Idealized skeleton curve - envelope to hysteresis loops

Size: px
Start display at page:

Download "Idealized skeleton curve - envelope to hysteresis loops"

Transcription

1 MODELLING THE BEHAVIOR OF CONCRETE MEMBERS: DEVELOPMENTS SINCE THE COMPLETION OF EN 998-3:5 Mihael N. Fardis Universit o Patras

2 Idealized skeleton rve - envelope to hsteresis loops Eetive elasti stiness: seant-to-ielding M Yield Ultimate moment, M u =M member deormation: hord-rotation rotation setion deormation: rvature δ Yield deormation moment M M <8M M res <.8M u δ u Ultimate deormation δ

3 Pratial a expressions ess s or the ield & ailure properties developed or EN 998-3:5 - their advanement anement sine 5

4 D. BISKINIS, G. ROUPAKIAS & M.N. FARDIS, Cli Deormation Capait o Shear-Critial RC Elements, Proeeding o ib Smposium, Athens, Ma 3. M.N.FARDIS & D.BISKINIS, Deormation Capait o RC Members, as Controlled b Flexure or Shear. Proeedings o International Smposium on Perormane-based Engineering or Earthquake Resistant Strutures honoring Pro. Shunsuke Otani Universit o Toko, Sept. 3, pp D.BISKINIS, G.K. ROUPAKIAS & M.N.FARDIS, Resistane and Design o RC Members or Cli Shear, 4th Greek National Conrete Conerene, Kos, Ot. 3, Vol. B, pp D.BISKINIS & M.N.FARDIS, Cli Strength and Deormation Capait o RC Members, inluding Members Retroitted or Earthquake Resistane, Pro. 5 th International Ph.D Smposium in Civil Engineering, Delt, June 4, Balkema, Rotterdam, p D.BISKINIS, G.K. ROUPAKIAS & M.N.FARDIS, Degradation o Shear Strength o RC Members with Inelasti Cli Displaements, ACI Strutural Journal, Vol., No. 6, Nov.-De. 4, pp M.N.FARDIS, D.BISKINIS, A. KOSMOPOULOS, S.N. BOUSIAS & A.-S. SPATHIS, Seismi Retroitting Tehniques or Conrete Buildings, Pro. SPEAR Workshop An event to honour the memor o Jean Donea, Ispra, April 5 (M.N.Fardis & P. Negro, eds.) S.N. BOUSIAS, M.N.FARDIS & D.BISKINIS, Retroitting o RC Columns with Deiient Lap-Splies, ib Smposium, Budapest, Ma 5. S.N. BOUSIAS, M.N.FARDIS, A.-S. SPATHIS & D.BISKINIS, Shotrete or FRP Jaketing o Conrete Columns or Seismi Retroitting, Pro. International Workshop: Advanes in Earthquake Engineering g or Urban Risk Redution, Istanbul, Ma June 5. D.BISKINIS & M.N.FARDIS, Assessment and Upgrading o Resistane and Deormation Capait o RC Piers, Paper no.35, st European Conerene on Earthquake Engineering & Seismolog (a joint event o the 3 th ECEE & the 3 th General Assembl o the ESC), Geneva, September 6. D.BISKINIS & M.N.FARDIS, Cli Resistane and Deormation Capait o RC Members, with or without Retroitting, 5th Greek National Conrete Conerene, Alexandroupolis, Ot. 6, Vol. B, pp D.BISKINIS, M.N.FARDIS, Eet o Lap Splies on Flexural Resistane and Cli Deormation Capait o RC Members, Beton & Stahlbetonbau,, 7 D.BISKINIS & M.N.FARDIS, Cli Deormation Capait o FRP-Wrapped RC Columns or Piers, with Continuous or Lap-Splied Bars, 8 th International Smposium on Fiber Reinored Polmer Reinorement or Conrete Strutures (FRPRCS-8), Patras, Jul 7. D.BISKINIS & M.N.FARDIS, Upgrading o Resistane and Cli Deormation Capait o Deiient Conrete Columns, in Seismi Risk Assessment and Retroitting with speial emphasis on existing low rise strutures (A.Ilki, ed.), Proeedings, Workshop, Istanbul, Nov. 7, Springer, Dordreht. D.BISKINIS & M.N.FARDIS, Cli Deormation Capait, Resistane and Eetive Stiness o RC Members with or without Retroitting, 4 th World Conerene on Earthquake Engineering, Beijing, paper , Ot. 8. D.BISKINIS & M.N.FARDIS, Chapter 5: Upgrading o Resistane and Cli Deormation Capait o Deiient Conrete Columns, in Seismi Risk Assessment and Retroitting with speial emphasis on existing low rise strutures (Ilki A et al, eds.), Springer, Dordreht, 9 D.BISKINIS & M.N.FARDIS, Ultimate Deormation o FRP-Wrapped RC Members, 6th Greek Nat. Conrete Conerene, Paphos, Ot. 9, paper 76 D.BISKINIS & M.N.FARDIS, Flexure-Controlled Ultimate Deormations o Members with Continuous or Lap-Splied Bars, Strutural Conrete, Vol., No., June, D.BISKINIS & M.N.FARDIS, Deormations at Flexural Yielding o Members with Continuous or Lap-Splied Bars, Strutural Conrete, Vol., No. 3, September, D.BISKINIS & M.N.FARDIS, Eetive stiness and li ultimate deormation o irlar RC olumns inluding eets o lap-spliing and FRP wrapping. Paper 8, 5th World Conerene on Earthquake Engineering, Lisbon, Sept.. D.BISKINIS & M.N.FARDIS, Stiness and Cli Deormation Capait o Cirlar RC Columns with or without Lap-Splies and FRP Wrapping, Bulletin o Earthquake Engineering, Vol., 3, DOI.7/s D.BISKINIS & M.N.FARDIS, Models or FRP-wrapped retangular RC olumns with ontinuous or lap-splied bars, Engineering Strutures, 3 (submitted).

