Chapter 1 Simple Linear Regression (part 6: matrix version)

Size: px
Start display at page:

Download "Chapter 1 Simple Linear Regression (part 6: matrix version)"

Transcription

1 Chapter Simple Liear Regressio (part 6: matrix versio) Overview Simple liear regressio model: respose variable Y, a sigle idepedet variable X Y β 0 + β X + ε Multiple liear regressio model: respose Y, more tha oe idepedet variables X,X 2,, X p Y β 0 + β X + β 2 X β p X p + ε To ivestigate multiple regressio model, we eed matrix 2 Review of Matrices A matrix: a rectagular array of elemets arraged i rows ad colums a example Row Row 2 Row 3 Colum Colum A matrix with r rows ad c colums a a 2 a j a c a 2 a 22 a 2j a 2c A a i a i2 a ij a ic a r a r2 a rj a rc Sometimes deote it as A a ij i,, r; j,, c

2 r ad c are called the dimesio of a matrix 22 Square matrix ad Vector Square matrix: equal umber of rows ad colums a 4 7 a 2 a 3, a a 22 a 23 a 3 a 32 a 33 vector: matrix with oly oe row or oe colum A B 23 Traspose of a matrix ad equality of matrices traspose of a matrix A is aother matrix deoted by A A , A two matrices are equal if they have the same dimesio ad all the correspodig elemets are equal Suppose A a a 2 a 2 a 22 a 3 a 32 If A B, thea 7,a 2 2,, B Matrix additio ad subtractio Addig or subtractig of two matrices require that they have the same dimesio 4 2 A 2 5, B 2 3, A + B A B , 2

3 25 Matrix multiplicatio Multiplicatio of a Matrix by a Scalar 2 7 A A A , Multiplicatio of a Matrix by a Matrix If A has dimesio r c ad B has dimesio c s, the product AB is a matrix of dimesio r s with the elemet i the ith row ad jth colum: A 26 Regressio examples c a ik b kj k a a 2 4a +2a 2 5a +8a 2 It is easy to check X X 2 X β0 β β 0 + β X β 0 + β X 2 β 0 + β X Let Y Y Y, X X X 2 X, β β0 β, E ε ε 2 ε The regressio model Y β 0 + β X + ε, β 0 + β X 2 + ε 2, Y β 0 + β X + ε ca be writte as Y Xβ + E 3

4 Other calculatios X X X X 2 X X Y X X 2 X X X 2 X Y Y Y Y Y Y i X i i Y i i X iy i Y Y i i i X i i X2 i 27 Special types of matrices Symmetric Matrix A A A Diagoal Matrix: a square matrix whose off-diagoal elemets are all zeros a a a 3 Idetity Matrix I facts: for ay appropriate matrix AI A ad IB B zero vector ad uit vector , 4

5 28 Iverse of a square matrix the iverse of a square matrix A is aother square matrix, deoted by A, such that AA A A I Sice or So A A 29 Fidig the Iverse of a matrix I I If the where D ad bc a b A c d A d D c D b D a D For high dimesioal matrix, its iverse is ot easy to calculate by had 20 Regressio example (cotiue) the iverse of matrix X X i X i i X i i X2 i D i X2 i ( i X i) 2 So (X X) i X2 i ( i X i) 2 i X2 i i (X i X) 2 i X i i (X i X) 2 i X i i (X i X) 2 i (X i X) 2 + X2 i (X i X) 2 i (X i X) 2 X i (X i X) 2 X i (X i X) 2 i (X i X) 2 5

6 2 Use of Iverse Matrix Suppose we wat to solve two equatios: 2y +4y y + y 2 0 Rewrite the equatios i matrix otatio: y y So the solutio to the equatios y y Estimatio a regressio model eed to solve liear equatios, ad iverse matri is very useful 22 Other basic facts for matrices A + B B + A C(A + B) CA + CB (A ) A (AB) B A (A ) A (AB) B A (A ) (A ) 3 Radom vector ad matrices 2 4 Radom vector Y Y Y 3 6

7 Expectatio of radom vector E{Y} E{Y } E{ } E{Y 3 } Radom vector The Y Y Y 3, Z Z Z 2 Z 3 E(Y + Z) EY + EZ Variace-covariace Matrix of radom vector Var{Y} E{Y E{Y}Y E{Y} } Var{Y } Cov{Y, } Cov{Y,Y 3 } Cov{,Y } Var{ } Cov{,Y 3 } Cov{Y 3,Y } Cov{Y 3, } Var{Y 3 } I simple liear regressio model, errors are ucorrelated, so Var{E} σ 2 I Proof: for example cosider 3 Var{E} σ σ σ 2 3 Some basic facts If we have a radom vector W equal to a radom vector Y multiplied by a costat matrix A W AY we have E{W} AE{Y} If c is a costat vector, the Var{W} Var{AY} AVar{Y}A E(c + AY)c + AEY ad Var(c + AY)Var(AY)AVar{Y}A I simple liear regressio model, it follows from above Var{Y} σ 2 I 7

