The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

Size: px
Start display at page:

Download "The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008"

Transcription

1 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is onnt. Du tht (G ) is not isomorphi to G. G (i) G (G ) (ii) A onnt grph is on in whih thr xists pth twn ny pir o vrtis. Lt G isonnt plnr grph, n onsir its ul G. In G, thr is lrly pth twn ny two vrtis whih orrspon to s within on o th omponnts o G. Lt v th vrtx in G orrsponing to th ininit o G. Thn v is jnt to t lst on vrtx (orrsponing to ) in h omponnt o G. So i u n w r two vrtis o G whih orrspon to s in irnt omponnts o G, thn thr is pth rom u to w, vi v. Hn G is onnt. Sin G is onnt, its ul (G ) is lso onnt. ut G is isonnt, n so (G ) is not isomorphi to G. 2. A rtin polyhron hs s whih r tringls n pntgons, with h tringl surroun y pntgons n h pntgon surroun y tringls. I vry vrtx hs th sm gr, p sy, show tht 1 = 1 p Du tht p = 4, n tht thr r 20 tringls n 12 pntgons. Cn you onstrut suh polyhron? Stt th ul rsult. Lt T th numr o tringls, n P th numr o pntgons. Thn th numr o s, = T + P. Sin h tringl is oun y 3 gs, n h pntgon y 5, w hv 3T + 5P = 2. ut h g joins xtly on tringl n xtly on pntgon,

2 2 so 3T = 5P. Hn, T = 2 6 = 3, P = 2 10 = 5, = P + T = = Also, ssuming vry vrtx hs gr p, w hv pv = 2, or v = 2/p. Now sustitut into Eulr s ormul: Divi y 2 n simpliy: 2 p = 2. 1 = 1 p 7 30 Clrly, 1 must positiv numr, so w must hv 1 p 7 0, or p 30/7. 30 ut p must n intgr 3. So th only possil vlus or p r 3 or 4. I p = 3, = 10, ut thn v = 2/p = 20/3, whih is not n intgr. (Atully, it is sy nough to s tht it is not possil to put togthr tringls n pntgons in th wy spii, suh tht th gr o h vrtx is thr. Try rwing it n s!) I p = 4, = 60 n T = 20 n P = 12, s rquir. Suh polyhron my onstrut in two hlvs: W thn stith togthr long th gs whih orrspon in th lling. g It is rtinly possil to rw th ull grph, with littl mor ort: h i j j i h g Not tht th outsi rgion is on o th pntgons. Th ul rsult is otin y rpling vrtis y s n s y vrtis: A rtin polyhron hs vrtis whih hv grs 3 n 5, with h vrtx o gr 3 jnt to 3 vrtis o gr 5, n h vrtx o gr

3 3 5 jnt to 5 vrtis o gr 3. I vry is oun y th sm numr o gs, thn tht numr is 4, n thr r 20 vrtis o gr 3 n 12 vrtis o gr 5. (Eh vrtx in th ul grph orrspons to rgion in th originl grph, n n g inint to two jnt rgions in th originl is n g in th ul joining th orrsponing vrtis o th ul.) 3. Dtrmin th hromti numr o h o th ollowing grphs: g k g h j i k l g h j i g (i) (ii) (iii) (iv) A grph G is k-olourl i its vrtis n olour using k olours in suh wy tht no two jnt vrtis hv th sm olour. Th hromti numr o simpl grph G, writtn χ(g), is in to th smllst intgr k or whih G is k-olourl. Usul ts: I G ontins ( sugrph isomorphi to) K n, thn χ(g) n. I G ontins n o iruit, thn χ(g) 3. I G hs t lst two vrtis n no o iruits, thn χ(g) = 2. (i) This grph ontins svrl tringls, so χ(g) 3. On th othr hn w n sily in 3-olouring (g.,,, r;,, whit; g lu), so χ(g) = 3. (ii) Th grph hs no o yls, so χ(g) = 2. (A 2-olouring is sily oun (g.,,,, g, i whit,,,, h, j, k lk). (iii) Sin thr r tringls, χ(g) 3. W n in 3-olouring (g.,,, h, k r;,, i, l whit;,, g, j lu), so χ(g) = 3. (iv) Sin thr r tringls, (g., {,, }), χ(g) 3, ut is G 3-olourl? I so, without loss o gnrlity lt,, r, whit, lu rsptivly. Thn, jnt to oth n, must whit. Also, jnt to oth n, must lu. Also, jnt to oth n, must r. Thn, howvr, ourth olour is n or g, whih is jnt to, n. Hn χ(g) = For h o th ollowing grphs, wht os rooks Thorm tll you out th hromti numr o th grph? Fin th hromti numr o h grph. (i) Th omplt grph K 20. (ii) Th iprtit grph K 10,20. (iii) A yl with 20 gs. (iv) A yl with 29 gs.