5 Experimental Database. Range/mean o parameters in tests or alibration o expressions or the member hord rotation and seant stiness at ielding Parameter beams/olumns walls 653 retangular 4 retangular 9 members o non- 37 irlar retangular setion olumns min/max mean min/max mean min/max mean min/max mean setion depth or diameter, h (m). / / / / shear-span-to-depth ratio, L s /h / / / / 3.77 setion aspet ratio, h/b w. / / / (MPa) 9.6 / / / / axial-load-ratio, N/A -.5 /.9.6 /.86. / /.7.37 transverse steel ratio, w (%) / / /.44.7 / total longitudinal steel ratio tot (%) / / / / diagonal steel ratio, d (%) /.68.7 / transverse steel ield stress w, MPa 8 / / / / longitudinal steel ield stress, MPa 47 / / / /

6 Experimental Database. Range/mean o parameters in tests or alibration o expressions or ultimate rvature in monotoni or li loading Parameter 45 retangular beams/olumns 59 retangular walls 54 monotoni 6 li 3 monotoni 46 li min/max mean min/max mean min/max mean min/max mean setion depth or diameter, h (m). /.8.3. / / /..99 setion aspet ratio, h/b w 5/ /.5.. / / (MPa) 9.7 / / / / axial-load-ratio, N/A /.78.8 / / /..7 transverse steel ratio, w (%) / / / /.5.4 total longitudinal steel ratio tot (%) / / / / transverse steel ield stress w, MPa / / / / 56 5 longitudinal steel ield stress, MPa 77 / / / / 58 55

7 Parameter Experimental Database 3. Range/mean o parameters in tests or alibration o expressions or the member ultimate li hord rotation beams/olumns walls 59 retangular 95 retangular 53 members o non- 43 irlar retangular setion olumns min/max mean min/max mean min/max mean min/max mean setion depth or diameter, h (m). / / / / shear-span-to-depth ratio, L s /h / / / / 4. setion aspet ratio, h/b w. / / / (MPa). / / / / axial-load-ratio, N/A -. /.9.65 /.86.6 / /.7.5 transverse steel ratio, w (%).5 / / / / total longitudinal steel ratio tot (%) / / / / diagonal steel ratio, d (%) /.68.8 / transverse steel ield stress w, MPa 8 / / / / longitudinal steel ield stress, MPa 8 / / / /

8 Yield ed& ailure uepopeteso properties o RC setions

9 M-φ at ielding o setion w/ retangular ompression zone (width b, eetive depth d) p (, p ) setion analsis Yield moment (rom moment-equilibrium & elasti σ-ε laws): V s E E bd M Yield moment (rom moment-equilibrium & elasti σ-ε laws):, : tension & ompression reinorement ratios, v : web reinorement ratio, ~uniorml distributed between, : (all normalized to bd); = d /d. d E s / Curvature at ielding o tension steel: rom axial ore-equilibrium & elasti σ-ε laws ( = E s /E ): A B A / v v bd N B bd N A.5, d E d.8 Curvature at ~onset o nonlinearit o onrete:.5,.8 v v s v B bd N bd E N A

10 Moment at orner o bilinear envelope to experimental moment- deormation rve vs ield moment rom setion analsis Let: 85 beams/olumns, CoV:6.3%; Right: 4 ret. walls, CoV:6.9% median: M,exp =.99M,pred 3 median: M,exp =.5M,pred 75 M,exp (k knm) M,exp (kn Nm) M,pred (knm) Bias b +.5% or -%, beause orner o bilinear envelope o the experimental moment-deormation rve st ielding in setion. Same bias onsidered to appl to predited ield rvature M,pred (knm)

11 Empirial ormulas or ield rvature - setion w/ retangular ompression zone or beams or olumns: or walls: E d E h s.37 E d s s s.47 E h Empirial expressions don t have a bias w.r.to experimental ield moment; but satter is larger: In ~ test beams, olumns or walls: CoV: ~8%

12 Flexural ailures - olumns

13 Flexural ailures - beams

14 re (kn) Applied or Ap pplied ore (kn) Conventional deinition o ultimate deormation The value beond whih, an inrease in deormation annot inrease the resistane above 8% o the maximum previous (ultimate) resistane re (kn) Applied or Fore (kn N) 5 5 QRC Q-RC onventional -5ultimate -5 a a - - deormation oinides Deletion (mm) Deletion (mm) w/ real ailure onventional ultimate deormation beore real ailure b N) Applied ore (k Deletion (mm) Deletion (mm) b Displaement (mm)

15 Ultimate rvature o setion with retangular ompression zone, rom setion analsis Conrete σ-ε law: Paraboli up to, ε o, onstant stress (retangular) or ε o < ε < ε Steel σ-ε law: Elasti-peretl plasti, i steel strain rather low and onrete ails irst; Elasti-linearl strain-hardening, i steel strains are relativel high and steel breaks at stress and strain t, ε su.

16 Possibilities or ultimate rvature:. Setion ails b rupture o tension steel, ε s = ε su, beore extreme ompression ibers reah their ultimate strain (spalling), ε < ε Ultimate rvature ors in unspalled setion, due to steel rupture: su su. Compression ibres reah their ultimate strain (spalling): ε = ε the onined onrete ore beomes now the member setion. Two possibilities: i. The moment apait o the spalled setion, Μ Ro, never inreases above 8% o the moment at spalling, Μ R : Μ Ro <8Μ.8Μ R Ultimate rvature ors in unspalled setion, due to the onrete: ii. Moment apait o spalled setion inreases above 8% o the moment at spalling: Μ Ro >.8Μ R The onined onrete ore is now the member setion and Cases and (i) - applied or the onined ore -are the two possibilities or attainment t o the ultimate rvature φ su, φ allated as above but or the onined ore; the minimum o the two is the ultimate rvature. su d d M R bd ( )( ) ( )( ) 3 s o 3 o 4

17 Ultimate rvature o setion w/ retangular ompression zone or steel rupture: d su su t t o su t t o su 3 3 Steel ruptures beore onrete rushes, ater ompression steel ields, i ν: d su su su t v t su su su t v t su 3 3 ξ su allated rom axial ore equilibrium or: t v t su o t su 3 v t su o 3 ν=n/bd, ω, ω : tension & ompression meh. reinorement ratios, ωv: web meh. reinorement ratio ~uniorm distribution between ω, ω (ω= /); =d /d. su t t o su 3, ( ); Steel ruptures beore onrete rushes or ompression steel ields, i ν: su v su ξ su rom: ) ( 3 su su s t t v su o E ) ( 3 ) ( 3 ) ( su su s t t su t su o su su s t t su t su o su s su E E