8 32 A illustratio W W E W 2 W 2 Y E{Y } E{ } Y Y 2 Y + E{Y } E{Y 2 } E{Y } + E{ } W Var{ W 2 } Var{Y } Cov{Y, } Cov{,Y } Var{ } 4 Simple liear regressio model (matrix versio) The model with assumptio Y β 0 + β X + ε β 0 + β X 2 + ε 2 Y β 0 + β X + ε E(ε i )0, 2 Var(ε i )σ 2,Cov(ε i,ε j ) 0 for all i j 3 ε i N(0,σ 2 ),i,, are idepedet Recall, the model ca be writte as Y Xβ + E Note that E{E} 0, Var{E} The assumptios ca be rewritte as E(E) 0, σ σ σ 2 σ2 I 2 Var(E) σ 2 I 3 E N(0,σ 2 I) 8

9 Thus E(Y) Xβ ad Var(Y) σ 2 I The model (with assumptios, 2, ad 3) ca also be writte as Y N(Xβ,σ 2 I) or Y Xβ + E, E N(0,σ 2 I) 4 Least squares estimator b 0, b The ormal equatios ca be writte as i X i i X b0 b 0 + b i X i i i X2 i b b 0 i X i + b i X2 i i Y i i X iy i X X X X 2 X X X 2 X i X i i X i i X2 i X Y X X 2 X Y Y i Y i i X iy i let The the ormal equatio is we ca fid b by b b0 b X Xb X Y b (X X) X Y 42 A example Y ; X

10 X X b , X 8 Y Fitted values ad residuals i matrix form Deote X(X X) X Ŷ Ŷ Ŷ 2 Ŷ by H, wehave b 0 + b X b 0 + b X 2 b 0 + b X e Y Ŷ e e 2 e Ŷ X(X X) X Y Xb Ŷ HY, e (I H)Y 44 Variace-covariace matrix for residuals e Var{e} Var{(I H)Y} (I H)Var{Y}(I H) Var{Y} Var{ε} σ 2 I (I H) I H I H HH X(X X) X X(X X) X X(X X) X H (I H)(I H) I 2H + HH I H Var{e} σ 2 (I H) estimatedbyˆσ 2 (I H) 0

11 45 Aalysis of variace i matrix form Let the J SST Y Y Y JY Y (I J)Y Proof Proof SSE SST (Y i Ȳ )2 i Y Y ( i i i i, Y Y Y i ) 2 Y Y Y JY i ( i Y i) 2 i e 2 i e e (Y Xb) (Y Xb) Y (I H)Y i Y i SSE (Y Xb) (Y Xb) Y Y 2b X Y + b X Xb Y Y 2b X Y + b X X(X X) X Y Y Y 2b X Y + b X Y Y Y b X Y Y (I H)Y SSR SST SSE Y (H J)Y

12 46 Variace-covariace matrix for b b (X X) X Y Var{b} (X X) X Var{Y}X(X X) σ 2 (X X) σ 2 + X2 X i (X i X) 2 i (X i X) 2 X i (X i X) 2 i (X i X) 2 where σ 2 ca be estimated by ˆσ 2 MSE 47 Variace for the predicted value Ŷ b 0 + b X Var{Ŷ } X b X Var{b} X σ 2 X (X X) X 2

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication

B = B is a 3 4 matrix; b 32 = 3 and b 2 4 = 3. Scalar Multiplication MATH 37 Matrices Dr. Neal, WKU A m matrix A = (a i j ) is a array of m umbers arraged ito m rows ad colums, where a i j is the etry i the ith row, jth colum. The values m are called the dimesios (or size)

More information

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d

Linear regression. Daniel Hsu (COMS 4771) (y i x T i β)2 2πσ. 2 2σ 2. 1 n. (x T i β y i ) 2. 1 ˆβ arg min. β R n d Liear regressio Daiel Hsu (COMS 477) Maximum likelihood estimatio Oe of the simplest liear regressio models is the followig: (X, Y ),..., (X, Y ), (X, Y ) are iid radom pairs takig values i R d R, ad Y

More information

CLRM estimation Pietro Coretto Econometrics

CLRM estimation Pietro Coretto Econometrics Slide Set 4 CLRM estimatio Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Thursday 24 th Jauary, 2019 (h08:41) P. Coretto

More information

Matrices and vectors

Matrices and vectors Oe Matrices ad vectors This book takes for grated that readers have some previous kowledge of the calculus of real fuctios of oe real variable It would be helpful to also have some kowledge of liear algebra

More information

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc.

