Basic Iterative Methods. Basic Iterative Methods

Size: px
Start display at page:

Download "Basic Iterative Methods. Basic Iterative Methods"

Transcription

1 Abel s heorem: he roots of a polyomial with degree greater tha or equal to 5 ad arbitrary coefficiets caot be foud with a fiite umber of operatios usig additio, subtractio, multiplicatio, divisio, ad extractio of roots. [he roots of some special polyomials of ay order like (x ) = 0 ca be foud.] As a cosequece: Ay geeral methods for fidig eigevalues are iterative 0. Power Method: If A is semi-simple the ay vector q may be writte q = c x + c 2 x 2 + +c x, where the c j are costats ad the x j are the m m m m eigevectors. We the have A q c xc22x2 c x If c 0 ad > j, < j, the m m m cx lim A q ad lim[ A q] k / [ A q] m k m m where [A m q] k refers to ay o-zero elemet of A m q. Repeatedly iteratig, we ultimately obtai the largest eigevalue ad eigevector. Some issues: () Covergece is oly liear (ot fast) (2) We oly get the largest eigevalue ( fixable by deflatio) (3) Whe the two largest magitude eigevalues have the same magitude, the method does ot coverge 0.2

2 Power Method: Example : Cosider the matrix 9 A 2 We first peek at the aswer usig MALAB: >> A = [9 ; 2] >> [V, D] = eig(a) >> format log, D MALAB has more accuracy tha ormally show We ext carry out the power iteratio >> eps = ; = 0; Iitialize stop criterio, operatio cout >> q = [ ]'; Iitialize the iteratio vector q = A*q; lambda = q()/q(), q = q/max(abs(q)); eps = orm(q - q); q = q; = + ed Carry out the iteratio We see that covergece is reasoable but ot great 0.3 Power Method: Example 2: Cosider the matrix A 0 We carry out the iteratio oce agai: >> A = [0.99 0; 0 ] >> eps = ; = 0; Iitialize stop criterio, operatio cout >> q = [ ]'; Iitialize the iteratio vector q = A*q; [C, I] = max(abs(q)); lambda = q(i)/q(i), q = q/c; eps = orm(q - q); q = q; = + ed Carry out the iteratio Covergece is much slower! 0.4 2

3 Power Method: Example 3: Cosider the matrix A We first peek at the aswer usig MALAB: >> A = [ ; - 9 2; -4-2] >> [V, D] = eig(a) he largest magitude eigevalue is real We ext carry out the power iteratio >> eps = ; = 0; Iitialize stop criterio, operatio cout >> q = [ ]'; Iitialize the iteratio vector q = A*q; lambda = q()/q(), q = q/max(abs(q)); eps = orm(q - q); q = q; = + ed Carry out the iteratio No serious problem i this case 0.5 Power Method: Example 4: But with a small chage A We first peek at the aswer usig MALAB: >> A = [ ; - 3 2; -4-2] >> [V, D] = eig(a) he largest magitude eigevalues have the same magitude We ext carry out the power iteratio >> eps = ; = 0; Iitialize stop criterio, operatio cout >> q = [ ]'; Iitialize the iteratio vector q = A*q; lambda = q()/q(), q = q/max(abs(q)); eps = orm(q - q); q = q; = + ed Carry out the iteratio Ad there is o covergece! 0.6 3

4 Shift-ad-Ivert Method: It is better to work backwards. Suppose you have a good guess for, the the eigevalues of A I are, 2,,, ad the largest eigevalue of (A I) will be ( ) ad will quickly coverge. he eigevectors do ot chage! Note: I practice, we do ot ivert, but solve (A I)q m+ = q m before rescalig (e.g., usig LU decompositio) 9 Example 5: We cosider agai A 2 ad guess = 9 We first fid (A I) ad peek at its eigevectors ad eigevalues: >> A = [0 ; -7]; Ai = iv(a), [V, D] = eig(ai) Note the large differece betwee eigevalues! more tha a factor of 50!! 0.7 Shift-ad-Ivert Method: 9 Example 5 (cotiued): We cosider agai A ad guess = 9 2 We first fid (A I) : ad peek at its eigevectors ad eigevalues >> A = [0 ; -7]; Ai = iv(a), [V, D] = eig(ai) Note the large differece betwee eigevalues! We ext carry out the power iteratio >> eps = ; = 0; q = [ ]'; Iitializatio q = Ai*q; lambda = 9 + q()/q(), q = q/max(abs(q)); (q eps = orm(q - q); q = q; = + ed Carry out the iteratio Oly a small umber of iteratios are eeded! ad we ca update ad do eve better 0.8 4