18 Ultimate rvature o setion w/ retangular ompression zone or onrete rushing: d Conrete rushes ater tension steel ields, w/o ompression steel ielding, i ν : o v 3 d ξ rom axial ore equilibrium, or: v 3 Conrete rushes w/ tension & ompression steel ielding i ν : ) ( 3 v v o Conrete rushes w/ tension & ompression steel ielding, i ν : o v o v 3 3 v o v 3 ξ rom: Conrete rushes ater ompression steel ields w/o tension steel ielding i ν : Conrete rushes ater ompression steel ields, w/o tension steel ielding, i ν : ξ rom: o v 3 ) ( 3 v v o

19 ν<ν s, - LHS Eq.(3.39)? no ν<ν s, - RHS Eq.(3.39)? no Unonined ull setion Steel rupture es es es δ satisies Eq.(3.38)? su rom Eq.(3.4) su rom Eq.(3.4) es Unonined ull setion Spalling o onrete over no ν<ν s, - RHS Eq.(3.39)? no φ su rom Eq.(3.36) Conined ore ater spalling o onrete over. Parameters are denoted b an asterisk and omputed with: b, d, d replaed b geometri parameters o the ore: b, d, d ; N,,, v normalized to b d, insteado bd; σ-ε parameters o onined onrete,,, used in lieu o, Rupture o tension steel ν*<ν* s, - LHS Eq.(3.39)? es * su rom Eq.(3.4) ν<ν, - LHS Eq.(3.44)? no ν<ν, - RHS Eq.(3.44)? es es no δ satisies Eq.(3.4a)? rom Eq.(3.47) rom Eq.(3.46) es no no ν<, - LHS Eq.(3.48)? no ν<, - RHS Eq.(3.48)? no ν*<ν* s, - RHS Eq.(3.39)? no es Failure o ompression zone (onrete) * su rom Eq.(3.4) φ su rom Eq.(3.36) es rom Eq.(3.45) es rom Eq.(3.49) ν*<ν*, - LHS Eq.(3.44)? es * rom Eq.(3.47) Compute moment resistanes: M R (o ull, unspalled setion) and M Ro (o onined ore, ater spalling o over). M Ro < 8M.8M R? no Ultimate rvature o onined ore ater spalling o onrete over es φ rom Eq.(3.37) no ν*<ν*, - RHS Eq.(3.44)? es * rom Eq.(3.45) no * rom Eq.(3.46) φ rom Eq.(3.37)

20 Test results vs ultimate rvature w/ ailure strains or li lexure per EN 998-3:5 : Steel: ε su :.5%, 5%, 6% or steel lass A, B, C per Euroode,8 ε.4.5 αρ /, s w,7 median: φ u,exp =.96φ u,pred exp (/m) φ u,e,6,5,4,3,, li, slip li, no-slip,,,3,4,5,6,7,8 φ u,pred (/m) li test results Cli all Conrete rushing Steel rupture Median C.o.V. 46.7% 55.% 38.% No

21 Test results vs ultimate rvature w/ ailure strains or li lexure per Biskinis & Fardis (adopted in ib MC): Monotoni lexure: max. available steel strain: (7/)ε su Cli lexure:. max. available steel strain: (3/8)ε su * w.35 h mm.85 ( ) K * w.35 h mm. ( ) K φ u,exp ( /m) median: φ u,exp =φ u,pred li, slip li, no-slip monotoni, slip monotoni, no-slip φ u,pred (/m) monotoni & li data, no. 474, median=., CoV=49.7% li test data: Cli Conrete Steel all rushing rapture Median C.o.V. 44.% 5.6% 34.% No

22 Yield ed& ailure uepopeteso properties o RC members

23 Flexural behavior at member level (Moment- hord rotation) Deinition o hord rotations, θ, at member ends Elasti moments at ends A, B rom hord rotations at A, B: Μ Α = (ΕΙ/L)(θ Α +θ Β ), Μ Β = (ΕΙ/L)(θ Β +θ Α )

24 Fixed-end rotation o member end due to bar slippage rom their anhorage zone beond member end Slippage o tension bars rom region beond end setion (e.g. rom join or ooting) rigid-bod rotation o entire shear span = ixed-end end rotation, θ slip (inluded in measured hord-rotations o test speimen w.r. to base or joint; doesn t aet measured relative rotations between an two member setions). I s = slippage o tension bars rom anhorage θ slip = s/(-ξ)d I bond stress uniorm over straight length l b o bar beond setion o maximum moment bar stress dereases along l b rom σ s (= L at ielding) at setion o maximum M to zero at end o l b s=σ s l b /(E s ) l b = bond ore demand d per unit length (=AA s σ s /(dd bl )=dd bl σ s /4), divided id d b ~bon strength (assume = ) ε s (=σ σ s /E s )/(-)d = φ At ielding o member end setion, slip 8 d bl ( L, in MPa )

25 Fixed-end rotation o member end due to rebar pull-out rom anhorage zone beond member end, at member ielding φ,measured /(φ,predited +,slip,/l gauge ) no.6 measurements w/ slip: median =., C.o.V = 34%.5 Ratio:.5 experimental-topredited ield.75 rvature (w/ orretion or.5.5 ixed-end- end rotation) in terms o gauge length.75 ) e to slip iniples +φ,due / (φ,st-pri φ,ex xp l gauge / h

26 Chord rotation o shear span at ielding o end setion per EN 998-3:5 Ret. beams or olumns: Ls av z h.4.5 Ret. or non-ret. walls: 3 Ls Ls av z.3 asl, slip 3 Shit rule : 3 Diagonal raking shits value o ore in tension reinorement to a setion at a distane rom member end equal to z (internal lever arm) z = d-dd in beams, olumns, or walls o barbelled or T-setion, z =.8h in retangular walls. a v =, i V R > M /L s ; a v =, i V R M /L s. V R = ore at diagonal raking per Euroode (in kn, dimensions in m, in MPa):.. R, max8 5 d d a sl =, i no slip rom anhorage zone beond end setion; a s l =, i there is slip rom anhorage zone beond end setion. V N A / 3 / 6 / 3, 35. b d w a sl, slip