Matrix Algebra 2.2 THE INVERSE OF A MATRIX Pearson Education, Inc. 2 Matrix Algebra 2.2 THE INVERSE OF A MATRIX MATRIX OPERATIONS A matrix A is said to be ivertible if there is a matrix C such that CA = I ad AC = I where, the idetity matrix. I = I I this case, C is a

More information

Why learn matrix algebra? Vectors & Matrices with statistical applications. Brief history of linear algebra

Why learn matrix algebra? Vectors & Matrices with statistical applications. Brief history of linear algebra R Vectors & Matrices with statistical applicatios x RXX RXY y RYX RYY Why lear matrix algebra? Simple way to express liear combiatios of variables ad geeral solutios of equatios. Liear statistical models

More information

Chapter Vectors

Chapter Vectors Chapter 4. Vectors fter readig this chapter you should be able to:. defie a vector. add ad subtract vectors. fid liear combiatios of vectors ad their relatioship to a set of equatios 4. explai what it

More information

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator

Slide Set 13 Linear Model with Endogenous Regressors and the GMM estimator Slide Set 13 Liear Model with Edogeous Regressors ad the GMM estimator Pietro Coretto pcoretto@uisa.it Ecoometrics Master i Ecoomics ad Fiace (MEF) Uiversità degli Studi di Napoli Federico II Versio: Friday

More information

TAMS24: Notations and Formulas

TAMS24: Notations and Formulas TAMS4: Notatios ad Formulas Basic otatios ad defiitios X: radom variable stokastiska variabel Mea Vätevärde: µ = X = by Xiagfeg Yag kpx k, if X is discrete, xf Xxdx, if X is cotiuous Variace Varias: =

More information

Linear Regression Models, OLS, Assumptions and Properties

Linear Regression Models, OLS, Assumptions and Properties Chapter 2 Liear Regressio Models, OLS, Assumptios ad Properties 2.1 The Liear Regressio Model The liear regressio model is the sigle most useful tool i the ecoometricia s kit. The multiple regressio model

More information

Matrix Representation of Data in Experiment

Matrix Representation of Data in Experiment Matrix Represetatio of Data i Experimet Cosider a very simple model for resposes y ij : y ij i ij, i 1,; j 1,,..., (ote that for simplicity we are assumig the two () groups are of equal sample size ) Y

More information

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT

Geometry of LS. LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT OCTOBER 7, 2016 LECTURE 3 GEOMETRY OF LS, PROPERTIES OF σ 2, PARTITIONED REGRESSION, GOODNESS OF FIT Geometry of LS We ca thik of y ad the colums of X as members of the -dimesioal Euclidea space R Oe ca

More information

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j.

Apply change-of-basis formula to rewrite x as a linear combination of eigenvectors v j. Eigevalue-Eigevector Istructor: Nam Su Wag eigemcd Ay vector i real Euclidea space of dimesio ca be uiquely epressed as a liear combiatio of liearly idepedet vectors (ie, basis) g j, j,,, α g α g α g α

More information

Inverse Matrix. A meaning that matrix B is an inverse of matrix A.

Inverse Matrix. A meaning that matrix B is an inverse of matrix A. Iverse Matrix Two square matrices A ad B of dimesios are called iverses to oe aother if the followig holds, AB BA I (11) The otio is dual but we ofte write 1 B A meaig that matrix B is a iverse of matrix

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

M 340L CS Homew ork Set 6 Solutions

M 340L CS Homew ork Set 6 Solutions 1. Suppose P is ivertible ad M 34L CS Homew ork Set 6 Solutios A PBP 1. Solve for B i terms of P ad A. Sice A PBP 1, w e have 1 1 1 B P PBP P P AP ( ).. Suppose ( B C) D, w here B ad C are m matrices ad

More information

M 340L CS Homew ork Set 6 Solutions

M 340L CS Homew ork Set 6 Solutions . Suppose P is ivertible ad M 4L CS Homew ork Set 6 Solutios A PBP. Solve for B i terms of P ad A. Sice A PBP, w e have B P PBP P P AP ( ).. Suppose ( B C) D, w here B ad C are m matrices ad D is ivertible.