5 Rayleigh Quotiet: Cosider the equatio Aq = q. If q is ot a eigevector, the there is o solutio for, but the least square residual Aq q is miimized if we choose = q Aq/ q q, which is the Rayleigh quotiet 9 Example 6: We cosider agai A ad guess first = 9 2 We first iitialize A ad >> A = [9 ; 2], rho = Rayleigh Quotiet: Example 6 (cotiued: We first iitialize A ad >> A = [9 ; 2], rho = 9 We ext carry out the power iteratio >> eps = ; = 0; q = [ ]'; Iitializatio As = A - rho*eye(2); q = As\q; lambda = rho + q()/q(), rho = q'*a*q/(q'*q), [M, I] = max(abs(q)); q = q*sig(q(i))/m; eps = orm(q - q), q = q; = + ed Carry out the iteratio i Covergece is very rapid! A importat issue is that we must solve for q o each iteratio which is a 3 operatio

6 Matrix Simplificatio Hesseberg ad ridiagoal Forms: he basic idea: We caot use Householder matrices to directly carry out a Schur (similarity) decompositio. If left multiplyig A by U makes all the colum elemets below the diagoal trasformed to zero, i.e, the right multiplyig U A by U makes them o-zero agai. BU: You ca zero out all the elemets i the colums below the diagoal except the topmost oes. he matrix the has the form show below. his form is upper Hesseberg. his form becomes tridiagoal for ormal matrices. Ay iterative operatios are ow O( 2 ) which is a big wi! * * * * * 0 0 * * * * * * A 0 * for ormal matrices 0 * 0 * * 0 0 * * 0 0 * * 0. Matrix Simplificatio Hesseberg ad ridiagoal Forms: Example (A asymmetric matrix): >> A = rad(4) >> [P, H] = hess(a) >> Check = P*H*P' Example 2 (A symmetric matrix): >> B = A*A' >> [PB, HB] = hess(a) Note that this is tridiagoal! 0.2 6

7 Statemet of the Algorithm: QR Algorithm he goal: Fid a similarity trasformatio that reduces a arbitrary matrix to Schur form. he iterative procedure: A 0 = A (begi the iteratio) U m R m = A m (make a QR decompositio, m =, 2,, N ) A m = R m U m (Reverse U m ad R m to obtai a ew matrix) QR iteratio theorem: UU U A UU U lim N 2 N 2 N N where is the upper triagular Schur matrix Easy to state easy to implemet Not so easy to prove! 0.3 QR Algorithm Partial Proof: (For semi-simple matrices with > 2 > > ) We will proceed iteratively. At the first stage will cosider power iteratios. We let U equal a r matrix ad let U 0 = [e e 2 e r ], where the ej are the colum vectors whose j-th elemet is zero ad all others are. We ow cosider the followig iteratio Z m = AU m (Multiply by A) R m U m = Z m (Make a QR decompositio) First step: We first suppose that r =. I that case, we have implemeted the power algorithm that we described previously, where we use e as the startig vector ad we use the 2-orm to scale. We ote that R m is just a scalar (a matrix) ad equals the 2-orm of Z m. As log as c 0ithe sum e, where the j c jv j v j are the eigevectors, ormalized to we fid Ae c v, U c v, j j j j j j j j c j j j v j where 0.4 7

8 QR Algorithm Partial Proof (cotiued): For ay > 0, it is possible to fid a umber of iteratios N such the N -th iteratio of the algorithm produces v + r, where r <. We choose N large eough so that subsequet iteratios of the algorithm are ot affected. So, we may write u v as the value to which we coverge. Mathematically, this is a fudge! o be rigorous, we would have to carry r through the calculatio. hat would itroduce substatial complicatio ad little additioal isight. Secod step: We ext suppose that r = 2. Startig with [e e 2 ], where we assume v 2 e 2 0. After N iteratios, we have U N u x2 x2 c j 2 jv j c 22, where ad 0 We ow fid, recallig that QR decompositio is equivalet to Gram- Schmidt orthogoalizatio 0.5 Z R QR Algorithm u c v, U u c v v v v, N j 2 j j j N N j2 2 j j 2 j j c 2 2 jj v j v j N N 0 2 N he ext iteratio gives us Z, where ormalizes the secod colum 2 u c v v v v N 2 N 2 j2 2 j j 2 j j j 2 U u c v v v v where ormalizes the secod colum N 2 N 2 j2 2 j j 2 j j N 2 he Gram-Schmidt process elimiates growth proportioal to! Cotiuig with N 2 additioal steps, we coverge to,, 0.6 8