27 Test-model omparison θ Beams/ret. olumns, no. tests: median=., CoV=3.%.5 θ,exp (% %).5 median: θ,exp =.θ,pred.5 ret. beams / olumns θ,pred (%)

28 , Test-model omparison θ Walls, no. tests: 386,,8,8 θ,exp (%),6,4 median: θ,exp =.97θ,pred θ,exp (%),6,4 median: θ,exp =.θ,pred, Retangular walls, Retangular walls Non-retangular Walls Non-retangular Walls,,4,6,8,,,4,6,8, θ,pred (%) θ,pred (%) Expression in EN 998-3:5 Modiied expression adopted in MC median=.97, CoV=3.% L az 5h s V.4545 asl, slip 3 3Ls median=., CoV=3.9%

29 Test-model omparisons - θ Cirlar olumns - not in EN 998-3:5: no. tests: 9 Ls avz Ls.7min ; asl, slip 3 5DD median=., CoV=3.7%,5 median: θ,exp =θ,pred p (%) θ,ex,5,5 irlar,5,5,5 θ,pred (%)

30 Eetive elasti stiness, EI e (or linear or nonlinear analsis) Part o EC8 (or design o new buildings): EI e : seant stiness at ielding =5% o unraked gross-setion stiness. - OK in ore-based design o new buildings (saesided or ores); - Unsae in displaement-based assessment or displaement demands). More realisti: M L EIe 3 seant stiness at ielding o end o shear span L s =M/V s

31 Test-model omparison EI e Beams/ret. olumns, no. tests: 66 6 median=., CoV=3.% EI e M 3 L s (M 3θ MNm L s /3 ) exp (M ) median: (M L s /3θ ) exp =M L s /3θ ) pred ret. beams / olumns (M L s /3θ ) pred (MNm )

32 Test-model omparison EI e Walls, no. tests: M L detail s median: 5 EI (M L s /3θ ) exp =.35(M L s /3θ ) e pred 3 (M L MNm s /3θ ) exp (M ) 4 3 With expression or θ in EN 998-3:5 median=.35 CoV=4.8% non-retangular walls retangular walls 3 4 ( / θ ) ( ) 4 median: (M L s /3θ ) exp =.98(M L s /3θ ) pred d (M L MNm s /3θ ) exp (M ) median: (M L s /3θ ) exp =.35(M L s /3θ ) pred non-retangular walls retangular walls (M θ L s /3θ ) pred (MNm ) (M L s /3θ ) pred (MNm ) 5 5 detail median: (M L s /3θ ) exp =.98(M L s /3θ ) pred 3 With new expression or θ o walls (adopted in MC) median=.98 CoV=4.% (M p (MNm L s /3θ ) exp ) (M (MNm L s /3θ ) exp ) 75 5 non-retangular walls 5 retangular walls 3 4 (M L s /3θ ) pred (MNm ) non-retangular walls retangular walls (M L s /3θ ) pred (MNm )

33 Test-model omparison EI e Cirlar olumns - not in EN 998-3:5, no. tests: 73 EI e M Ls 3 median=.99, CoV=3.% 4 75 median: median: 35 (M L s /3θ ) exp =.99(M L s /3θ ) pred (M L s /3θ ) exp =.99(M L s /3θ ) pred 5 (M exp (MNm m L s /3θ ) ) irlar (M L s /3θ ) pred (MNm ) (M exp (MNm L s /3θ ) ) detail irlar (M L s /3θ ) pred (MNm )

34 Empirial seant stiness to ielding, EI e, independent o amount o reinorement - not in EN 998-3:5 EIe L s N a.8 ln max ;.6.48 min[ 5; ( MPa)] E I h A (all variables known beore dimensioning the longitudinal reinorement) I there is slippage o longitudinal bars rom their anhorage zone beond the member end: a =.8 or olumns; a =. or beams or non-retangular walls (barbelled, T-, H-setion); a =.5 or retangular walls; a =. or members with irlar setion. I there is no slippage o longitudinal bars: eetive stiness x4/3

35 Test-model omparison Empirial EI e, independent o amount o reinorement - not in EN 998-3:5 6 Beams/olumns no. tests: 66 median=. CoV=36.% (M θ MNm L s /3θ ) exp (M ) median: (M L s/3θ ) exp =EI pred EI pred (MNm )

36 Test-model omparison Empirial EI e independent o reinorement, not in EN998-3: 5 Walls no. tests: 386 median=. CoV=44.6% (M xp (MNm L s /3θ ) ex ) median: (M L s /3θ ) exp =EI pred non-retangular walls retangular walls 3 4 (M xp (MNm L s /3θ ) ex ) 5 5 detail detail median: (M L s /3θ ) exp =EI pred EI pred (MNm ) EI pred (MNm ) 75 median: (M L s /3θ ) exp =EI pred 5 non-retangular walls retangular walls 5 5 detail median: (M L s /3θ ) exp =EI pred Cirlar olumns no. tests: 73 median=.995 CoV=3.4% (M xp (MNm L s /3θ ) ex ) EI pred (MNm ) irlar (M xp (MNm L s /3θ ) ex ) EI pred (MNm ) irlar

37 Flexure-ontrolled ultimate hord rotation rom rvature & plasti hinge length per EN 998-3:5 pl.5l pl θu θ θu θ ( φu φ ) Lpl Ls : ield rvature (setion analsis); Option : Coninement per Euroode αρ αρ sx sx w w.5.5 : :, o. sx s sx u min,, d su, ( su ) d Option : New, per EN 998-3:5 5αρsx w.5. 5αρ 3.7 / / w L.L.7h. 4 d pl b w sx w,.4.5 sx s / b w L L /3.h.d / : oninement eetiveness: index : onined; s h s b h retangular setion: α ρ s : stirrup ratio; b h 6bh s irlar setion & hoops: L s =M/V: shear span at member end; h α s h : enterline spaing o stirrups, D h: setion depth; D d b : bar diameter;, b, h : onined ore dimensions to enterline o hoop; b, : MPa i : enterline spaing along setion perimeter o longitudinal bars (index: i) engaged b a stirrup orner or ross-tie. pl.86 i