4 (v) Th u grph Q 3. (vi) Th ul o Q 3. 4 Lt (G) th mximum o th grs o th vrtis o grph G. rooks Thorm stts tht, or ll grphs othr thn omplt grphs or o yls, th hromti numr o grph G, χ(g) (G). For omplt grphs, n or o yls, χ(g) = 1 + (G). (i) (K 20 ) = 19, χ(k 20 ) = = 20. (Clrly, h o th 20 vrtis must olour irntly or propr olouring.) (ii) (K 10,20 ) = 20, so rooks Thorm sys tht χ(k 10,20 ) 20. O ours, th hromti numr o ny iprtit grph is 2, so χ(k 10,20 ) = 2. (iii) In yl, ll vrtis hv gr 2. y rooks Thorm, th hromti numr o yl with n vn numr o gs is t most 2, n lrly 2 olours r rquir, so th hromti numr is qul to 2. (iv) y rooks Thorm, th hromti numr o yl with n o numr o gs is 3. (v) Q 3 is rgulr o gr 3, n so y rooks Thorm χ(q 3 ) 3. In t, Q 3 is iprtit grph with hromti numr 2. (vi) Th ul o Q 3 is th othron, in whih vry vrtx hs gr 4, so y rooks Thorm its hromti numr is t most 4. Not tht th grph ontins tringls, so its hromti numr is t lst 3. It is sy to in 3-olouring, n so χ(th othron) = (i) Dtrmin th minimum numr o olours rquir to olour th s o Q 3 in suh wy tht joining s hv irnt olour. (ii) pt prt (i) or th ul o Q 3. Th grph Q 3 is th polyhrl grph orrsponing to u. It is lr tht t lst 3 olours r n to olour th s o u so tht no two joining s hv th sm olour. Th igrm low inits on wy in whih to olour th s o th u using thr olours (whr =r, =lu, G=grn). Th othron is th ul o th u. For n othron only two olours r nssry. Th igrm shows 2-olouring o th s o n othron. G G Not tht th minimum numr o olours rquir to olour th s o th u is qul to th hromti numr o th othron, n vi vrs.