More information

Algebra of Least Squares

Algebra of Least Squares October 19, 2018 Algebra of Least Squares Geometry of Least Squares Recall that out data is like a table [Y X] where Y collects observatios o the depedet variable Y ad X collects observatios o the k-dimesioal

More information

Solution to Chapter 2 Analytical Exercises

Solution to Chapter 2 Analytical Exercises Nov. 25, 23, Revised Dec. 27, 23 Hayashi Ecoometrics Solutio to Chapter 2 Aalytical Exercises. For ay ε >, So, plim z =. O the other had, which meas that lim E(z =. 2. As show i the hit, Prob( z > ε =

More information

University of California, Los Angeles Department of Statistics. Practice problems - simple regression 2 - solutions

University of California, Los Angeles Department of Statistics. Practice problems - simple regression 2 - solutions Uiversity of Califoria, Los Ageles Departmet of Statistics Statistics 00C Istructor: Nicolas Christou EXERCISE Aswer the followig questios: Practice problems - simple regressio - solutios a Suppose y,

More information

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments:

STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS. Comments: Recall: STATISTICAL PROPERTIES OF LEAST SQUARES ESTIMATORS Commets:. So far we have estimates of the parameters! 0 ad!, but have o idea how good these estimates are. Assumptio: E(Y x)! 0 +! x (liear coditioal

More information

Linear Algebra Review

Linear Algebra Review Linear Algebra Review Yang Feng http://www.stat.columbia.edu/~yangfeng Yang Feng (Columbia University) Linear Algebra Review 1 / 45 Definition of Matrix Rectangular array of elements arranged in rows and

More information

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)].

Probability 2 - Notes 10. Lemma. If X is a random variable and g(x) 0 for all x in the support of f X, then P(g(X) 1) E[g(X)]. Probability 2 - Notes 0 Some Useful Iequalities. Lemma. If X is a radom variable ad g(x 0 for all x i the support of f X, the P(g(X E[g(X]. Proof. (cotiuous case P(g(X Corollaries x:g(x f X (xdx x:g(x

More information

Linear Regression Demystified

Linear Regression Demystified Liear Regressio Demystified Liear regressio is a importat subject i statistics. I elemetary statistics courses, formulae related to liear regressio are ofte stated without derivatio. This ote iteds to

More information

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise)

Lecture 22: Review for Exam 2. 1 Basic Model Assumptions (without Gaussian Noise) Lecture 22: Review for Exam 2 Basic Model Assumptios (without Gaussia Noise) We model oe cotiuous respose variable Y, as a liear fuctio of p umerical predictors, plus oise: Y = β 0 + β X +... β p X p +

More information

CHAPTER I: Vector Spaces

CHAPTER I: Vector Spaces CHAPTER I: Vector Spaces Sectio 1: Itroductio ad Examples This first chapter is largely a review of topics you probably saw i your liear algebra course. So why cover it? (1) Not everyoe remembers everythig

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Chapter Unary Matrix Operations

Chapter Unary Matrix Operations Chapter 04.04 Uary atrix Operatios After readig this chapter, you should be able to:. kow what uary operatios meas, 2. fid the traspose of a square matrix ad it s relatioship to symmetric matrices,. fid

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

Chimica Inorganica 3

Chimica Inorganica 3 himica Iorgaica Irreducible Represetatios ad haracter Tables Rather tha usig geometrical operatios, it is ofte much more coveiet to employ a ew set of group elemets which are matrices ad to make the rule

More information

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So,

First, note that the LS residuals are orthogonal to the regressors. X Xb X y = 0 ( normal equations ; (k 1) ) So, 0 2. OLS Part II The OLS residuals are orthogoal to the regressors. If the model icludes a itercept, the orthogoality of the residuals ad regressors gives rise to three results, which have limited practical

More information

11 Correlation and Regression

11 Correlation and Regression 11 Correlatio Regressio 11.1 Multivariate Data Ofte we look at data where several variables are recorded for the same idividuals or samplig uits. For example, at a coastal weather statio, we might record

More information

CHAPTER 5. Theory and Solution Using Matrix Techniques

CHAPTER 5. Theory and Solution Using Matrix Techniques A SERIES OF CLASS NOTES FOR 2005-2006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 3 A COLLECTION OF HANDOUTS ON SYSTEMS OF ORDINARY DIFFERENTIAL