38 Test-model omparison ultimate hord rotation rom rvatures & plasti hinge length per EN 998-3:5, no. tests: Option : oninement per EC median=.88, CoV=5.3% 7,5 5 Cli loading median: θ u,exp =.88θ u,pred Option : new oninement per EC8-3 median=.9, CoV=5.% % Cli loading,5 median: θ u,exp =.9θ u,pred,5 θ u,e exp (%) 7,5 5 θ u,e exp (%) 7,5 5,5 beams & olumns ret. walls non-ret. setions,5 5 7,5,5 5 7,5 θ u,pred (%),5 beams & olumns ret. walls non-ret. setions,5 5 7,5,5 θ u,pred (%)

39 Flexure-ontrolled ultimate hord rotation o ret. beams, olumns, walls, non-ret. walls & irlar olumns rom rvatures & plasti hinge length b Biskinis i & Fardis, 3 -adopted d in ibmc Flexure-ontrolled ultimate hord rotation, aounting separatel or slippage in ield-penetration length, rom ielding till ultimate deormation: u a sl u, slip ( u ) L pl L pl LL s Coninement per ib MC: 3 4 w w 3. 5 Monotoni loading - Ret. beams, olumns, walls, non-retangular walls: αρw w 7 ε,.35.57, ho ( mm) su, mon su, nomin al Cli loading: αρ w w 3 ε 35,.35.4, ho ( mm) su, su, nomin al 8 Ret. beams/olumns/walls, non-ret. walls: Cirlar olumns: L L pl, mon h..44 min 9; L s h Ls L pl,.h min 9; 3 h L s.6d min 9 6 D pl,, ir ;

40 Post-ield ixed-end rotation o member end due to bar slippage rom ield penetration length beond member end, rom ielding till ultimate t lexural l deormation per Biskinis i & Fardis, 3 - adopted in ibmc (not in EN 998-3:5) Monotoni loading: 9.5 d 6 d / u, sli p bl u bl u Cli loading: 5.5 d or d / or u, slip 5 bl u bl u Complete pull-out o beam bars, due to short anhorage in orner joint

41 Test-model omparison Cli ultimate hord rotation rom rvatures & plasti hinge length per Biskinis & Fardis, Ret. beams/olumns/walls, non-ret. walls - no. tests: median=., CoV=43.% Cirlar olumns no. tests: 43, median=., CoV=3.3% 6,5 Cli loading median: θ u,exp =θ u,pred 4 median: θ u,exp =θ u,pred p (%) θ u,exp 7,5 5 (%) θ u,exp 8 6,5 beams & olumns ret. walls non-ret. setions s,5 5 7,5,5 θ u,pred (%) 4 irlar θ u,pred (%)

42 Empirial li lexure-ontrolled ultimate hord rotation o ret. beams/olumns/walls, non-ret. walls in EN998-3:5 & ibmc or: θ um w αρsx ν max(.; ω') Ls ρd.6(.3 ) 5 (.5 ) max(.; ω) h.5 αρsx pl ν max(.; ω'). Ls ρd θum θum θ.45 (.5 ) 5 (.75 ) max( (.; ; ω ) h, ': mehanial ratio o tension (inluding web) & ompression steel; : N/bh (b: width o ompression zone; N> or ompression); L s /h : M/Vh: shear span ratio; s α : oninement eetiveness ator : h s b h i α sx : A sh /b w s h : transverse steel ratio // diretion o loading; b h 6bh d : ratio o diagonal reinorement. Walls: st expression divided id d b.6; nd multiplied li b.6 Cold-worked brittle steel: st expression divided b.6; nd b. Non-seismiall detailed members with ontinuous bars Plasti part, pl um=θ um -, o ultimate hord rotation: divided b...35,3.35 w

43 Test-model omparison Empirial li ultimate hord rotation o members with seismi detailing per EN 998-3:5 no. tests Model or total um Model with um = + pl median=., CoV=37.8% median=., CoV=37.6%,5 Cli loading,, p,p Cli loading median: θ u,exp =θ u,pred,5 median: θ u,exp, p =θ u,pred exp (%) θ u, 7,5 5,exp (%) θ u, 7,5 5 5% ratile: θ u,exp =.5θ u,pred,5 beams & olumns ret. walls non-ret. setions,5 5 7,5,5 θ u,pred (%) 5% ratile: θ u,exp=.5θ u,pred,5 beams & olumns ret. walls non-ret. setions,5 5 7,5,5 θ u,pred (%)

44 Test-model omparison Empirial li ultimate hord rotation o members without seismi detailing per EN 998-3:5 no. tests 48 Model or total um median=., CoV=3.6% Model with um = + pl median=.99, CoV=3.8% median: θ u,exp =θ u,pred 8 median: θ u,exp =.99θ u,pred xp (%) θ u,ex 5 4 xp (%) θ u,ex θ u,pred (%) θ u,pred (%)

45 General empirial ultimate hord rotation o ret. beams/olumns/ walls & non-ret. walls per Biskinis & Fardis, adopted in ib MC (not in EN998-3:5) pl u hbw st (.55a w s. d.6a.5max.5;min;. min 9; 5. 5 ) sl α hbw st :. or hot-rolled or Tempore bars;.95 or brittle old-worked bars; α : = or li loading, 7,5 = or monotoni; α sl: = i slippage o long. bars rom 5 anhorage zone is possible, = otherwise;,5 b w : width o (one) web Non-seismiall detailed members: pl um=θ um - divided b.. h max(.; ) b w max(.; ; ) θ u,exp (%) L h li loading,5 median: θ u,exp =θ u,pred 3 w 5% ratile: θ u,exp =.5θ u,pred beams & olumns ret. walls non-ret. setions,5 5 7,5,5 θ u,pred (%) no. tests:, median=., CoV=37.6%

