CMSE 820: Math. Foundations of Data Sci.

Size: px
Start display at page:

Download "CMSE 820: Math. Foundations of Data Sci."

Transcription

1 Lecture Weighted path graphs Take from [10, Lecture 3] As alluded to at the ed of the previous sectio, we ow aalyze weighted path graphs. To that ed, we prove the followig: Theorem 6 (Fiedler). Let P =(V, E, w) be a weighted path graph o vertices, let L P have eigevalues 0 = l 1 < l 2 apple applel, ad let j k be a eigevector with eigevalue l k. The j k chages sig k 1 times. We will eed to first prove a few lemmas i order to prove Theorem 6. The first of these is Sylvester s Law of Iertia: Theorem 7 (Sylvester s Law of Itertia). Let A be ay symmetric matrix ad let B be ay o-sigular matrix (that is, B has o zero sigular values). The, the matrix BAB T has the same umber of positive, egative ad zero eigevalues as A. Proof. We first recall three facts from liear algebra. 1. The first is that BAB 1 has the same eigevalues as A, sice: Aj = lj () BAB 1 (Bj) =l(bj). 2. The secod fact is that rak(a) =rak(bab). 3. The third is that every osigular matrix B ca be writte B = QR, where Q is a orthoormal matrix (meaig Q T Q = QQ T = I) ad R is a upper-triagular matrix with positive diagoals (this is the so-called QR factorizatio). We are goig to begi by usig a slight variatio of the last fact, ad write B = RQ. Now, sice Q T = Q 1, by the first fact we kow that QAQ T has exactly the same eigevalues as A. Defie 8 t 2 [0, 1], R t = tr +(1 t)i, 88

2 ad cosider the family of matrices 8 t 2 [0, 1], M t = R t QAQ T R T t. At t = 0 we have R 0 = I ad so M 0 = QAQ T has the same eigevalues as A. For t = 1 we have M 1 = BAB T. Sice all of the matrices M t are symmetric, they all have real eigevalues (by the Spectral Theorem). Additioally, the eigevalues of a symmetric matrix are cotiuous fuctios of the etries of the matrix. Therefore, if the umber of positive, egative, or zero eigevalues of BAB T differs from that of A, the there must be some t for which M t has more zero eigevalues tha does A. But the matrices R t are upper triagular with positive diagoal etries, ad hece are o-sigular (sice the eigevalues of R t are the diagoal etries). Thus the rak of M t must equal the rak of A, which meas this caot happe. Fiedler s Theorem will follow from a aalysis of the eigevalues of tri-diagoal matrices with zero row-sums. These may be viewed as Laplacias of weighted path graphs i which some edges are allowed to have egative weights. Lemma 2. Let M be a symmetric matrix such that M1 = 0. The: M = M ij L Gi,j. (53) Proof. Equatio (53) is a equality betwee two matrices. Let A deote the right had side matrix. O the off diagoal it is clear that both M (the LHS) ad A (the RHS) are equal. Notice as well that the right had side satisfies: A1 = M ij L Gi,j 1 = M ij 0 = 0. Thus M1 = 0 ad A1 = 0. Notice that these are sets of equatios ad ukows (i.e., the diagoal etries), which have uique solutios. Sice the off diagoal etries of M ad A are idetical, the equatios are the same, ad thus the solutios are as well, meaig that the diagoal of M ad A are the same. 89

3 Lemma 3. Let M be a symmetric tri-diagoal matrix with 2q positive off-diagoal etries such that M1 = 0. The M has q egative eigevalues. Proof. By Lemma 2 ad the fact that M is symmetric ad tri-diagoal, we may write: Thus for v 2 R, v T Mv = M = M i 1,i L Gi 1,i. M i 1,i (v[i 1] v[i]) 2. Now we perform a chage variables that will diagoalize the matrix M. Let d[1] =v[1] ad set d[i] =v[i] v[i 1] for i 2, so that: v[i] =d[1]+d[2]+ + d[i]. Notice that if we defie the lower triagular matrix T as: T = B A, the v = Td. By Sylvester s Law of Iertia (Theorem 7), we kow that A = T T MT has the same umber of positive, egative ad zero eigevalues as M. O the other had, d T Ad = d T T T MTd = v T Mv = M i 1,i d[i] 2. Thus A has oe zero eigevalue (with eigevector d[1] =1, d[j] =0 for all j 2) ad a egative eigevalue M i 1,i for each M i 1,i > 0 (with eigevector d[i] =1, d[j] =0 for all j 6= i), of which there are q. 90