5 5 6. Show tht simpl onnt plnr grph with 17 gs n 10 vrtis nnot proprly olour with two olours. (Hint: Show tht suh grph must ontin tringl.) Suppos suh grph h no tringls. Thn, sin it is not tr, h must oun y t lst 4 gs, n so 4 2, or 2. Howvr, y Eulr s ormul, = 2 v + = = 9, so 2 = 2 9 > 17 = ontrition. Hn th grph hs t lst on tringl n so is not 2-olourl. 7. Lt T tr with t lst 2 vrtis. Prov tht χ(t)=2. Not tht w n t lst two olours to proprly olour T, so i w prov tht T is 2-olourl thn χ(t)=2. Us inution on th numr o vrtis. I thr r 2 vrtis, thn th tr is lrly 2-olourl. Suppos tht tr with k vrtis is 2-olourl. Lt T tr with k + 1 vrtis, n rmov rom T on o its vrtis with gr 1. (Evry tr hs t lst two vrtis with gr 1.) This lvs tr with k vrtis, whih is 2-olourl y th inution hypothsis. Colour th smllr tr with 2 olours, rstor th rmov vrtx n olour it with th olour not us on th (on) vrtx to whih it is jnt. Hn T is 2-olourl, n th rsult ollows. 8. Hurt kps iv vritis (A,, C, D, E) o snks in oxs in his prtmnt. Som vritis ttk othr vritis, n n t kpt togthr. In th tl, n strisk inits tht vritis n t kpt togthr. Wht is th minimum numr o oxs n? Construt grph with vritis o snks s vrtis, n gs joining vritis whih nnot kpt togthr. Thn th minimum numr o oxs rquir is th hromti numr o th grph. Sin th grph ontins tringls, t lst 3 olours r n. A 3-olouring n oun, s shown. Hn th minimum numr o oxs rquir is thr. E LUE D WHITE A C D E A C D E A ED WHITE C LUE 9. Dtrmin th numr o wys in whih h o th ollowing grphs n proprly olour, givn λ irnt olours. (i) Th omplt grph K 6. (ii) Th str grph K 1,5. (iii) Th linr grph L 6.

6 6 ll tht olouring o grph is n ssignmnt o olour (rom som st o vill olours) to h vrtx, with th onition tht no two jnt vrtis my riv th sm olour. ll lso tht th hromti polynomil o grph G, writtn P G (λ), is th untion in th on intgr vril λ, suh tht i λ is ny intgr 0, P G (λ) is th numr o wys o olouring G i λ olours r vill. Th untion P G (λ) is polynomil with intgr oiints. (i) G = K 6 = With λ olours vill, n strting with no vrtis olour, olour ny vrtx (λ hois), thn nothr vrtx (only λ 1 hois, th son vrtx ing jnt to th irst), thn nothr (only λ 2 hois, th thir vrtx ing jnt to oth th prvious), t., thr ing λ 5 wys o olouring th inl vrtx. (Not tht t h stp th numr o hois os not pn on th prviously m hois.) y th prout prinipl, th totl numr o olourings is thror P G (λ) = λ (6) = λ(λ 1)(λ 2)(λ 3)(λ 4)(λ 5). (ii) G = K 1,5 = = First olour th vrtx o gr 5 (λ hois), thn h o th othr 5 vrtis (λ 1 hois h, s h is jnt to just on lry olour vrtx). Hn P G (λ) = λ(λ 1) 5. (O ours, K 1,5 is tr with 6 vrtis, n i T is tr with n vrtis thn P T (λ) = λ(λ 1) n 1.) (iii) G = L 6 = This is nothr tr on 6 vrtis, n so th polynomil is s in prt (ii). Or on n pro s ollows: Colour th vrtis in orr rom th lt, strting with gr 1 vrtx (λ hois), n ontinuing with n jnt vrtx, t. (λ 1 hois h). Hn P G (λ) = λ(λ 1) 5. Not tht tking th vrtis in rully hosn orr ws importnt hr. Strting with th two gr 1 vrtis, or xmpl (λ hois h), woul vntully ln us in iiultis, s th lst vrtx to olour woul jnt to 2 lry olour vrtis, n th numr