More information

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions

Statistical and Mathematical Methods DS-GA 1002 December 8, Sample Final Problems Solutions Statistical ad Mathematical Methods DS-GA 00 December 8, 05. Short questios Sample Fial Problems Solutios a. Ax b has a solutio if b is i the rage of A. The dimesio of the rage of A is because A has liearly-idepedet

More information

STAT5044: Regression and Anova. Inyoung Kim

STAT5044: Regression and Anova. Inyoung Kim STAT5044: Regression and Anova Inyoung Kim 2 / 51 Outline 1 Matrix Expression 2 Linear and quadratic forms 3 Properties of quadratic form 4 Properties of estimates 5 Distributional properties 3 / 51 Matrix

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Chapter 5 Matrix Approach to Simple Linear Regression

Chapter 5 Matrix Approach to Simple Linear Regression STAT 525 SPRING 2018 Chapter 5 Matrix Approach to Simple Linear Regression Professor Min Zhang Matrix Collection of elements arranged in rows and columns Elements will be numbers or symbols For example:

More information

Statistical Properties of OLS estimators

Statistical Properties of OLS estimators 1 Statistical Properties of OLS estimators Liear Model: Y i = β 0 + β 1 X i + u i OLS estimators: β 0 = Y β 1X β 1 = Best Liear Ubiased Estimator (BLUE) Liear Estimator: β 0 ad β 1 are liear fuctio of

More information

Statistics 203 Introduction to Regression and Analysis of Variance Assignment #1 Solutions January 20, 2005

Statistics 203 Introduction to Regression and Analysis of Variance Assignment #1 Solutions January 20, 2005 Statistics 203 Itroductio to Regressio ad Aalysis of Variace Assigmet #1 Solutios Jauary 20, 2005 Q. 1) (MP 2.7) (a) Let x deote the hydrocarbo percetage, ad let y deote the oxyge purity. The simple liear

More information

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx)

, then cv V. Differential Equations Elements of Lineaer Algebra Name: Consider the differential equation. and y2 cos( kx) Cosider the differetial equatio y '' k y 0 has particular solutios y1 si( kx) ad y cos( kx) I geeral, ay liear combiatio of y1 ad y, cy 1 1 cy where c1, c is also a solutio to the equatio above The reaso

More information

THE KALMAN FILTER RAUL ROJAS

THE KALMAN FILTER RAUL ROJAS THE KALMAN FILTER RAUL ROJAS Abstract. This paper provides a getle itroductio to the Kalma filter, a umerical method that ca be used for sesor fusio or for calculatio of trajectories. First, we cosider

More information

The Method of Least Squares. To understand least squares fitting of data.

The Method of Least Squares. To understand least squares fitting of data. The Method of Least Squares KEY WORDS Curve fittig, least square GOAL To uderstad least squares fittig of data To uderstad the least squares solutio of icosistet systems of liear equatios 1 Motivatio Curve

More information

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic

A Relationship Between the One-Way MANOVA Test Statistic and the Hotelling Lawley Trace Test Statistic http://ijspccseetorg Iteratioal Joural of Statistics ad Probability Vol 7, No 6; 2018 A Relatioship Betwee the Oe-Way MANOVA Test Statistic ad the Hotellig Lawley Trace Test Statistic Hasthika S Rupasighe

More information

1 General linear Model Continued..

1 General linear Model Continued.. Geeral liear Model Cotiued.. We have We kow y = X + u X o radom u v N(0; I ) b = (X 0 X) X 0 y E( b ) = V ar( b ) = (X 0 X) We saw that b = (X 0 X) X 0 u so b is a liear fuctio of a ormally distributed

More information

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row:

(3) If you replace row i of A by its sum with a multiple of another row, then the determinant is unchanged! Expand across the i th row: Math 50-004 Tue Feb 4 Cotiue with sectio 36 Determiats The effective way to compute determiats for larger-sized matrices without lots of zeroes is to ot use the defiitio, but rather to use the followig

More information

Matrix Approach to Simple Linear Regression: An Overview

Matrix Approach to Simple Linear Regression: An Overview Matrix Approach to Simple Linear Regression: An Overview Aspects of matrices that you should know: Definition of a matrix Addition/subtraction/multiplication of matrices Symmetric/diagonal/identity matrix

More information

ECON 3150/4150, Spring term Lecture 3

ECON 3150/4150, Spring term Lecture 3 Itroductio Fidig the best fit by regressio Residuals ad R-sq Regressio ad causality Summary ad ext step ECON 3150/4150, Sprig term 2014. Lecture 3 Ragar Nymoe Uiversity of Oslo 21 Jauary 2014 1 / 30 Itroductio

More information

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators.