9 Z R QR Algorithm U v v v2 vv2u, where u2 2 v2 vv2u N N N N 2 2 N N 2 u u v v u, u u, hird Step: We ext move to r = 3, 4,, addig extra iteratios as eeded. Whe we coverge to a acceptable value with r =, the R = (the Schur upper triagular matrix) ad R = U AU. Note: We solved the problem, assumig c 0, c 22 0, Sice the e j spa the etire vector space, this assumptio is ot eeded as log as we do colum pivotig, which is eeded i ay case for stability. Fial Observatio: O the (k )-th iteratio with r =, we have ad we also have R U AU U AU U U R k k k k k k k k 0.7 Fial Observatio: O the (k )-th iteratio with r =, we have ad we also have QR Algorithm U AU U AU U U R k k k k k k k k U AU U AU U U R U U k k k k k k k k k k his is precisely what the QR algorithm does Remark : Much of the complexity i the stadard discussios is aimed at determiig the rate of covergece a issue that we bypassed. Remark 2: Covergece is oly liear. Back iteratio with clever shiftig dramatically speeds the algorithm. he best approach depeds o the matrix structure (real or complex, symmetric or arbitrary, ot sparse or sparse )

10 QR Algorithm Example: We cosider oce agai 9 A 2 Usig MALAB: >> format log So we ca see covergece >> A = [9 ; 2], k = A; U = eye(2); Uk = U; = 0; Iitializatios >> while abs(k(2,)) > e-2 [Uk R] = qr(k); U = U*Uk; k = R*Uk, = + ed Iterate usig the lower diagoal elemet value as the stoppig criterio Simple, but ot very fast! 0.9 MALAB Algorithms So what does MALAB do?: For full matrices: >> doc eig For sparse matrices: >> doc eigs It is quite sophisticated! he bottom lie: () Use caed routies BU (2) Kow what you are doig!

11 SVD Revisited We recall that the sigular value factorizatio is give by (slide 7.7): heorem: Let A be a m matrix of rak r. he, A ca be expressed as a product A = UΣV, where U ad V are respectively m m ad orthogoal (uitary) matrices of rak r, ad Σ is a o-square diagoal m matrix of rak r, 2 Σ, 2 r 0 r 0 We see that AA UΣV VΣ U UΣΣ U ad A A VΣ U UΣV VΣΣ V so that fidig the SVD becomes a eigevalue problem! 0.2

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

(VII.A) Review of Orthogonality

(VII.A) Review of Orthogonality VII.A Review of Orthogoality At the begiig of our study of liear trasformatios i we briefly discussed projectios, rotatios ad projectios. I III.A, projectios were treated i the abstract ad without regard

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors 5 Eigevalues ad Eigevectors 5.3 DIAGONALIZATION DIAGONALIZATION Example 1: Let. Fid a formula for A k, give that P 1 1 = 1 2 ad, where Solutio: The stadard formula for the iverse of a 2 2 matrix yields

More information

Properties and Tests of Zeros of Polynomial Functions

Properties and Tests of Zeros of Polynomial Functions Properties ad Tests of Zeros of Polyomial Fuctios The Remaider ad Factor Theorems: Sythetic divisio ca be used to fid the values of polyomials i a sometimes easier way tha substitutio. This is show by

More information

PAPER : IIT-JAM 2010

PAPER : IIT-JAM 2010 MATHEMATICS-MA (CODE A) Q.-Q.5: Oly oe optio is correct for each questio. Each questio carries (+6) marks for correct aswer ad ( ) marks for icorrect aswer.. Which of the followig coditios does NOT esure

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math E-2b Lecture #8 Notes This week is all about determiats. We ll discuss how to defie them, how to calculate them, lear the allimportat property kow as multiliearity, ad show that a square matrix A

More information

Tridiagonal reduction redux

Tridiagonal reduction redux Week 15: Moday, Nov 27 Wedesday, Nov 29 Tridiagoal reductio redux Cosider the problem of computig eigevalues of a symmetric matrix A that is large ad sparse Usig the grail code i LAPACK, we ca compute

More information

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc. 2 Matrix Algebra 2.2 THE INVERSE OF A MATRIX MATRIX OPERATIONS A matrix A is said to be ivertible if there is a matrix C such that CA = I ad AC = I where, the idetity matrix. I = I I this case, C is a

More information

Lecture 8: October 20, Applications of SVD: least squares approximation

Lecture 8: October 20, Applications of SVD: least squares approximation Mathematical Toolkit Autum 2016 Lecturer: Madhur Tulsiai Lecture 8: October 20, 2016 1 Applicatios of SVD: least squares approximatio We discuss aother applicatio of sigular value decompositio (SVD) of

More information

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0.

