) Chptr 7 INTEGRALS 7. Ovrviw 7.. Lt d d F () f (). Thn, w writ f ( ) d F () + C. Ths intgrls r clld indfinit intgrls or gnrl intgrls, C is clld constnt of intgrtion. All ths intgrls diffr y constnt. 7..

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information

HIGHER ORDER DIFFERENTIAL EQUATIONS

HIGHER ORDER DIFFERENTIAL EQUATIONS Prof Enriqu Mtus Nivs PhD in Mthmtis Edution IGER ORDER DIFFERENTIAL EQUATIONS omognous linr qutions with onstnt offiints of ordr two highr Appl rdution mthod to dtrmin solution of th nonhomognous qution

More information

Aquauno Video 6 Plus Page 1

Aquauno Video 6 Plus Page 1 Connt th timr to th tp. Aquuno Vio 6 Plus Pg 1 Usr mnul 3 lik! For Aquuno Vio 6 (p/n): 8456 For Aquuno Vio 6 Plus (p/n): 8413 Opn th timr unit y prssing th two uttons on th sis, n fit 9V lklin ttry. Whn

More information

Closed Monochromatic Bishops Tours

Closed Monochromatic Bishops Tours Cos Monoromt Bsops Tours Jo DMo Dprtmnt o Mtmts n Sttsts Knnsw Stt Unvrsty, Knnsw, Gor, 0, USA mo@nnsw.u My, 00 Astrt In ss, t sop s unqu s t s o to sn oor on t n wt or. Ts ms os tour n w t sop vsts vry

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Structure and Features

Structure and Features Thust l Roll ans Thust Roll ans Stutu an atus Thust ans onsst of a psly ma a an olls. Thy hav hh ty an hh loa apats an an b us n small spas. Thust l Roll ans nopoat nl olls, whl Thust Roll ans nopoat ylnal

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Minimum Spanning Trees

Minimum Spanning Trees Minimum Spnning Trs Minimum Spnning Trs Problm A town hs st of houss nd st of rods A rod conncts nd only houss A rod conncting houss u nd v hs rpir cost w(u, v) Gol: Rpir nough (nd no mor) rods such tht:

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1871 Colby College Catalogue 1871-1872 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Graphs. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fll 2017 Grps Crol Wnk Sls ourtsy o Crls Lsrson wt ns n tons y Crol Wnk 10/23/17 CMPS 2200 Intro. to Alortms 1 Grps Dnton. A rt rp (rp) G = (V, E) s n orr pr onsstn o st V o vrts (snulr: vrtx),

More information

l f t n nd bj t nd x f r t l n nd rr n n th b nd p phl t f l br r. D, lv l, 8. h r t,., 8 6. http://hdl.handle.net/2027/miun.aey7382.0001.001 P bl D n http://www.hathitrust.org/access_use#pd Th r n th

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP

MINI POST SERIES BALUSTRADE SYSTEM INSTALLATION GUIDE PRODUCT CODE: MPS-RP MN POST SRS LUSTR SYSTM NSTLLTON U PROUT O: MPS-RP 0 R0 WLL LN 0 RONT LVTON VW R0 N P 0 T RUR LOK LOT ON LSS. SLON SL TYP. OT SS 000 LSS T 0 00 SRS LSS WT 00/00 (0mm NRMNTS VLL) MX. 000 00-0 (ROMMN) 00

More information

FINITE ELEMENT ANALYSIS OF

FINITE ELEMENT ANALYSIS OF FINIT LMNT NLYSIS OF D MODL PROBLM WITH SINGL VRIBL Fnt lmnt modl dvlopmnt of lnr D modl dffrntl qton nvolvng sngl dpndnt nknown govrnng qtons F modl dvlopmnt wk form. JN Rddy Modlqn D - GOVRNING TION

More information

9.5 Complex variables

9.5 Complex variables 9.5 Cmpl varabls. Cnsdr th funtn u v f( ) whr ( ) ( ), f( ), fr ths funtn tw statmnts ar as fllws: Statmnt : f( ) satsf Cauh mann quatn at th rgn. Statmnt : f ( ) ds nt st Th rrt statmnt ar (A) nl (B)