7 7 o hois woul pn on whthr thy h n olour th sm or irntly. 10. (i) Fin th hromti polynomils o h o th six onnt simpl grphs on our vrtis. (ii) Vriy tht h o th polynomils in (i) hs th orm λ 4 λ 3 +λ 2 λ whr is th numr o gs n n r positiv onstnts. G P G (λ) = L 4 λ(λ 1) 3 = λ 4 3λ 3 + 3λ 2 λ = K 1,3 λ(λ 1) 3 = λ 4 3λ 3 + 3λ 2 λ = C 4 λ(λ 1)(λ 2 3λ + 3) = λ 4 4λ 3 + 6λ 2 3λ λ(λ 1) 2 (λ 2) = λ 4 4λ 3 + 5λ 2 2λ λ(λ 1)(λ 2) 2 = λ 4 5λ + 8λ 2 4λ = K 4 λ(λ 1)(λ 2)(λ 3) = λ 4 6λ λ 2 6λ All th polynomils r sily oun, xpt tht or C 4. As w sw in lturs, th polynomil or C 4 n oun y ing togthr th numr o wys o olouring C 4 in whih pir o non-jnt vrtis r olour th sm, n th numr o wys in whih tht pir o vrtis is olour irntly. This mtho givs P C4 (λ) = λ(λ 1) 2 + λ(λ 1)(λ 2) 2. Th vriitions rquir in (ii) r y insption. 11. Fin th hromti polynomils o K 1,n, K 2,n n K 3,n. x G = K 1,n =... y 1 y 2 y n Th grph is tr on (n + 1) vrtis, so P G (λ) = λ(λ 1) n. x 1 x 2 G = K 2,n =... y 1 y 2 y n Colour x 1 n x 2 irst, ut thn, to olour y 1, y 2,..., y n, w n to onsir two mutully xlusiv ss: Cs 1: x 1 n x 2 hv n olour irntly: λ hois or x 1 thn λ 1 hois or x 2. In this s h o y 1, y 2,..., y n my thn olour in λ 2 wys: λ(λ 1)(λ 2) n wys ll togthr.

8 8 Cs 2: x 1 n x 2 hv n givn th sm olour: λ hois or tht olour. In this s h o y 1, y 2,..., y n my olour in λ 1 wys: λ(λ 1) n wys ll togthr. Using th ition prinipl or omining mutully xlusiv ss, w gt: P G (λ) = λ(λ 1)(λ 2) n + λ(λ 1) n. x 1 x 2 x 3 G = K 3,n =... y 1 y 2 y n Hr, i olouring x 1, x 2, x 3 irst, thr r thr mutully xlusiv ss to onsir: Cs 1: All o x 1, x 2, x 3 hv n givn irnt olours: λ hois or x 1, λ 1 or x 2 n λ 2 or x 3. In this s thr r λ 3 hois or h o y 1, y 2,..., y n : λ(λ 1)(λ 2)(λ 3) n wys ll togthr. Cs 2: Two o x 1, x 2, x 3 hv n givn th sm olour, th othr irnt olour. Not tht thr r ( 3 2) = 3 hois or whih two hv th sm olour, λ or wht olour tht is, thn λ 1 or th irnt olour. In this s thr r λ 2 hois or h o y 1, y 2,..., y n : 3λ(λ 1)(λ 2) n wys ll togthr. Cs 3: All o x 1, x 2, x 3 hv n givn th sm olour: λ hois or tht olour. In this s thr r λ 1 hois or h o y 1, y 2,..., y n : λ(λ 1) n wys ll togthr. Comining ths y th ition prinipl: P G (λ) = λ(λ 1)(λ 2)(λ 3) n + 3λ(λ 1)(λ 2) n + λ(λ 1) n. 12. Stt two rution ormuls or hromti polynomils. Us whihvr sms pproprit to lult th hromti polynomil or h o th two givn grphs. Also trmin th hromti numr o h grph. For simpl grph G, th two orms r P G (λ) = P G+ (λ) + P G (λ) (1) P G (λ) = P G (λ) P G (λ) (2) whr, in (1), G + is G with nw g (onnting two vrtis whih r non-jnt in G), n, in (2), G is G with n xisting g rmov. In h s G is G ontrt long, i.., is th rsult o intiying th two vrtis join y, n sy, s singl vrtx. Any vrtx jnt to ithr or or oth in G is jnt to in G, n ll othr jnis r prsrv.