5.1. The Rayleigh s quotient. Definition 49. Let A = A be a self-adjoint matrix. quotient is the function. R(x) = x,ax, for x = 0. 40 RODICA D. COSTIN 5. The Rayleigh s priciple ad the i priciple for the eigevalues of a self-adjoit matrix Eigevalues of self-adjoit matrices are easy to calculate. This sectio shows how this is doe usig

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math S-b Lecture # Notes This wee is all about determiats We ll discuss how to defie them, how to calculate them, lear the allimportat property ow as multiliearity, ad show that a square matrix A is ivertible

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES

SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES SECTION 1.5 : SUMMATION NOTATION + WORK WITH SEQUENCES Read Sectio 1.5 (pages 5 9) Overview I Sectio 1.5 we lear to work with summatio otatio ad formulas. We will also itroduce a brief overview of sequeces,

More information

Math 257: Finite difference methods

Math 257: Finite difference methods Math 257: Fiite differece methods 1 Fiite Differeces Remember the defiitio of a derivative f f(x + ) f(x) (x) = lim 0 Also recall Taylor s formula: (1) f(x + ) = f(x) + f (x) + 2 f (x) + 3 f (3) (x) +...

More information

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture)

CSI 2101 Discrete Structures Winter Homework Assignment #4 (100 points, weight 5%) Due: Thursday, April 5, at 1:00pm (in lecture) CSI 101 Discrete Structures Witer 01 Prof. Lucia Moura Uiversity of Ottawa Homework Assigmet #4 (100 poits, weight %) Due: Thursday, April, at 1:00pm (i lecture) Program verificatio, Recurrece Relatios

More information

Linear Programming and the Simplex Method

Linear Programming and the Simplex Method Liear Programmig ad the Simplex ethod Abstract This article is a itroductio to Liear Programmig ad usig Simplex method for solvig LP problems i primal form. What is Liear Programmig? Liear Programmig is

More information

6.3 Testing Series With Positive Terms

6.3 Testing Series With Positive Terms 6.3. TESTING SERIES WITH POSITIVE TERMS 307 6.3 Testig Series With Positive Terms 6.3. Review of what is kow up to ow I theory, testig a series a i for covergece amouts to fidig the i= sequece of partial

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods

TMA4205 Numerical Linear Algebra. The Poisson problem in R 2 : diagonalization methods TMA4205 Numerical Liear Algebra The Poisso problem i R 2 : diagoalizatio methods September 3, 2007 c Eiar M Røquist Departmet of Mathematical Scieces NTNU, N-749 Trodheim, Norway All rights reserved A

More information

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS

THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS THE ASYMPTOTIC COMPLEXITY OF MATRIX REDUCTION OVER FINITE FIELDS DEMETRES CHRISTOFIDES Abstract. Cosider a ivertible matrix over some field. The Gauss-Jorda elimiatio reduces this matrix to the idetity

More information

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials

3.2 Properties of Division 3.3 Zeros of Polynomials 3.4 Complex and Rational Zeros of Polynomials Math 60 www.timetodare.com 3. Properties of Divisio 3.3 Zeros of Polyomials 3.4 Complex ad Ratioal Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered

More information

1 Last time: similar and diagonalizable matrices

1 Last time: similar and diagonalizable matrices Last time: similar ad diagoalizable matrices Let be a positive iteger Suppose A is a matrix, v R, ad λ R Recall that v a eigevector for A with eigevalue λ if v ad Av λv, or equivaletly if v is a ozero

More information

Notes on iteration and Newton s method. Iteration

Notes on iteration and Newton s method. Iteration Notes o iteratio ad Newto s method Iteratio Iteratio meas doig somethig over ad over. I our cotet, a iteratio is a sequece of umbers, vectors, fuctios, etc. geerated by a iteratio rule of the type 1 f

More information

4.3 Growth Rates of Solutions to Recurrences

4.3 Growth Rates of Solutions to Recurrences 4.3. GROWTH RATES OF SOLUTIONS TO RECURRENCES 81 4.3 Growth Rates of Solutios to Recurreces 4.3.1 Divide ad Coquer Algorithms Oe of the most basic ad powerful algorithmic techiques is divide ad coquer.

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

SNAP Centre Workshop. Basic Algebraic Manipulation

SNAP Centre Workshop. Basic Algebraic Manipulation SNAP Cetre Workshop Basic Algebraic Maipulatio 8 Simplifyig Algebraic Expressios Whe a expressio is writte i the most compact maer possible, it is cosidered to be simplified. Not Simplified: x(x + 4x)

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece,, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet as

More information

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e. Theorem: Let A be a square matrix The A has a iverse matrix if ad oly if its reduced row echelo form is the idetity I this case the algorithm illustrated o the previous page will always yield the iverse

More information

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b.