Open book and notes. 120 minutes. Cover page and six pages of exam. No calculators. IE 330 Seat # Ope book ad otes 120 miutes Cover page ad six pages of exam No calculators Score Fial Exam (example) Schmeiser Ope book ad otes No calculator 120 miutes 1 True or false (for each, 2 poits

More information

( ) ( ) ( ) notation: [ ]

( ) ( ) ( ) notation: [ ] Liear Algebra Vectors ad Matrices Fudametal Operatios with Vectors Vector: a directed lie segmets that has both magitude ad directio =,,,..., =,,,..., = where 1, 2,, are the otatio: [ ] 1 2 3 1 2 3 compoets

More information

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e.

Theorem: Let A n n. In this case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation A X = I i.e. Theorem: Let A be a square matrix The A has a iverse matrix if ad oly if its reduced row echelo form is the idetity I this case the algorithm illustrated o the previous page will always yield the iverse

More information

(I.C) Matrix algebra

(I.C) Matrix algebra (IC) Matrix algebra Before formalizig Gauss-Jorda i terms of a fixed procedure for row-reducig A, we briefly review some properties of matrix multiplicatio Let m{ [A ij ], { [B jk ] p, p{ [C kl ] q be

More information

Recurrence Relations

Recurrence Relations Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial(-)); } Let t be the umber of multiplicatios eeded to calculate factorial(). The

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

Lecture 24: Variable selection in linear models

Lecture 24: Variable selection in linear models Lecture 24: Variable selectio i liear models Cosider liear model X = Z β + ε, β R p ad Varε = σ 2 I. Like the LSE, the ridge regressio estimator does ot give 0 estimate to a compoet of β eve if that compoet

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

Asymptotic Results for the Linear Regression Model

Asymptotic Results for the Linear Regression Model Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is

More information

Chapter 2 Multiple Regression I (Part 1)

Chapter 2 Multiple Regression I (Part 1) Chapter 2 Multiple Regression I (Part 1) 1 Regression several predictor variables The response Y depends on several predictor variables X 1,, X p response {}}{ Y predictor variables {}}{ X 1, X 2,, X p

More information

MA Advanced Econometrics: Properties of Least Squares Estimators

MA Advanced Econometrics: Properties of Least Squares Estimators MA Advaced Ecoometrics: Properties of Least Squares Estimators Karl Whela School of Ecoomics, UCD February 5, 20 Karl Whela UCD Least Squares Estimators February 5, 20 / 5 Part I Least Squares: Some Fiite-Sample

More information

Optimally Sparse SVMs

Optimally Sparse SVMs A. Proof of Lemma 3. We here prove a lower boud o the umber of support vectors to achieve geeralizatio bouds of the form which we cosider. Importatly, this result holds ot oly for liear classifiers, but

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture 9: Pricipal Compoet Aalysis The text i black outlies mai ideas to retai from the lecture. The text i blue give a deeper uderstadig of how we derive or get

More information

Math E-21b Spring 2018 Homework #2

Math E-21b Spring 2018 Homework #2 Math E- Sprig 08 Homework # Prolems due Thursday, Feruary 8: Sectio : y = + 7 8 Fid the iverse of the liear trasformatio [That is, solve for, i terms of y, y ] y = + 0 Cosider the circular face i the accompayig

More information

Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700

Simple Regression. Acknowledgement. These slides are based on presentations created and copyrighted by Prof. Daniel Menasce (GMU) CS 700 Simple Regressio CS 7 Ackowledgemet These slides are based o presetatios created ad copyrighted by Prof. Daiel Measce (GMU) Basics Purpose of regressio aalysis: predict the value of a depedet or respose

More information

The Basic Space Model

The Basic Space Model The Basic Space Model Let x i be the ith idividual s (i=,, ) reported positio o the th issue ( =,, m) ad let X 0 be the by m matrix of observed data here the 0 subscript idicates that elemets are missig

More information

Efficient GMM LECTURE 12 GMM II

Efficient GMM LECTURE 12 GMM II DECEMBER 1 010 LECTURE 1 II Efficiet The estimator depeds o the choice of the weight matrix A. The efficiet estimator is the oe that has the smallest asymptotic variace amog all estimators defied by differet

More information

Principle Of Superposition

Principle Of Superposition ecture 5: PREIMINRY CONCEP O RUCUR NYI Priciple Of uperpositio Mathematically, the priciple of superpositio is stated as ( a ) G( a ) G( ) G a a or for a liear structural system, the respose at a give

More information

Stat 139 Homework 7 Solutions, Fall 2015

Stat 139 Homework 7 Solutions, Fall 2015 Stat 139 Homework 7 Solutios, Fall 2015 Problem 1. I class we leared that the classical simple liear regressio model assumes the followig distributio of resposes: Y i = β 0 + β 1 X i + ɛ i, i = 1,...,,

More information

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n.