9 9 W know th hromti polynomils o th omplt grph K n, n o ny n-vrtx tr T n : λ(λ 1) (λ n + 1) n λ(λ 1) n 1 rsptivly. So it is pproprit to us (1) on nrly omplt grphs, n (2) on grphs with w iruits, s in h s only w pplitions r n to ru to sums/irns o known polynomils. Not tht w r using h grph igrm to mn th hromti polynomil o th grph in th ollowing. Using (1): = + = ( + ) + Using (2): = = K 6 + K 5 + K 5 = λ(λ 1)(λ 2)(λ 3)(λ 4)(λ 5) + 2λ(λ 1)(λ 2)(λ 3)(λ 4) = λ(λ 1)(λ 2)(λ 3) 2 (λ 4). = ( ) ( ) ( ) ( ) = T 6 T 5 + = T 6 T 5 + ( ) T 5 + T 4 T 3 = T 6 2T 5 + 2T 4 T 3 K 3 = λ(λ 1) 5 2λ(λ 1) 4 + 2λ(λ 1) 3 λ(λ 1) 2 λ(λ 1)(λ 2) = (vntully) λ(λ 1)(λ 2) 2 (λ 2 2λ + 2). ll tht th hromti numr o grph is th minimum numr o olours with whih th vrtis o th grph my proprly olour (i.., with no pir o jnt vrtis hving th sm olour). Th irst grph ontins K 5 s sugrph, so ns 5 olours. Insption shows sixth olour is not n. Hn th hromti numr is 5. (Altrntivly, osrv tht 5 is th irst positiv intgr whih is not zro o th hromti polynomil.) Th son grph ontins o lngth iruits, so ns 3 olours. Insption shows 4th olour is not n. Hn th hromti numr is 3. (Altrntivly, osrv tht 3 is th irst positiv intgr whih is not zro o th hromti polynomil.)

10 13. Fin th hromti polynomil o C 5, th yl with 5 vrtis. Using th ormul P G (λ) = P G (λ) P G (λ) on C 5, w otin 10 P C5 (λ) = P T5 (λ) P C4 (λ) = P T5 (λ) [P T4 (λ) P C3 (λ)] (T n nots tr on n vrtis.) = λ(λ 1) 4 λ(λ 1) 3 + λ(λ 1)(λ 2) = λ(λ 1)(λ 2)(λ 2 2λ + 2) 14. Explin why th hromti polynomil P G (λ) o plnr grph G nnot ontin trm (λ k) or ny k 4. I P G (λ) ontins th trm (λ k), thn P G (k) = 0, n thr r zro wys to olour th grph with k olours. In othr wors, th grph is not k-olourl. Sin ny plnr grph is 4-olourl, n thror k-olourl or ll k 4, its hromti polynomil nnot ontin trm (λ k) or ny k Fin th hromti inx (or g-hromti numr) o th grph G, whr G is: () () ll tht grph G is proprly g-olour whn its gs r ssign olours n no two gs inint t th sm vrtx hv th sm olour. ll lso tht th hromti inx o G (lso ll th g-hromti numr o G), χ (G), is th minimum numr o olours rquir to g-olour G proprly. A thorm o Vizing stts tht or simpl grph G, χ (G) is ithr or + 1, whr is th mximum vrtx gr o G. To trmin whih o ths two is orrt, w might in wy o g-olouring G proprly with just olours, or prov it is impossil with just olours. () Hr G hs mximum gr 3 (ll vrtis hving gr 3 xpt, whih hs gr 2). So oviously t lst 3 olours r n to g olour G proprly (g., th thr gs inint to rquir thr irnt olours). y Vizing s thorm, χ (G) is ithr 3 or 4. Try to olour G proprly with just 3 olours:, G n, sy. Without loss o gnrlty, [, ] =, [, ] = G n [, ] =. Hn [, ] =, so [, ] = n [, ] = G. Now ourth olour is n to olour [, ] proprly. Hn χ (G) = 4.