Iterative Techniques for Solving Ax b -(3.8). Assume that the system has a unique solution. Let x be the solution. Then x A 1 b. Iterative Techiques for Solvig Ax b -(8) Cosider solvig liear systems of them form: Ax b where A a ij, x x i, b b i Assume that the system has a uique solutio Let x be the solutio The x A b Jacobi ad Gauss-Seidel

More information

NUMERICAL METHODS FOR SOLVING EQUATIONS

NUMERICAL METHODS FOR SOLVING EQUATIONS Mathematics Revisio Guides Numerical Methods for Solvig Equatios Page 1 of 11 M.K. HOME TUITION Mathematics Revisio Guides Level: GCSE Higher Tier NUMERICAL METHODS FOR SOLVING EQUATIONS Versio:. Date:

More information

INTEGRATION BY PARTS (TABLE METHOD)

INTEGRATION BY PARTS (TABLE METHOD) INTEGRATION BY PARTS (TABLE METHOD) Suppose you wat to evaluate cos d usig itegratio by parts. Usig the u dv otatio, we get So, u dv d cos du d v si cos d si si d or si si d We see that it is ecessary

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

Intensive Algorithms Lecture 11. DFT and DP. Lecturer: Daniel A. Spielman February 20, f(n) O(g(n) log c g(n)).

Intensive Algorithms Lecture 11. DFT and DP. Lecturer: Daniel A. Spielman February 20, f(n) O(g(n) log c g(n)). Itesive Algorithms Lecture 11 DFT ad DP Lecturer: Daiel A. Spielma February 20, 2018 11.1 Itroductio The purpose of this lecture is to lear how use the Discrete Fourier Trasform to save space i Dyamic

More information

APPENDIX F Complex Numbers

APPENDIX F Complex Numbers APPENDIX F Complex Numbers Operatios with Complex Numbers Complex Solutios of Quadratic Equatios Polar Form of a Complex Number Powers ad Roots of Complex Numbers Operatios with Complex Numbers Some equatios

More information

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Curve Sketching Handout #5 Topic Interpretation Rational Functions Curve Sketchig Hadout #5 Topic Iterpretatio Ratioal Fuctios A ratioal fuctio is a fuctio f that is a quotiet of two polyomials. I other words, p ( ) ( ) f is a ratioal fuctio if p ( ) ad q ( ) are polyomials

More information

v = -!g(x 0 ) Ûg Ûx 1 Ûx 2 Ú If we work out the details in the partial derivatives, we get a pleasing result. n Ûx k, i x i - 2 b k

v = -!g(x 0 ) Ûg Ûx 1 Ûx 2 Ú If we work out the details in the partial derivatives, we get a pleasing result. n Ûx k, i x i - 2 b k The Method of Steepest Descet This is the quadratic fuctio from to that is costructed to have a miimum at the x that solves the system A x = b: g(x) = - 2 I the method of steepest descet, we

More information

Chapter 1 Simple Linear Regression (part 6: matrix version)

Chapter 1 Simple Linear Regression (part 6: matrix version) Chapter Simple Liear Regressio (part 6: matrix versio) Overview Simple liear regressio model: respose variable Y, a sigle idepedet variable X Y β 0 + β X + ε Multiple liear regressio model: respose Y,

More information

1. By using truth tables prove that, for all statements P and Q, the statement

1. By using truth tables prove that, for all statements P and Q, the statement Author: Satiago Salazar Problems I: Mathematical Statemets ad Proofs. By usig truth tables prove that, for all statemets P ad Q, the statemet P Q ad its cotrapositive ot Q (ot P) are equivalet. I example.2.3

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence

Sequences A sequence of numbers is a function whose domain is the positive integers. We can see that the sequence Sequeces A sequece of umbers is a fuctio whose domai is the positive itegers. We ca see that the sequece 1, 1, 2, 2, 3, 3,... is a fuctio from the positive itegers whe we write the first sequece elemet

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Assignment 2 Solutions SOLUTION. ϕ 1 Â = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ.

Assignment 2 Solutions SOLUTION. ϕ 1  = 3 ϕ 1 4i ϕ 2. The other case can be dealt with in a similar way. { ϕ 2 Â} χ = { 4i ϕ 1 3 ϕ 2 } χ. PHYSICS 34 QUANTUM PHYSICS II (25) Assigmet 2 Solutios 1. With respect to a pair of orthoormal vectors ϕ 1 ad ϕ 2 that spa the Hilbert space H of a certai system, the operator  is defied by its actio

More information

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense, 3. Z Trasform Referece: Etire Chapter 3 of text. Recall that the Fourier trasform (FT) of a DT sigal x [ ] is ω ( ) [ ] X e = j jω k = xe I order for the FT to exist i the fiite magitude sese, S = x [