4 Proof of Theorem 6. We cosider the case whe j k has o zero etries. The proof for the geeral case may be obtaied by splittig the graph by removig the vertices with zero etries. For simplicity, we also assume that l k has multiplicity 1. Recall we wish to show that j k chages sig k 1 times. This is equivalet to showig that: #{i = 1,..., 1:j k [i]j k [i + 1] < 0} = k 1. Let V k deote the diagoal matrix with j k o the diagoal. Cosider the matrix: M = Vk T (L P l k I)V k. The ier matrix L P l k I has oe zero eigevalue ad k 1 egative eigevalues derived from the eigevalues ad eigevectors of L P. So, by Sylvester s Law of Iertia (Theorem 7), M has k 1 egative eigevalues, oe zero eigevalue, ad k postitive eigevalues. We are ow goig to use Lemma 3. The matrix M is clearly symmetric ad tri-diagoal, ad additioally: M1 = V T k (L P l k I)V k 1 = V T k (L P l k I)j k = V T k 0 = 0. Thus we ca apply Lemma 3 to M. We ote additioally that M i,i+1 = w(i, i + 1)j k [i]j k [i + 1], ad thus we see that M i,i+1 is positive precisely whe j k [i]j k [i + 1] < 0. Sice M has k 1 egative eigevalues, by Lemma 3 it must have k 1 positive etries o the upper diagoal, which meas that j k [i]j k [i + 1] < 0 must occur for exactly k 1 idices. 91

5 Refereces [1] Berhard Schölkopf ad Alexader J. Smola. Learig with Kerels: Support Vector Machies, Regularizatio, Optimizatio, ad Beyod. Adaptive Computatio ad Machie Learig. The MIT Press, [2] Afoso S. Badeira. Te lectures ad forty-two ope problems i the mathematics of data sciece. MIT course Topics i Mathematics of Data Sciece, [3] Jo Shles. A tutorial o pricipal compoet aalysis. arxiv: , [4] Karl Pearso. O lies ad plaes of closest fit to systems of poits i space. Philosophical Magazie, Series 6, 2(11): , [5] V. A. Marcheko ad L. A. Pastur. Distributio of eigevalues i certai sets of radom matrices. Mat. Sb. (N.S.), 72(114): , [6] J. Baik, G. Be-Arous, ad S. Péché. Phase trasitio of the largest eigevalue for oull complex sample covariace matrices. The Aals of Probability, 33(5): , [7] Debashis Paul. Asymptotics of sample eigestructure for a large dimesioal spiked covariace model. Statistica Siica, pages , [8] Trevor Hastie, Robert Tibshirai, ad Jerome Friedma. The Elemets of Statistical Learig. Spriger-Verlag New York, 2d editio, [9] Athaasios Tsaas ad Ageliki Xifara. Accurate quatitative estimatio of eergy performace of residetial buildigs usig statistical machie learig tools. Eergy ad Buildigs, 49: , [10] Daiel A. Spielma. Spectral graph theory. Yale Course Notes, Fall,

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

Fastest mixing Markov chain on a path

Fastest mixing Markov chain on a path Fastest mixig Markov chai o a path Stephe Boyd Persi Diacois Ju Su Li Xiao Revised July 2004 Abstract We ider the problem of assigig trasitio probabilities to the edges of a path, so the resultig Markov

More information

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones

On Nonsingularity of Saddle Point Matrices. with Vectors of Ones Iteratioal Joural of Algebra, Vol. 2, 2008, o. 4, 197-204 O Nosigularity of Saddle Poit Matrices with Vectors of Oes Tadeusz Ostrowski Istitute of Maagemet The State Vocatioal Uiversity -400 Gorzów, Polad

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

State Space Representation

State Space Representation Optimal Cotrol, Guidace ad Estimatio Lecture 2 Overview of SS Approach ad Matrix heory Prof. Radhakat Padhi Dept. of Aerospace Egieerig Idia Istitute of Sciece - Bagalore State Space Represetatio Prof.