11 11 () Vizing s thorm hr shows χ (G) is ithr 4 (th mximum vrtx gr) or 5. Try using just 4 olours:,, G n Y, sy. Without loss o gnrlty, [, ] =, [, ] = G, [, ] = n [, ] = Y. Thn [, ] nnot G or, so is ithr or Y y symmtry w n ssum without loss o gnrlity [, ] =. Hn [, ] = G, n so [, ] = Y n thn [, ] =, n now ith olour is n or [, ]. Hn χ (G) = Fin th hromti inx o th u, n o th othron. Th grphs r s shown: y Vizing s thorm, th u grph hs hromti inx 3 or 4 (3 ing th mximum vrtx gr). Similrly th othrl grph hs hromti inx 4 or 5. In t th lowr vlu is orrt in h s, s th ollowing g olourings (thik, thin, ott, sh) show:

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1

Solutions for HW11. Exercise 34. (a) Use the recurrence relation t(g) = t(g e) + t(g/e) to count the number of spanning trees of v 1 Solutions for HW Exris. () Us th rurrn rltion t(g) = t(g ) + t(g/) to ount th numr of spnning trs of v v v u u u Rmmr to kp multipl gs!! First rrw G so tht non of th gs ross: v u v Rursing on = (v, u ):

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers.

1. Determine whether or not the following binary relations are equivalence relations. Be sure to justify your answers. Mth 0 Exm - Prti Prolm Solutions. Dtrmin whthr or not th ollowing inry rltions r quivln rltions. B sur to justiy your nswrs. () {(0,0),(0,),(0,),(,),(,),(,),(,),(,0),(,),(,),(,0),(,),(.)} on th st A =

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

COMP108 Algorithmic Foundations

COMP108 Algorithmic Foundations Grdy mthods Prudn Wong http://www.s.liv..uk/~pwong/thing/omp108/01617 Coin Chng Prolm Suppos w hv 3 typs of oins 10p 0p 50p Minimum numr of oins to mk 0.8, 1.0, 1.? Grdy mthod Lrning outoms Undrstnd wht

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

This chapter covers special properties of planar graphs.

This chapter covers special properties of planar graphs. Chptr 21 Plnr Grphs This hptr ovrs spil proprtis of plnr grphs. 21.1 Plnr grphs A plnr grph is grph whih n b rwn in th pln without ny gs rossing. Som piturs of plnr grph might hv rossing gs, but it s possibl

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

Chapter 9. Graphs. 9.1 Graphs

Chapter 9. Graphs. 9.1 Graphs Chptr 9 Grphs Grphs r vry gnrl lss of ojt, us to formliz wi vrity of prtil prolms in omputr sin. In this hptr, w ll s th sis of (finit) unirt grphs, inluing grph isomorphism, onntivity, n grph oloring.

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths

Weighted graphs -- reminder. Data Structures LECTURE 15. Shortest paths algorithms. Example: weighted graph. Two basic properties of shortest paths Dt Strutur LECTURE Shortt pth lgorithm Proprti of hortt pth Bllmn-For lgorithm Dijktr lgorithm Chptr in th txtook (pp ). Wight grph -- rminr A wight grph i grph in whih g hv wight (ot) w(v i, v j ) >.

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S.

Page 1. Question 19.1b Electric Charge II Question 19.2a Conductors I. ConcepTest Clicker Questions Chapter 19. Physics, 4 th Edition James S. ConTst Clikr ustions Chtr 19 Physis, 4 th Eition Jms S. Wlkr ustion 19.1 Two hrg blls r rlling h othr s thy hng from th iling. Wht n you sy bout thir hrgs? Eltri Chrg I on is ositiv, th othr is ngtiv both

More information

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata

CSE303 - Introduction to the Theory of Computing Sample Solutions for Exercises on Finite Automata CSE303 - Introduction to th Thory of Computing Smpl Solutions for Exrciss on Finit Automt Exrcis 2.1.1 A dtrministic finit utomton M ccpts th mpty string (i.., L(M)) if nd only if its initil stt is finl