More information

Math 312 Lecture Notes One Dimensional Maps

Math 312 Lecture Notes One Dimensional Maps Math 312 Lecture Notes Oe Dimesioal Maps Warre Weckesser Departmet of Mathematics Colgate Uiversity 21-23 February 25 A Example We begi with the simplest model of populatio growth. Suppose, for example,

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1

Once we have a sequence of numbers, the next thing to do is to sum them up. Given a sequence (a n ) n=1 . Ifiite Series Oce we have a sequece of umbers, the ext thig to do is to sum them up. Give a sequece a be a sequece: ca we give a sesible meaig to the followig expressio? a = a a a a While summig ifiitely

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 50-004 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig

More information

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify

RADICAL EXPRESSION. If a and x are real numbers and n is a positive integer, then x is an. n th root theorems: Example 1 Simplify Example 1 Simplify 1.2A Radical Operatios a) 4 2 b) 16 1 2 c) 16 d) 2 e) 8 1 f) 8 What is the relatioship betwee a, b, c? What is the relatioship betwee d, e, f? If x = a, the x = = th root theorems: RADICAL

More information

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0.

THE SOLUTION OF NONLINEAR EQUATIONS f( x ) = 0. THE SOLUTION OF NONLINEAR EQUATIONS f( ) = 0. Noliear Equatio Solvers Bracketig. Graphical. Aalytical Ope Methods Bisectio False Positio (Regula-Falsi) Fied poit iteratio Newto Raphso Secat The root of

More information

6.003 Homework #3 Solutions

6.003 Homework #3 Solutions 6.00 Homework # Solutios Problems. Complex umbers a. Evaluate the real ad imagiary parts of j j. π/ Real part = Imagiary part = 0 e Euler s formula says that j = e jπ/, so jπ/ j π/ j j = e = e. Thus the

More information

Math 475, Problem Set #12: Answers

Math 475, Problem Set #12: Answers Math 475, Problem Set #12: Aswers A. Chapter 8, problem 12, parts (b) ad (d). (b) S # (, 2) = 2 2, sice, from amog the 2 ways of puttig elemets ito 2 distiguishable boxes, exactly 2 of them result i oe

More information

Ma 530 Introduction to Power Series

Ma 530 Introduction to Power Series Ma 530 Itroductio to Power Series Please ote that there is material o power series at Visual Calculus. Some of this material was used as part of the presetatio of the topics that follow. What is a Power

More information

Lecture #18

Lecture #18 18-1 Variatioal Method (See CTDL 1148-1155, [Variatioal Method] 252-263, 295-307[Desity Matrices]) Last time: Quasi-Degeeracy Diagoalize a part of ifiite H * sub-matrix : H (0) + H (1) * correctios for

More information

lim za n n = z lim a n n.

lim za n n = z lim a n n. Lecture 6 Sequeces ad Series Defiitio 1 By a sequece i a set A, we mea a mappig f : N A. It is customary to deote a sequece f by {s } where, s := f(). A sequece {z } of (complex) umbers is said to be coverget

More information

Appendix: The Laplace Transform

Appendix: The Laplace Transform Appedix: The Laplace Trasform The Laplace trasform is a powerful method that ca be used to solve differetial equatio, ad other mathematical problems. Its stregth lies i the fact that it allows the trasformatio

More information

Polynomial Functions and Their Graphs

Polynomial Functions and Their Graphs Polyomial Fuctios ad Their Graphs I this sectio we begi the study of fuctios defied by polyomial expressios. Polyomial ad ratioal fuctios are the most commo fuctios used to model data, ad are used extesively

More information

Matrices and vectors

Matrices and vectors Oe Matrices ad vectors This book takes for grated that readers have some previous kowledge of the calculus of real fuctios of oe real variable It would be helpful to also have some kowledge of liear algebra

More information

CALCULATING FIBONACCI VECTORS

CALCULATING FIBONACCI VECTORS THE GENERALIZED BINET FORMULA FOR CALCULATING FIBONACCI VECTORS Stuart D Aderso Departmet of Physics, Ithaca College 953 Daby Road, Ithaca NY 14850, USA email: saderso@ithacaedu ad Dai Novak Departmet

More information

10.2 Infinite Series Contemporary Calculus 1

10.2 Infinite Series Contemporary Calculus 1 10. Ifiite Series Cotemporary Calculus 1 10. INFINITE SERIES Our goal i this sectio is to add together the umbers i a sequece. Sice it would take a very log time to add together the ifiite umber of umbers,

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

x a x a Lecture 2 Series (See Chapter 1 in Boas)

x a x a Lecture 2 Series (See Chapter 1 in Boas) Lecture Series (See Chapter i Boas) A basic ad very powerful (if pedestria, recall we are lazy AD smart) way to solve ay differetial (or itegral) equatio is via a series expasio of the correspodig solutio