46 Eet o lap-spliing the olumn bars in the plasti hinge region

47 Members with ribbed bars lap-splied over length l o inside the plasti hinge region per EN 998-3:5 or other options EN 998-3:5:. Both bars in pair o lapped ompression bars ount as ompression steel.. For the ield properties (M,, θ ), the stress s o tension bars is: s = (l o /l o,min ), i l o < l o,min =(.3 / )d b 3. Ultimate hord rotation (, in MPa) θ u = + pl u(l o /l ou,min ), i l o < l ou,min = d b /[(.5+4.5α rs ω sx ) ],, in MPa, ω sx =ρ sx w / : meh. transverse steel ratio // loading, α rs =(-s h /b o )(-s h /b o )n restr /n tot (n restr /n tot : restrained-to-total lap-splied bars). Or, Eligehausen & Lettow 7 or ib MC: s / 3. l b d max 5. kk tr, d b max( db; mm) d b d kk tr n d b b k s nl A s h sh d = min[a/; ; ] ] d b, d 3d b max = max[α/; ; ] 5d b, in MPa

48 Test-model omparison: Yield moment & hord rotation, eetive stiness, ultimate li hord rotation - lapped ribbed bars per EN 998-3:5 75 median: M,exp =M,pred median: θ,exp =.5θ,pred 5,5 no.tests: 4 median=. CoV=.8% exp (KNm) M,e M no.tests: 9 median=.5 CoV=% θ,exp (%),5 θ M,pred (KNm),5,5 θ,pred (%) median: (M L s /3θ ) exp =.955(M L s /3θ ) pred median: θ u,exp =.35θ u,pred (M (MNm L s /3θ ) exp ) 5 5 no.tests: 9 median=.955 CoV=4.8% (M L s /3θ ) pred (MNm ) (%) θ u,exp EI e 4 no.tests: 8 median=.35 CoV=39.3% 8 6 θ u θ u,pred (%)

49 Test-model omparison: Yield moment & hord rotation, eetive stiness, - lapped bars, steel stress per Eligehausen & Letow 7 75 median: M,exp =.98M,pred no.tests: 9 median=.3 p (%) θ,ex CoV=.5%,5,5 median: θ,exp =.3θ,pred θ,5,5 θ,pred (%) no.tests: 4 Median=.98 CoV=% no.tests: 9 median=.97 CoV=4.6% (MNm ) M,exp (KNm m) (M L s /3θ ) exp M M,pred (KNm) 5 median: (M L s /3θ ) exp =.97(M L s /3θ ) pred 5 5 EI e (M L /3θ ) d (MNm )

50 Members with smooth hooked bars, with or without lap splie (o length l o ) in the plasti hinge per EN 998-3:5 Provided that lapping l o 5d b :. Yield properties M,, θ : As in members with ontinuous ribbed bars.. Ultimate li hord rotation: For ontinuous bars:.8θ um (: ~.95 or smooth bars /. or no seismi detailing) θ um = +.75 pl um (: ~.9 or smooth bars /. or no seismi detailing) For lapping l ti o 5d b : Test-model-ratio or θ um um x.9(+min(4, l o /d b )) or θ um = + pl um x.9 min(4, l o /d b ) L s or pl um not redued b l o no laps or laps Mdi Median C.o.V. 33.3% 33.4% no. tests 34 (ultimate ondition not neessaril ontrolled b region right above the lap)

51 Cli shear resistane sta o RC members

52 Cli shear resistane per EN 998-3:5 Shear resistane in pl. hinge ater lex. ielding, as ontrolled b stirrups (linear dea o V & V w with li plasti rotation dutilit ratio pl θ =(- )/ > V R h x min L s pl Ls N ;.55 A 5.5 min 5; μθ.6 max(.5; ρtot ).6 min5; A Vw h V w =ρ w b w z w, due to stirrups (b w : web width, z: internal lever arm; ρ w : shear rein. ratio) ρ tot : total t longitudinal l reinorement ratio h: setion depth x : depth o ompression zone at ielding A = b w d Shear resistane as ontrolled b web rushing (diagonal ompression) Walls, beore lexural ielding ( pl θ = ) or ater (li pl θ > ): V R V pl N Ls.6 min 5,.8 min.5,.5 max(.75, ). min, b z.85 A R Squat olumns (L s /h ) ater lexural ielding (li θ pl > ): 4 pl N. min 5,.35.45tot min, 4 bwz sin 7 A δ: angle between axis and diagonal o olumn (tanδ=.5h/l s ) tot h w

53 Test-model omparison: Cli shear resistane in plasti hinge (ater lexural ielding) as ontrolled b stirrups, per EN 998-3:5 no. tests: 36 median=.995 CoV=4.7% 8 6 V exp (kn N) 4 Retangular Cirlar walls & piers V pred (kn)

54 Test-model omparison: Cli shear resistane as ontrolled b web rushing (diagonal ompression), per EN 998-3:5 Walls Squat olumns N) V exp (k N) V exp (k V pred (kn) V pred (kn) no. tests: 6, median=., CoV=9.3% no. tests: 4, median=., CoV=9.6%

55 FRP Jakets per EN998-3:5

56 Experimental Database 4. Range and mean values o parameters in the tests o FRP-jaketed retangular olumns in the database Parameter 9 olumns with ontinuous bars (45 with CFRP, 4 with GFRP, 7 with AFRP and 3 with other omposite) 45 olumns with lapsplied bars (4 with CFRP, 3 with GFRP) min-max mean min-max mean eetive depth, d (mm) shear-span-to-depth span ratio, L s /h onrete strength, (MPa) vertial bar ield stress, (MPa) stirrup ield stress, w (MPa) axial-load-ratio, N/A transverse steel ratio, w (%) total vertial steel ratio, tot (%) geometri ratio o FRP, ρ (%) nominal FRP strength (MPa) elasti modulus o FRP, E (GPa) lapping-to-bar-diameter ratio, l o /d b