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

Graph Theory. Vertices. Vertices are also known as nodes, points and (in social networks) as actors, agents or players. Stphn P. Borgtti Grph Thory A lthough grph thory is on o th youngr rnhs o mthmtis, it is unmntl to numr o ppli ils, inluing oprtions rsrh, omputr sin, n soil ntwork nlysis. In this hptr w isuss th si onpts

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

TOPIC 5: INTEGRATION

TOPIC 5: INTEGRATION TOPIC 5: INTEGRATION. Th indfinit intgrl In mny rspcts, th oprtion of intgrtion tht w r studying hr is th invrs oprtion of drivtion. Dfinition.. Th function F is n ntidrivtiv (or primitiv) of th function

More information

arxiv: v1 [math.mg] 5 Oct 2015

arxiv: v1 [math.mg] 5 Oct 2015 onvx pntgons tht mit i-lok trnsitiv tilings sy Mnn, Jnnifr MLou-Mnn, vi Von ru rxiv:1510.01186v1 [mth.mg] 5 Ot 2015 strt Univrsity of Wshington othll Univrsity of Wshington othll Univrsity of Wshington

More information

arxiv: v1 [math.co] 15 Dec 2015

arxiv: v1 [math.co] 15 Dec 2015 On th Plnr Split Thiknss of Grphs Dvi Eppstin, Philipp Kinrmnn, Stphn Koourov, Giuspp Liott, Ann Luiw, Au Mignn, Djyoti Monl, Hmih Vosoughpour, Su Whitsis 8, n Stphn Wismth 9 rxiv:.89v [mth.co] D Univrsity

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, *

FSA. CmSc 365 Theory of Computation. Finite State Automata and Regular Expressions (Chapter 2, Section 2.3) ALPHABET operations: U, concatenation, * CmSc 365 Thory of Computtion Finit Stt Automt nd Rgulr Exprssions (Chptr 2, Sction 2.3) ALPHABET oprtions: U, conctntion, * otin otin Strings Form Rgulr xprssions dscri Closd undr U, conctntion nd * (if

More information

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk

Announcements. Not graphs. These are Graphs. Applications of Graphs. Graph Definitions. Graphs & Graph Algorithms. A6 released today: Risk Grphs & Grph Algorithms Ltur CS Spring 6 Announmnts A6 rls toy: Risk Strt signing with your prtnr sp Prlim usy Not grphs hs r Grphs K 5 K, =...not th kin w mn, nywy Applitions o Grphs Communition ntworks

More information

Section 3: Antiderivatives of Formulas

Section 3: Antiderivatives of Formulas Chptr Th Intgrl Appli Clculus 96 Sction : Antirivtivs of Formuls Now w cn put th is of rs n ntirivtivs togthr to gt wy of vluting finit intgrls tht is ct n oftn sy. To vlut finit intgrl f(t) t, w cn fin

More information

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012

Register Allocation. Register Allocation. Principle Phases. Principle Phases. Example: Build. Spills 11/14/2012 Rgistr Allotion W now r l to o rgistr llotion on our intrfrn grph. W wnt to l with two typs of onstrints: 1. Two vlus r liv t ovrlpping points (intrfrn grph) 2. A vlu must or must not in prtiulr rhitturl

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim

Nefertiti. Echoes of. Regal components evoke visions of the past MULTIPLE STITCHES. designed by Helena Tang-Lim MULTIPLE STITCHES Nrtiti Ehos o Rgl omponnts vok visions o th pst sign y Hln Tng-Lim Us vrity o stiths to rt this rgl yt wrl sign. Prt sping llows squr s to mk roun omponnts tht rp utiully. FCT-SC-030617-07

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Research Article On the Genus of the Zero-Divisor Graph of Z n

Research Article On the Genus of the Zero-Divisor Graph of Z n Intrntionl Journl o Comintoris, Artil ID 7, pgs http://x.oi.org/.1/14/7 Rsrh Artil On th Gnus o th Zro-Divisor Grph o Z n Huong Su 1 n Piling Li 2 1 Shool o Mthmtil Sins, Gungxi Thrs Eution Univrsity,