Cov(aX, cy ) Var(X) Var(Y ) It is completely invariant to affine transformations: for any a, b, c, d R, ρ(ax + b, cy + d) = a.s. X i. as n. CS 189 Itroductio to Machie Learig Sprig 218 Note 11 1 Caoical Correlatio Aalysis The Pearso Correlatio Coefficiet ρ(x, Y ) is a way to measure how liearly related (i other words, how well a liear model

More information

Lecture 11 Simple Linear Regression

Lecture 11 Simple Linear Regression Lecture 11 Simple Liear Regressio Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milto Stewart School of Idustrial Systems & Egieerig Georgia Tech Midterm 2 mea: 91.2 media: 93.75 std: 6.5 2 Meddicorp

More information

MATH10212 Linear Algebra B Proof Problems

MATH10212 Linear Algebra B Proof Problems MATH22 Liear Algebra Proof Problems 5 Jue 26 Each problem requests a proof of a simple statemet Problems placed lower i the list may use the results of previous oes Matrices ermiats If a b R the matrix

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Chapter 9 Maximum Likelihood Estimatio 9.1 The Likelihood Fuctio The maximum likelihood estimator is the most widely used estimatio method. This chapter discusses the most importat cocepts behid maximum

More information

Lecture 1, Jan 19. i=1 p i = 1.

Lecture 1, Jan 19. i=1 p i = 1. Lecture 1, Ja 19 Review of the expected value, covariace, correlatio coefficiet, mea, ad variace. Radom variable. A variable that takes o alterative values accordig to chace. More specifically, a radom

More information

SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS

SIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS SIMPLE LINEAR REGRESSION AND CORRELATION ANALSIS INTRODUCTION There are lot of statistical ivestigatio to kow whether there is a relatioship amog variables Two aalyses: (1) regressio aalysis; () correlatio

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Simple Linear Regression

Simple Linear Regression Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1)

Determinants of order 2 and 3 were defined in Chapter 2 by the formulae (5.1) 5. Determiats 5.. Itroductio 5.2. Motivatio for the Choice of Axioms for a Determiat Fuctios 5.3. A Set of Axioms for a Determiat Fuctio 5.4. The Determiat of a Diagoal Matrix 5.5. The Determiat of a Upper

More information

Machine Learning for Data Science (CS 4786)

Machine Learning for Data Science (CS 4786) Machie Learig for Data Sciece CS 4786) Lecture & 3: Pricipal Compoet Aalysis The text i black outlies high level ideas. The text i blue provides simple mathematical details to derive or get to the algorithm

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Basic Iterative Methods. Basic Iterative Methods

Basic Iterative Methods. Basic Iterative Methods Abel s heorem: he roots of a polyomial with degree greater tha or equal to 5 ad arbitrary coefficiets caot be foud with a fiite umber of operatios usig additio, subtractio, multiplicatio, divisio, ad extractio

More information

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab

Table 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet

More information

5.1 Review of Singular Value Decomposition (SVD)

5.1 Review of Singular Value Decomposition (SVD) MGMT 69000: Topics i High-dimesioal Data Aalysis Falll 06 Lecture 5: Spectral Clusterig: Overview (cotd) ad Aalysis Lecturer: Jiamig Xu Scribe: Adarsh Barik, Taotao He, September 3, 06 Outlie Review of

More information

Lecture 20: Multivariate convergence and the Central Limit Theorem

Lecture 20: Multivariate convergence and the Central Limit Theorem Lecture 20: Multivariate covergece ad the Cetral Limit Theorem Covergece i distributio for radom vectors Let Z,Z 1,Z 2,... be radom vectors o R k. If the cdf of Z is cotiuous, the we ca defie covergece

More information

Estimation of the Mean and the ACVF

Estimation of the Mean and the ACVF Chapter 5 Estimatio of the Mea ad the ACVF A statioary process {X t } is characterized by its mea ad its autocovariace fuctio γ ), ad so by the autocorrelatio fuctio ρ ) I this chapter we preset the estimators

More information

INTRODUCTION TO MATRIX ALGEBRA. a 11 a a 1n a 21 a a 2n...