57 FRP-wrapping o plasti hinges in retangular members with ontinuous bars per EN 998-3:5 M R, M : Enhaned b FRP jaket (b 9% w.r.to allated w/o oninement) EN 998-3:5: inrease negleted. Eetive (elasti) stiness EI e : unaeted b FRP; pre-damage: 35% drop EN998-3:5: Flexure-ontrolled ultimate hord rotation, θ u : Coninement b FRP inreases that due to the stirrups b α ρ e,e /, where: ρ =t /b w : FRP ratio // diretion o loading;,e : FRP eetive strength:,e min u,, ε u, E min min.5;.7 u,, E : FRP tensile strength & Modulus; ε u, : FRP limit strain. CFRP/AFRP: ε u, =.5%; GFRP: ε u, =% FRP-oninement eetiveness: h R b R 3bh b, h: sides o setion; R: radius at setion orner u,, ε u, E ρ

58 Test-model omparison - ield properties or FRP-wrapping o retangular olumns with ontinuous bars per EN 998-3:5 no.tests: 3 (pre-damaged or not) median=.9, CoV=9.4% no.tests: 59 (no pre-damage) median=.3, CoV=37.3% 5 3 non-predamaged median (non-predamaged) predamaged median (predamaged) median: M,exp =.9M,pred,5 (KNm) M,exp M,pred (KNm) M θ,exp (%),5,5 θ,5,5,5 3 θ,pred (%) EI e (no pre-damage), no.tests: 59, median=., CoV=3%

59 Yield properties or FRP-wrapping o the plasti hinge and ontinuous bars Biskinis & Fardis 7, 3 Yield moment, M : Strength o FRP-onined onrete, instead o, in setion-analsis or φ, M, inluding the allation o the onrete Elasti Modulus, E ; E ma be estimated per ibmc, using instead o : E =( (MPa)) /3 b a x u, rom (widel used) Lam & Teng 3: 3.3 b u, : eetive strength o FRP: u, =E (k e ε u, ) E : Elasti Modulus o FRP, ε u, : FRP ailure strain, k e : FRP eetiveness ator, equal to.6 per Lam & Teng (~same results using other FRP-oninement models: Teng et al 9, Samaan et al 998, Bisb et al 5, Ilki et al 8, Wang et al ) Chord rotation at ielding, θ, eetive stiness, EI e : Yield rvature φ allated with (as above) & multiplied times orretion ator.6 EI e = M L s /3

60 Test-model omparison - ield properties or FRP-wrapping o ret. olumns with ontinuous bars per Biskinis & Fardis 7, 3 no.tests: 3 (pre-damaged or not) median=.6, CoV=9.3% no.tests: 59 (no pre-damage) median=., CoV=37.3% 5 3 non-predamaged median (non-predamaged) predamaged median (predamaged) median: M,exp =.6M,pred.5 xp (KNm m) M,ex 5 5 M θ,exp (% %) M,pred (KNm) θ,pred (%).5.5 θ EI e (no pre-damage): no.tests: 59, median=.99, CoV=3.4%

61 Extension o empirial ultimate plasti hord rotation o ret. olumns with ontinuous bars & FRP-wrapping - Biskinis & Fardis 7, 3 Pre-damaged or not: θ pl u.85 with: aρ asl.5a.5 u, e a.6 min.4; ρ ν max., ω' max., ω u,.3..5min.4; =.8 or CFRP or polaetal iber (PAF) sheets, =.8 or GFRP or AFRP. u, =E (k e ε u, ): eetive FRP strength ρ Ls h u,.35 5 αρ w w αρu, e.75 ρd

62 Test-model omparison ultimate li hord rotation or FRP-wrapping o ret. olumns with ontinuous bars: no. tests 8 (pre-damaged or not) EN 998-3:5 v Biskinis & Fardis 7, 3 EN 998-3:5 Biskinis & Fardis 3 median=.9, CoV=3.6% median=.5, CoV=3.4% 5 5 median (all): θ u,exp =.9θ u,pred median (all): θ u,exp =.5θ u,pred θ u,e exp (%) 5 θ u,e exp (%) 5 CFRP jaket 5 AFRP jaket GFRP jaket PAF jaket θ u,pred (%) CFRP jaket 5 AFRP jaket GFRP jaket PAF jaket θ u,pred (%)

63 Alternative ultimate li hord rotation or ontinuous bars & FRP-wrapping per GCSI (KANEPE).5.5 wd Test-to-predited ultimate li hord rotation, θ u no.tests: 8, FRP l t i ti median=.75, CoV=54.5% 5% ω wd : FRP volumetri ratio α: FRP-oninement eetiveness ator CFRP (adopted here also or AFRP and PAF):.35 GFRP: FRP eetive strength:.7, e u, ψ: redution ator or number o laers (k); ψ= ork<4 k μ θ 4 θ θ u or k 4 μ δ μ 3 φ θ u,e exp (%) median (all): θ u,exp =.75θ u,pred CFRP jaket AFRP jaket GFRP jaket PAF jaket θ upred (%)

64 FRP-wrapped retangular members with ribbed bars lap-splied over length l o in the plasti hinge: EN 998-3:5 & other options EN 998-3:5:. Both bars in pair o lapped ompression bars ount as ompression steel.. For the ield properties (M,, θ ), the stress s o tension bars is: s = (l o /l o,min ), i l o < l o,min =(. / )d b (, in MPa), l o,min : one-third shorter than without t FRP. 3. Ultimate hord rotation θ u = + pl u(l o /l ou,min ), i l o < l ou,min = d b /[( α l ρ,e ) ], : MPa, ρ =t /b w : FRP ratio // loading,,e : eet. FRP strength (MPa), α l = α (4/n tot ) (n tot : total lap-splied bars; onl the 4 orner bars restrained). Or, Eligehausen & Lettow 7 or ibmc: s / 3 l b d max 5. d b d b d max( db; mm) d = min[a/; ; ] ] d b, d 3d b max = max[α/; ; ] 5d b, in MPa. kk tr, kk tr n d b b k s n s l A h sh k n E t s E

65 Test-model omparison - Yield properties or FRP-wrapping o ret. olumns with bars lap-splied over length l o per EN998-3:5, no.tests 45 M : median=.75, CoV=.5% θ : median=.75, CoV=7.7% 75 5 median: M,exp =.75,pred.75.5 median: θ,exp =.75θ,pred (KNm) M,exp exp (%) θ, M.5 θ M,pred (KNm) θ,pred (%)