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

8Algebraic UNCORRECTED SAMPLE PAGES. techniques. What you will learn. Australian curriculum. Chapter 8A 8B 8C 8D 8E 8F

8Algebraic UNCORRECTED SAMPLE PAGES. techniques. What you will learn. Australian curriculum. Chapter 8A 8B 8C 8D 8E 8F 8A 8B 8C 8D 8E 8F 8G 8H 8I 8J 8K Chptr Wht you will lrn 8Algri thniqus Epning inomil prouts Prt squrs n irn o prt squrs Ftorising lgri prssions Ftorising th irn o two squrs Ftoristion y grouping Ftorising

More information

Chem 104A, Fall 2016, Midterm 1 Key

Chem 104A, Fall 2016, Midterm 1 Key hm 104A, ll 2016, Mitrm 1 Ky 1) onstruct microstt tl for p 4 configurtion. Pls numrt th ms n ml for ch lctron in ch microstt in th tl. (Us th formt ml m s. Tht is spin -½ lctron in n s oritl woul writtn

More information

Walk Like a Mathematician Learning Task:

Walk Like a Mathematician Learning Task: Gori Dprtmnt of Euction Wlk Lik Mthmticin Lrnin Tsk: Mtrics llow us to prform mny usful mthmticl tsks which orinrily rquir lr numbr of computtions. Som typs of problms which cn b on fficintly with mtrics

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igts in th bs xnsion

More information

Floating Point Number System -(1.3)

Floating Point Number System -(1.3) Floting Point Numbr Sstm -(.3). Floting Point Numbr Sstm: Comutrs rrsnt rl numbrs in loting oint numbr sstm: F,k,m,M 0. 3... k ;0, 0 i, i,...,k, m M. Nottions: th bs 0, k th numbr o igits in th bs xnsion

More information

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)} Grph Theory Simple Grph G = (V, E). V ={verties}, E={eges}. h k g f e V={,,,,e,f,g,h,k} E={(,),(,g),(,h),(,k),(,),(,k),...,(h,k)} E =16. 1 Grph or Multi-Grph We llow loops n multiple eges. G = (V, E.ψ)

More information

Discovering Pairwise Compatibility Graphs

Discovering Pairwise Compatibility Graphs Disovring Pirwis Comptiility Grphs Muhmm Nur Ynhon, M. Shmsuzzoh Byzi, n M. Siur Rhmn Dprtmnt of Computr Sin n Enginring Bnglsh Univrsity of Enginring n Thnology nur.ynhon@gmil.om, shms.yzi@gmil.om, siurrhmn@s.ut..

More information

Two Approaches to Analyzing the Permutations of the 15 Puzzle

Two Approaches to Analyzing the Permutations of the 15 Puzzle Two Approhs to Anlyzin th Prmuttions o th 15 Puzzl Tom How My 2017 Astrt Th prmuttions o th 15 puzzl hv n point o ous sin th 1880 s whn Sm Lloy sin spin-o o th puzzl tht ws impossil to solv. In this ppr,

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c

O n t h e e x t e n s i o n o f a p a r t i a l m e t r i c t o a t r e e m e t r i c O n t h x t n s i o n o f p r t i l m t r i t o t r m t r i Alin Guénoh, Bruno Llr 2, Vlimir Mkrnkov 3 Institut Mthémtiqus Luminy, 63 vnu Luminy, F-3009 MARSEILLE, FRANCE, gunoh@iml.univ-mrs.fr 2 Cntr

More information

Instructions for Section 1

Instructions for Section 1 Instructions for Sction 1 Choos th rspons tht is corrct for th qustion. A corrct nswr scors 1, n incorrct nswr scors 0. Mrks will not b dductd for incorrct nswrs. You should ttmpt vry qustion. No mrks

More information