INTRODUCTION TO MATRIX ALGEBRA. a 11 a a 1n a 21 a a 2n... INTRODUCTION TO MATRIX ALGEBRA DEFINITIONOFAMATRIXANDAVECTOR DefiitioofamatrixAmatrixisarectagulararrayofumbersarrageditorowsad colums It is writte as a a 2 a a 2 a 22 a 2 () a m a m2 a m Theabovearrayiscalledamby(m

More information

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK)

LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) LECTURE 8: ORTHOGONALITY (CHAPTER 5 IN THE BOOK) Everythig marked by is ot required by the course syllabus I this lecture, all vector spaces is over the real umber R. All vectors i R is viewed as a colum

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition

6. Kalman filter implementation for linear algebraic equations. Karhunen-Loeve decomposition 6. Kalma filter implemetatio for liear algebraic equatios. Karhue-Loeve decompositio 6.1. Solvable liear algebraic systems. Probabilistic iterpretatio. Let A be a quadratic matrix (ot obligatory osigular.

More information

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc.

Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES Pearson Education, Inc. 2 Matrix Algebra 2.3 CHARACTERIZATIONS OF INVERTIBLE MATRICES 2012 Pearso Educatio, Ic. Theorem 8: Let A be a square matrix. The the followig statemets are equivalet. That is, for a give A, the statemets

More information

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form

Topic 7 - Matrix Approach to Simple Linear Regression. Outline. Matrix. Matrix. Review of Matrices. Regression model in matrix form Topic 7 - Matrix Approach to Simple Linear Regression Review of Matrices Outline Regression model in matrix form - Fall 03 Calculations using matrices Topic 7 Matrix Collection of elements arranged in

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data.

In this section we derive some finite-sample properties of the OLS estimator. b is an estimator of β. It is a function of the random sample data. 17 3. OLS Part III I this sectio we derive some fiite-sample properties of the OLS estimator. 3.1 The Samplig Distributio of the OLS Estimator y = Xβ + ε ; ε ~ N[0, σ 2 I ] b = (X X) 1 X y = f(y) ε is

More information

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a

a for a 1 1 matrix. a b a b 2 2 matrix: We define det ad bc 3 3 matrix: We define a a a a a a a a a a a a a a a a a a Math S-b Lecture # Notes This wee is all about determiats We ll discuss how to defie them, how to calculate them, lear the allimportat property ow as multiliearity, ad show that a square matrix A is ivertible

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

9. Simple linear regression G2.1) Show that the vector of residuals e = Y Ŷ has the covariance matrix (I X(X T X) 1 X T )σ 2.

9. Simple linear regression G2.1) Show that the vector of residuals e = Y Ŷ has the covariance matrix (I X(X T X) 1 X T )σ 2. LINKÖPINGS UNIVERSITET Matematiska Istitutioe Matematisk Statistik HT1-2015 TAMS24 9. Simple liear regressio G2.1) Show that the vector of residuals e = Y Ŷ has the covariace matrix (I X(X T X) 1 X T )σ

More information

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7:

Soo King Lim Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: 0 Multivariate Cotrol Chart 3 Multivariate Normal Distributio 5 Estimatio of the Mea ad Covariace Matrix 6 Hotellig s Cotrol Chart 6 Hotellig s Square 8 Average Value of k Subgroups 0 Example 3 3 Value

More information

11 THE GMM ESTIMATION

11 THE GMM ESTIMATION Cotets THE GMM ESTIMATION 2. Cosistecy ad Asymptotic Normality..................... 3.2 Regularity Coditios ad Idetificatio..................... 4.3 The GMM Iterpretatio of the OLS Estimatio.................

More information

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients. Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,

More information

Stochastic Matrices in a Finite Field

Stochastic Matrices in a Finite Field Stochastic Matrices i a Fiite Field Abstract: I this project we will explore the properties of stochastic matrices i both the real ad the fiite fields. We first explore what properties 2 2 stochastic matrices

More information

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman:

Problems from 9th edition of Probability and Statistical Inference by Hogg, Tanis and Zimmerman: Math 224 Fall 2017 Homework 4 Drew Armstrog Problems from 9th editio of Probability ad Statistical Iferece by Hogg, Tais ad Zimmerma: Sectio 2.3, Exercises 16(a,d),18. Sectio 2.4, Exercises 13, 14. Sectio

More information

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13

BHW #13 1/ Cooper. ENGR 323 Probabilistic Analysis Beautiful Homework # 13 BHW # /5 ENGR Probabilistic Aalysis Beautiful Homework # Three differet roads feed ito a particular freeway etrace. Suppose that durig a fixed time period, the umber of cars comig from each road oto the

More information