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chapter 04.04 Uary atrix Operatios After readig this chapter, you should be able to:. kow what uary operatios meas, 2. fid the traspose of a square matrix ad it s relatioship to symmetric matrices,. fid

More information

The Basic Space Model

The Basic Space Model The Basic Space Model Let x i be the ith idividual s (i=,, ) reported positio o the th issue ( =,, m) ad let X 0 be the by m matrix of observed data here the 0 subscript idicates that elemets are missig

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

Solutions to home assignments (sketches)

Solutions to home assignments (sketches) Matematiska Istitutioe Peter Kumli 26th May 2004 TMA401 Fuctioal Aalysis MAN670 Applied Fuctioal Aalysis 4th quarter 2003/2004 All documet cocerig the course ca be foud o the course home page: http://www.math.chalmers.se/math/grudutb/cth/tma401/

More information

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities

Polynomials with Rational Roots that Differ by a Non-zero Constant. Generalities Polyomials with Ratioal Roots that Differ by a No-zero Costat Philip Gibbs The problem of fidig two polyomials P(x) ad Q(x) of a give degree i a sigle variable x that have all ratioal roots ad differ by

More information

( ) ( ) ( ) notation: [ ]

( ) ( ) ( ) notation: [ ] Liear Algebra Vectors ad Matrices Fudametal Operatios with Vectors Vector: a directed lie segmets that has both magitude ad directio =,,,..., =,,,..., = where 1, 2,, are the otatio: [ ] 1 2 3 1 2 3 compoets

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

LESSON 2: SIMPLIFYING RADICALS

LESSON 2: SIMPLIFYING RADICALS High School: Workig with Epressios LESSON : SIMPLIFYING RADICALS N.RN.. C N.RN.. B 5 5 C t t t t t E a b a a b N.RN.. 4 6 N.RN. 4. N.RN. 5. N.RN. 6. 7 8 N.RN. 7. A 7 N.RN. 8. 6 80 448 4 5 6 48 00 6 6 6

More information

Introduction to Optimization Techniques. How to Solve Equations

Introduction to Optimization Techniques. How to Solve Equations Itroductio to Optimizatio Techiques How to Solve Equatios Iterative Methods of Optimizatio Iterative methods of optimizatio Solutio of the oliear equatios resultig form a optimizatio problem is usually

More information

Kinetics of Complex Reactions

Kinetics of Complex Reactions Kietics of Complex Reactios by Flick Colema Departmet of Chemistry Wellesley College Wellesley MA 28 wcolema@wellesley.edu Copyright Flick Colema 996. All rights reserved. You are welcome to use this documet

More information

6.867 Machine learning, lecture 7 (Jaakkola) 1

6.867 Machine learning, lecture 7 (Jaakkola) 1 6.867 Machie learig, lecture 7 (Jaakkola) 1 Lecture topics: Kerel form of liear regressio Kerels, examples, costructio, properties Liear regressio ad kerels Cosider a slightly simpler model where we omit

More information

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016

Lecture 3. Digital Signal Processing. Chapter 3. z-transforms. Mikael Swartling Nedelko Grbic Bengt Mandersson. rev. 2016 Lecture 3 Digital Sigal Processig Chapter 3 z-trasforms Mikael Swartlig Nedelko Grbic Begt Madersso rev. 06 Departmet of Electrical ad Iformatio Techology Lud Uiversity z-trasforms We defie the z-trasform

More information

September 2012 C1 Note. C1 Notes (Edexcel) Copyright - For AS, A2 notes and IGCSE / GCSE worksheets 1

September 2012 C1 Note. C1 Notes (Edexcel) Copyright   - For AS, A2 notes and IGCSE / GCSE worksheets 1 September 0 s (Edecel) Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright www.pgmaths.co.uk - For AS, A otes ad IGCSE / GCSE worksheets September 0 Copyright

More information

Math 2784 (or 2794W) University of Connecticut

Math 2784 (or 2794W) University of Connecticut ORDERS OF GROWTH PAT SMITH Math 2784 (or 2794W) Uiversity of Coecticut Date: Mar. 2, 22. ORDERS OF GROWTH. Itroductio Gaiig a ituitive feel for the relative growth of fuctios is importat if you really

More information

n m CHAPTER 3 RATIONAL EXPONENTS AND RADICAL FUNCTIONS 3-1 Evaluate n th Roots and Use Rational Exponents Real nth Roots of a n th Root of a

n m CHAPTER 3 RATIONAL EXPONENTS AND RADICAL FUNCTIONS 3-1 Evaluate n th Roots and Use Rational Exponents Real nth Roots of a n th Root of a CHAPTER RATIONAL EXPONENTS AND RADICAL FUNCTIONS Big IDEAS: 1) Usig ratioal expoets ) Performig fuctio operatios ad fidig iverse fuctios ) Graphig radical fuctios ad solvig radical equatios Sectio: Essetial