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem

Extension Formulas of Lauricella s Functions by Applications of Dixon s Summation Theorem Avll t http:pvu.u Appl. Appl. Mth. ISSN: 9-9466 Vol. 0 Issu Dr 05 pp. 007-08 Appltos Appl Mthts: A Itrtol Jourl AAM Etso oruls of Lurll s utos Appltos of Do s Suto Thor Ah Al Atsh Dprtt of Mthts A Uvrst

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7

CIVL 8/ D Boundary Value Problems - Rectangular Elements 1/7 CIVL / -D Boundr Vlu Prolms - Rctngulr Elmnts / RECANGULAR ELEMENS - In som pplictions, it m mor dsirl to us n lmntl rprsnttion of th domin tht hs four sids, ithr rctngulr or qudriltrl in shp. Considr

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland

The R-Tree. Yufei Tao. ITEE University of Queensland. INFS4205/7205, Uni of Queensland Yu To ITEE Unvrsty o Qunsln W wll stuy nw strutur ll t R-tr, w n tout o s mult-mnsonl xtnson o t B-tr. T R-tr supports ntly vrty o qurs (s w wll n out ltr n t ours), n s mplmnt n numrous ts systms. Our

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev

Math 656 Midterm Examination March 27, 2015 Prof. Victor Matveev Math 656 Mdtrm Examnatn March 7, 05 Prf. Vctr Matvv ) (4pts) Fnd all vals f n plar r artsan frm, and plt thm as pnts n th cmplx plan: (a) Snc n-th rt has xactly n vals, thr wll b xactly =6 vals, lyng n

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1870 Colby College Catalogue 1870-1871 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

glo beau bid point full man branch last ior s all for ap Sav tree tree God length per down ev the fect your er Cm7 a a our

glo beau bid point full man branch last ior s all for ap Sav tree tree God length per down ev the fect your er Cm7 a a our SING, MY TONGU, TH SAVIOR S GLORY mj7 Mlod Kbd fr nd S would tm flsh s D nd d tn s drw t crd S, Fth t So Th L lss m ful wn dd t, Fs4 F wd; v, snr, t; ngh, t: lod; t; tgu, now Chrst, h O d t bnd Sv God

More information

D t r l f r th n t d t t pr p r d b th t ff f th l t tt n N tr t n nd H n N d, n t d t t n t. n t d t t. h n t n :.. vt. Pr nt. ff.,. http://hdl.handle.net/2027/uiug.30112023368936 P bl D n, l d t z d

More information

Colby College Catalogue

Colby College Catalogue Colby College Digital Commons @ Colby Colby Catalogues College Archives: Colbiana Collection 1872 Colby College Catalogue 1872-1873 Colby College Follow this and additional works at: http://digitalcommonscolbyedu/catalogs

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v

Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v Th n nt T p n n th V ll f x Th r h l l r r h nd xpl r t n rr d nt ff t b Pr f r ll N v n d r n th r 8 l t p t, n z n l n n th n rth t rn p rt n f th v ll f x, h v nd d pr v n t fr tf l t th f nt r n r

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

Section 5.1/5.2: Areas and Distances the Definite Integral

Section 5.1/5.2: Areas and Distances the Definite Integral Scto./.: Ars d Dstcs th Dt Itgrl Sgm Notto Prctc HW rom Stwrt Ttook ot to hd p. #,, 9 p. 6 #,, 9- odd, - odd Th sum o trms,,, s wrtt s, whr th d o summto Empl : Fd th sum. Soluto: Th Dt Itgrl Suppos w

More information

Handout 11. Energy Bands in Graphene: Tight Binding and the Nearly Free Electron Approach

Handout 11. Energy Bands in Graphene: Tight Binding and the Nearly Free Electron Approach Hdout rg ds Grh: Tght dg d th Nrl Fr ltro roh I ths ltur ou wll lr: rg Th tght bdg thod (otd ) Th -bds grh FZ C 407 Srg 009 Frh R Corll Uvrst Grh d Crbo Notubs: ss Grh s two dsol sgl to lr o rbo tos rrgd

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example

This Week. Computer Graphics. Introduction. Introduction. Graphics Maths by Example. Graphics Maths by Example This Wk Computr Grphics Vctors nd Oprtions Vctor Arithmtic Gomtric Concpts Points, Lins nd Plns Eploiting Dot Products CSC 470 Computr Grphics 1 CSC 470 Computr Grphics 2 Introduction Introduction Wh do

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information