More information

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices

Random Matrices with Blocks of Intermediate Scale Strongly Correlated Band Matrices Radom Matrices with Blocks of Itermediate Scale Strogly Correlated Bad Matrices Jiayi Tog Advisor: Dr. Todd Kemp May 30, 07 Departmet of Mathematics Uiversity of Califoria, Sa Diego Cotets Itroductio Notatio

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

18.S096: Homework Problem Set 1 (revised)

18.S096: Homework Problem Set 1 (revised) 8.S096: Homework Problem Set (revised) Topics i Mathematics of Data Sciece (Fall 05) Afoso S. Badeira Due o October 6, 05 Exteded to: October 8, 05 This homework problem set is due o October 6, at the

More information

(VII.A) Review of Orthogonality

(VII.A) Review of Orthogonality VII.A Review of Orthogoality At the begiig of our study of liear trasformatios i we briefly discussed projectios, rotatios ad projectios. I III.A, projectios were treated i the abstract ad without regard

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 12 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract I this lecture we derive risk bouds for kerel methods. We will start by showig that Soft Margi kerel SVM correspods to miimizig

More information

AN INTRODUCTION TO SPECTRAL GRAPH THEORY

AN INTRODUCTION TO SPECTRAL GRAPH THEORY AN INTRODUCTION TO SPECTRAL GRAPH THEORY JIAQI JIANG Abstract. Spectral graph theory is the study of properties of the Laplacia matrix or adjacecy matrix associated with a graph. I this paper, we focus

More information

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka Matrix Algebra from a Statisticia s Perspective BIOS 524/546. Matrices... Basic Termiology a a A = ( aij ) deotes a m matrix of values. Whe =, this is a am a m colum vector. Whe m= this is a row vector..2.

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS

1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS 1. ARITHMETIC OPERATIONS IN OBSERVER'S MATHEMATICS We cosider a ite well-ordered system of observers, where each observer sees the real umbers as the set of all iite decimal fractios. The observers are

More information

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e. Theorem: Let A be a square matrix The A has a iverse matrix if ad oly if its reduced row echelo form is the idetity I this case the algorithm illustrated o the previous page will always yield the iverse

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc. 2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES 2012 Pearso Educatio, Ic. Theorem 8: Let A be a square matrix. The the followig statemets are equivalet. That is, for a give A, the statemets

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

Spectral Partitioning in the Planted Partition Model

Spectral Partitioning in the Planted Partition Model Spectral Graph Theory Lecture 21 Spectral Partitioig i the Plated Partitio Model Daiel A. Spielma November 11, 2009 21.1 Itroductio I this lecture, we will perform a crude aalysis of the performace of

More information

A NOTE ON SPECTRAL CONTINUITY. In Ho Jeon and In Hyoun Kim

A NOTE ON SPECTRAL CONTINUITY. In Ho Jeon and In Hyoun Kim Korea J. Math. 23 (2015), No. 4, pp. 601 605 http://dx.doi.org/10.11568/kjm.2015.23.4.601 A NOTE ON SPECTRAL CONTINUITY I Ho Jeo ad I Hyou Kim Abstract. I the preset ote, provided T L (H ) is biquasitriagular

More information

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University

Achieving Stationary Distributions in Markov Chains. Monday, November 17, 2008 Rice University Istructor: Achievig Statioary Distributios i Markov Chais Moday, November 1, 008 Rice Uiversity Dr. Volka Cevher STAT 1 / ELEC 9: Graphical Models Scribe: Rya E. Guerra, Tahira N. Saleem, Terrace D. Savitsky

More information

Notes for Lecture 11

Notes for Lecture 11 U.C. Berkeley CS78: Computatioal Complexity Hadout N Professor Luca Trevisa 3/4/008 Notes for Lecture Eigevalues, Expasio, ad Radom Walks As usual by ow, let G = (V, E) be a udirected d-regular graph with

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS

A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS J. Japa Statist. Soc. Vol. 41 No. 1 2011 67 73 A RANK STATISTIC FOR NON-PARAMETRIC K-SAMPLE AND CHANGE POINT PROBLEMS Yoichi Nishiyama* We cosider k-sample ad chage poit problems for idepedet data i a

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector

Summary and Discussion on Simultaneous Analysis of Lasso and Dantzig Selector Summary ad Discussio o Simultaeous Aalysis of Lasso ad Datzig Selector STAT732, Sprig 28 Duzhe Wag May 4, 28 Abstract This is a discussio o the work i Bickel, Ritov ad Tsybakov (29). We begi with a short

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices A Hadamard-type lower boud for symmetric diagoally domiat positive matrices Christopher J. Hillar, Adre Wibisoo Uiversity of Califoria, Berkeley Jauary 7, 205 Abstract We prove a ew lower-boud form of