More information

Math 155 (Lecture 3)

Math 155 (Lecture 3) Math 55 (Lecture 3) September 8, I this lecture, we ll cosider the aswer to oe of the most basic coutig problems i combiatorics Questio How may ways are there to choose a -elemet subset of the set {,,,

More information

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005

The Jordan Normal Form: A General Approach to Solving Homogeneous Linear Systems. Mike Raugh. March 20, 2005 The Jorda Normal Form: A Geeral Approach to Solvig Homogeeous Liear Sstems Mike Raugh March 2, 25 What are we doig here? I this ote, we describe the Jorda ormal form of a matrix ad show how it ma be used

More information

Bertrand s Postulate

Bertrand s Postulate Bertrad s Postulate Lola Thompso Ross Program July 3, 2009 Lola Thompso (Ross Program Bertrad s Postulate July 3, 2009 1 / 33 Bertrad s Postulate I ve said it oce ad I ll say it agai: There s always a

More information

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution

Discrete-Time Systems, LTI Systems, and Discrete-Time Convolution EEL5: Discrete-Time Sigals ad Systems. Itroductio I this set of otes, we begi our mathematical treatmet of discrete-time s. As show i Figure, a discrete-time operates or trasforms some iput sequece x [

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

Lesson 10: Limits and Continuity

Lesson 10: Limits and Continuity www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals

More information

Matrix Theory, Math6304 Lecture Notes from November 27, 2012 taken by Charles Mills

Matrix Theory, Math6304 Lecture Notes from November 27, 2012 taken by Charles Mills Matrix Theory, Math6304 Lecture Notes from November 27, 202 take by Charles Mills Last Time (9/20/2) Gelfad s formula for spectral radius Gershgori s circle theorem Warm-up: Let s observe what Gershgori

More information

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc. 2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES 2012 Pearso Educatio, Ic. Theorem 8: Let A be a square matrix. The the followig statemets are equivalet. That is, for a give A, the statemets

More information

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n

We are mainly going to be concerned with power series in x, such as. (x)} converges - that is, lims N n Review of Power Series, Power Series Solutios A power series i x - a is a ifiite series of the form c (x a) =c +c (x a)+(x a) +... We also call this a power series cetered at a. Ex. (x+) is cetered at

More information

CHAPTER 10 INFINITE SEQUENCES AND SERIES

CHAPTER 10 INFINITE SEQUENCES AND SERIES CHAPTER 10 INFINITE SEQUENCES AND SERIES 10.1 Sequeces 10.2 Ifiite Series 10.3 The Itegral Tests 10.4 Compariso Tests 10.5 The Ratio ad Root Tests 10.6 Alteratig Series: Absolute ad Coditioal Covergece

More information

Section 1 of Unit 03 (Pure Mathematics 3) Algebra

Section 1 of Unit 03 (Pure Mathematics 3) Algebra Sectio 1 of Uit 0 (Pure Mathematics ) Algebra Recommeded Prior Kowledge Studets should have studied the algebraic techiques i Pure Mathematics 1. Cotet This Sectio should be studied early i the course

More information

Math 113 Exam 3 Practice

Math 113 Exam 3 Practice Math Exam Practice Exam will cover.-.9. This sheet has three sectios. The first sectio will remid you about techiques ad formulas that you should kow. The secod gives a umber of practice questios for you

More information

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example:

In algebra one spends much time finding common denominators and thus simplifying rational expressions. For example: 74 The Method of Partial Fractios I algebra oe speds much time fidig commo deomiators ad thus simplifyig ratioal epressios For eample: + + + 6 5 + = + = = + + + + + ( )( ) 5 It may the seem odd to be watig

More information

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka

Matrix Algebra from a Statistician s Perspective BIOS 524/ Scalar multiple: ka Matrix Algebra from a Statisticia s Perspective BIOS 524/546. Matrices... Basic Termiology a a A = ( aij ) deotes a m matrix of values. Whe =, this is a am a m colum vector. Whe m= this is a row vector..2.

More information

Topics in Eigen-analysis

Topics in Eigen-analysis Topics i Eige-aalysis Li Zajiag 28 July 2014 Cotets 1 Termiology... 2 2 Some Basic Properties ad Results... 2 3 Eige-properties of Hermitia Matrices... 5 3.1 Basic Theorems... 5 3.2 Quadratic Forms & Noegative

More information