More information

Topics in Eigen-analysis

Topics in Eigen-analysis Topics i Eige-aalysis Li Zajiag 28 July 2014 Cotets 1 Termiology... 2 2 Some Basic Properties ad Results... 2 3 Eige-properties of Hermitia Matrices... 5 3.1 Basic Theorems... 5 3.2 Quadratic Forms & Noegative

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chapter 04.04 Uary atrix Operatios After readig this chapter, you should be able to:. kow what uary operatios meas, 2. fid the traspose of a square matrix ad it s relatioship to symmetric matrices,. fid

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

MAT1026 Calculus II Basic Convergence Tests for Series

MAT1026 Calculus II Basic Convergence Tests for Series MAT026 Calculus II Basic Covergece Tests for Series Egi MERMUT 202.03.08 Dokuz Eylül Uiversity Faculty of Sciece Departmet of Mathematics İzmir/TURKEY Cotets Mootoe Covergece Theorem 2 2 Series of Real

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Singular value decomposition. Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 11 Sigular value decompositio Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaie V1.2 07/12/2018 1 Sigular value decompositio (SVD) at a glace Motivatio: the image of the uit sphere S

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

Math Solutions to homework 6

Math Solutions to homework 6 Math 175 - Solutios to homework 6 Cédric De Groote November 16, 2017 Problem 1 (8.11 i the book): Let K be a compact Hermitia operator o a Hilbert space H ad let the kerel of K be {0}. Show that there

More information

The inverse eigenvalue problem for symmetric doubly stochastic matrices

The inverse eigenvalue problem for symmetric doubly stochastic matrices Liear Algebra ad its Applicatios 379 (004) 77 83 www.elsevier.com/locate/laa The iverse eigevalue problem for symmetric doubly stochastic matrices Suk-Geu Hwag a,,, Sug-Soo Pyo b, a Departmet of Mathematics

More information

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001.

Physics 324, Fall Dirac Notation. These notes were produced by David Kaplan for Phys. 324 in Autumn 2001. Physics 324, Fall 2002 Dirac Notatio These otes were produced by David Kapla for Phys. 324 i Autum 2001. 1 Vectors 1.1 Ier product Recall from liear algebra: we ca represet a vector V as a colum vector;

More information

Symmetric Matrices and Quadratic Forms

Symmetric Matrices and Quadratic Forms 7 Symmetric Matrices ad Quadratic Forms 7.1 DIAGONALIZAION OF SYMMERIC MARICES SYMMERIC MARIX A symmetric matrix is a matrix A such that. A = A Such a matrix is ecessarily square. Its mai diagoal etries

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

ki, X(n) lj (n) = (ϱ (n) ij ) 1 i,j d.

ki, X(n) lj (n) = (ϱ (n) ij ) 1 i,j d. APPLICATIONES MATHEMATICAE 22,2 (1994), pp. 193 200 M. WIŚNIEWSKI (Kielce) EXTREME ORDER STATISTICS IN AN EQUALLY CORRELATED GAUSSIAN ARRAY Abstract. This paper cotais the results cocerig the wea covergece

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION Iteratioal Joural of Pure ad Applied Mathematics Volume 103 No 3 2015, 537-545 ISSN: 1311-8080 (prited versio); ISSN: 1314-3395 (o-lie versio) url: http://wwwijpameu doi: http://dxdoiorg/1012732/ijpamv103i314

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANAL. APPL. Vol. 7, No. 3, pp. 851 860 c 006 Society for Idustrial ad Applied Mathematics EXTREMAL EIGENVALUES OF REAL SYMMETRIC MATRICES WITH ENTRIES IN AN INTERVAL XINGZHI ZHAN Abstract.

More information

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix

Math 778S Spectral Graph Theory Handout #3: Eigenvalues of Adjacency Matrix Math 778S Spectral Graph Theory Hadout #3: Eigevalues of Adjacecy Matrix The Cartesia product (deoted by G H) of two simple graphs G ad H has the vertex-set V (G) V (H). For ay u, v V (G) ad x, y V (H),

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

A class of spectral bounds for Max k-cut

A class of spectral bounds for Max k-cut A class of spectral bouds for Max k-cut Miguel F. Ajos, José Neto December 07 Abstract Let G be a udirected ad edge-weighted simple graph. I this paper we itroduce a class of bouds for the maximum k-cut

More information

The Basic Space Model

The Basic Space Model The Basic Space Model Let x i be the ith idividual s (i=,, ) reported positio o the th issue ( =,, m) ad let X 0 be the by m matrix of observed data here the 0 subscript idicates that elemets are missig

More information

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b.

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b. Iterative Techiques for Solvig Ax b -(8) Cosider solvig liear systems of them form: Ax b where A a ij, x x i, b b i Assume that the system has a uique solutio Let x be the solutio The x A b Jacobi ad Gauss-Seidel

More information

Linear Classifiers III

Linear Classifiers III Uiversität Potsdam Istitut für Iformatik Lehrstuhl Maschielles Lere Liear Classifiers III Blaie Nelso, Tobias Scheffer Cotets Classificatio Problem Bayesia Classifier Decisio Liear Classifiers, MAP Models

More information

Lecture 23: Minimal sufficiency

Lecture 23: Minimal sufficiency Lecture 23: Miimal sufficiecy Maximal reductio without loss of iformatio There are may sufficiet statistics for a give problem. I fact, X (the whole data set) is sufficiet. If T is a sufficiet statistic

More information

A Note On The Exponential Of A Matrix Whose Elements Are All 1

A Note On The Exponential Of A Matrix Whose Elements Are All 1 Applied Mathematics E-Notes, 8(208), 92-99 c ISSN 607-250 Available free at mirror sites of http://wwwmaththuedutw/ ame/ A Note O The Expoetial Of A Matrix Whose Elemets Are All Reza Farhadia Received

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations

Chapter 2 The Solution of Numerical Algebraic and Transcendental Equations Chapter The Solutio of Numerical Algebraic ad Trascedetal Equatios Itroductio I this chapter we shall discuss some umerical methods for solvig algebraic ad trascedetal equatios. The equatio f( is said

More information

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion

Topics Machine learning: lecture 2. Review: the learning problem. Hypotheses and estimation. Estimation criterion cont d. Estimation criterion .87 Machie learig: lecture Tommi S. Jaakkola MIT CSAIL tommi@csail.mit.edu Topics The learig problem hypothesis class, estimatio algorithm loss ad estimatio criterio samplig, empirical ad epected losses

More information

PRACTICE FINAL/STUDY GUIDE SOLUTIONS

PRACTICE FINAL/STUDY GUIDE SOLUTIONS Last edited December 9, 03 at 4:33pm) Feel free to sed me ay feedback, icludig commets, typos, ad mathematical errors Problem Give the precise meaig of the followig statemets i) a f) L ii) a + f) L iii)

More information

18.S096: Principal Component Analysis in High Dimensions and the Spike Model

18.S096: Principal Component Analysis in High Dimensions and the Spike Model 18.S096: Pricipal Compoet Aalysis i High Dimesios ad the Spike Model opics i Mathematics of Data Sciece (Fall 2015) Afoso S. Badeira badeira@mit.edu http://math.mit.edu/~badeira September 18, 2015 hese

More information

4. Hypothesis testing (Hotelling s T 2 -statistic)

4. Hypothesis testing (Hotelling s T 2 -statistic) 4. Hypothesis testig (Hotellig s T -statistic) Cosider the test of hypothesis H 0 : = 0 H A = 6= 0 4. The Uio-Itersectio Priciple W accept the hypothesis H 0 as valid if ad oly if H 0 (a) : a T = a T 0

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Some remarks for codes and lattices over imaginary quadratic

Some remarks for codes and lattices over imaginary quadratic Some remarks for codes ad lattices over imagiary quadratic fields Toy Shaska Oaklad Uiversity, Rochester, MI, USA. Caleb Shor Wester New Eglad Uiversity, Sprigfield, MA, USA. shaska@oaklad.edu Abstract

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

A Risk Comparison of Ordinary Least Squares vs Ridge Regression

A Risk Comparison of Ordinary Least Squares vs Ridge Regression Joural of Machie Learig Research 14 (2013) 1505-1511 Submitted 5/12; Revised 3/13; Published 6/13 A Risk Compariso of Ordiary Least Squares vs Ridge Regressio Paramveer S. Dhillo Departmet of Computer

More information

Brief Review of Functions of Several Variables

Brief Review of Functions of Several Variables Brief Review of Fuctios of Several Variables Differetiatio Differetiatio Recall, a fuctio f : R R is differetiable at x R if ( ) ( ) lim f x f x 0 exists df ( x) Whe this limit exists we call it or f(

More information

Regression with quadratic loss

Regression with quadratic loss Regressio with quadratic loss Maxim Ragisky October 13, 2015 Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X,Y, where, as before,

More information

Basic Iterative Methods. Basic Iterative Methods

Basic Iterative Methods. Basic Iterative Methods Abel s heorem: he roots of a polyomial with degree greater tha or equal to 5 ad arbitrary coefficiets caot be foud with a fiite umber of operatios usig additio, subtractio, multiplicatio, divisio, ad extractio

More information

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS

NAME: ALGEBRA 350 BLOCK 7. Simplifying Radicals Packet PART 1: ROOTS NAME: ALGEBRA 50 BLOCK 7 DATE: Simplifyig Radicals Packet PART 1: ROOTS READ: A square root of a umber b is a solutio of the equatio x = b. Every positive umber b has two square roots, deoted b ad b or

More information

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter

Chandrasekhar Type Algorithms. for the Riccati Equation of Lainiotis Filter Cotemporary Egieerig Scieces, Vol. 3, 00, o. 4, 9-00 Chadrasekhar ype Algorithms for the Riccati Equatio of Laiiotis Filter Nicholas Assimakis Departmet of Electroics echological Educatioal Istitute of

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

Linear chord diagrams with long chords

Linear chord diagrams with long chords Liear chord diagrams with log chords Everett Sulliva Departmet of Mathematics Dartmouth College Haover New Hampshire, U.S.A. everett..sulliva@dartmouth.edu Submitted: Feb 7, 2017; Accepted: Oct 7, 2017;

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

Lecture 25 (Dec. 6, 2017)

Lecture 25 (Dec. 6, 2017) Lecture 5 8.31 Quatum Theory I, Fall 017 106 Lecture 5 (Dec. 6, 017) 5.1 Degeerate Perturbatio Theory Previously, whe discussig perturbatio theory, we restricted ourselves to the case where the uperturbed

More information

A brief introduction to linear algebra

A brief introduction to linear algebra CHAPTER 6 A brief itroductio to liear algebra 1. Vector spaces ad liear maps I what follows, fix K 2{Q, R, C}. More geerally, K ca be ay field. 1.1. Vector spaces. Motivated by our ituitio of addig ad

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

1 Principal Component Analysis in High Dimensions and the Spike Model

1 Principal Component Analysis in High Dimensions and the Spike Model Pricipal Compoet Aalysis i High Dimesios ad the Spike Model. Dimesio Reductio ad PCA Whe faced with a high dimesioal dataset, a atural approach is to try to reduce its dimesio, either by projectig it to

More information

A Note on Matrix Rigidity

A Note on Matrix Rigidity A Note o Matrix Rigidity Joel Friedma Departmet of Computer Sciece Priceto Uiversity Priceto, NJ 08544 Jue 25, 1990 Revised October 25, 1991 Abstract I this paper we give a explicit costructio of matrices

More information

10-701/ Machine Learning Mid-term Exam Solution

10-701/ Machine Learning Mid-term Exam Solution 0-70/5-78 Machie Learig Mid-term Exam Solutio Your Name: Your Adrew ID: True or False (Give oe setece explaatio) (20%). (F) For a cotiuous radom variable x ad its probability distributio fuctio p(x), it

More information

Lecture 7: October 18, 2017

Lecture 7: October 18, 2017 Iformatio ad Codig Theory Autum 207 Lecturer: Madhur Tulsiai Lecture 7: October 8, 207 Biary hypothesis testig I this lecture, we apply the tools developed i the past few lectures to uderstad the problem

More information

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005 The Jorda Normal Form: A Geeral Approach to Solvig Homogeeous Liear Sstems Mike Raugh March 2, 25 What are we doig here? I this ote, we describe the Jorda ormal form of a matrix ad show how it ma be used

More information

REGRESSION WITH QUADRATIC LOSS

REGRESSION WITH QUADRATIC LOSS REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d

More information

Chi-Squared Tests Math 6070, Spring 2006

Chi-Squared Tests Math 6070, Spring 2006 Chi-Squared Tests Math 6070, Sprig 2006 Davar Khoshevisa Uiversity of Utah February XXX, 2006 Cotets MLE for Goodess-of Fit 2 2 The Multiomial Distributio 3 3 Applicatio to Goodess-of-Fit 6 3 Testig for

More information