66 Test-model omparison - ield properties o FRP-wrapped irlar olumns with lap-splied li bars per EN998-3:5 (Biskinis & Fardis 7, 3) no.tests: 4 median=. no.tests: 4 CoV=5.% median=.98 CoV=% M,exp (KNm) median: M,exp =M,pred M M pred,pred (KNm) 8 xp (%) θ,ex,5,5 median: θ,exp =.98θ,pred,5,5 θ,pred (%) no.tests: 4 θ median=.96 CoV=.% (M xp (MNm L s /3θ ) ex ) 6 4 EI e median: (M L s /3θ ) exp =.96(M L s /3θ ) pred (M L s /3θ ) pred (MNm )

67 Extension o empirial ultimate plasti hord rotation or retangular members with lap-splied bars & FRP-wrapping Biskinis & Fardis 7, 3 Required lapping or no adverse eet o lap-splie on ultimate deormation db lou,min aρ u n tension, e with: aρ u, e u, =E (k e ε u, ) a min.4; ρ u,.5min.4; n tension : number o lapped bars on tension side o setion pl l I l o o <l ou,min, θ pl u is redued as: ulap, min, u l ou,min i (αρ u / ),e negleted in θ pl u i /n tension.5 ρ u, pl

68 Test-model omparison ultimate li hord rotation o FRP-wrapped o retangular olumns w/ lap-splied bars, no.tests 44 (pre-damaged or not) EN998-3:5 v Biskinis & Fardis 7, 3 EN 998-3:5 median=.89, CoV=36.3% 3% Biskinis & Fardis 3 median=.5, CoV=3.% % median: θ u,exp, p =.885θ u,pred median: θ u,exp =.5θ u,pred 8 8 xp (%) θ u,ex 6 4 xp (%) θ u,ex θ u,pred (%) θ u,pred (%)

69 Extension o ultimate plasti hord rotation model with rvatures and plasti hinge length to irlar olumns with lap-splied li bars & FRP-wrapping Biskinis i & Fardis 3. L pl s a sl u slip ( ) L 5L u u pl, 5 u, slip 5. d bl u L pl,, ε as in members (FRP-wrapped or not) with ontinuous bars Steel strain at ultimate deormation o member depends on lap length, i l o < l ou,min : l su o su, l.. lou,min l l l o o,min with: ou,min 5 6 6a / sh h d bl E s θ u,exp (% %) median: θ u,exp =.97θ u,pred Test-to-predition ratio, no.tests: 37 median=.97, CoV=38.6% θ upred (%)

70 V Cli shear resistane o FRP-wrapped retangular members as ontrolled b diagonal tension, per EN998-3:5 R h x min L s pl Ls N,.55A.5min 5,.6max(.5, tot).6min 5, A Vw V V =min(ε u u, E u u,, u u,)ρ b w z/ : FRP-ontribution to li shear resistane: ρ :FRP ratio, ρ = t /b w ; u, :FRP tensile strength. V w =ρ w b w z w : ontribution tib ti o web steel l(b w : web width, z: int. lever arm; ρ w : steel ratio) ρ tot : total longitudinal steel ratio,4 h: setion depth, x : depth o ompression zone A = b w d Test-to-predition ratio vs μ, no. tests median=.99, CoV=4.8%: V u,pred V u,exp /V,8,6,4, h,5,5,5 3 3,5 4 4,5 5 dutilit In a FRP-retroitted member the shear resistane as ontrolled b diagonal tension annot exeed the shear resistane o old member as ontrolled b web rushing

71 RC jakets per EN998-3:5

72 Conrete Jakets (ontinued/anhored in joint; w/ or w/o lap splies in old member) Callation assumptions: Full omposite ation o jaket t& old onrete assumed (jaketed member: monolithi ), even or minimal shear onnetion at interae (roughened interae, steel dowels epoxied into old onrete: useul but not essential); o monolithi member = that o the jaket (avoid large dierenes in old & new ) Axial load onsidered to at on ull, omposite setion; Longitudinal reinorement o jaketed olumn: mainl that o the jaket. Vertial bars o old olumn onsidered at atual loation between tension & ompression bars o omposite member (~ web longitudinal reinorement), with its own ; Onl the transverse reinorement o the jaket is onsidered or oninement; For shear resistane, the old transverse reinorement taken into aount onl in walls, i anhored in the (new) boundar elements The detailing & an lap-spliing o jaket reinorement are taken into aount. Then: M R & M o jaketed member: ~% o θ o jaketed member or pre-ield (elasti) stiness: ~5% o Shear resistane o jaketed member: ~% o Flexure-ontrolled ultimate deormation θ u : ~% o those o monolithi member allated w/ assumptions above. I jaket bars are not ontinued/anhored in the joint: The jaket is onsidered onl to onine ull the old olumn setion.

73 54 jaketed members w/ or w/o lap splies: test-to-allated as monolithi M,al M,exp/ M EI exp / EI* e M. ontinuous bars plain 5db laps deormed 5db laps 4.4 plain 5db laps deormed 3db laps deormed 45db laps non-anhored jaket bars group average st. dev. o group mean EI.5 e..5,eq.()&() θ,exp/ θ (3)) / ( θ* + θ u pl Eq.( θ u,exp θ θ u a b d e g h i j k a: no treatment, b: no treatment, predamage, : welded U-bars, d: dowels, e: roughened, : roughened / predamage, g: U-bars+ roughened, h: U-bars+roughened / predamage, i: roughened+dowels, j: roughened+dowels / predamage a b d e g h i j

74 Steel jakets per EN998-3:5

75 Steel Jakets (not ontinued/anhored in joint) Jaket stops beore the joint (several mm gap to joint ae) Flexural resistane, pre-ield (elasti) stiness & lexureontrolled ultimate deormation o RC member is not enhaned b jaket (lexural deormation apait ~same as in old member inside id jaket, no beneit rom oninement); 5% o shear resistane o steel jaket, V j=a j jh, an be relied upon or shear resistane o retroitted member (suppression o shear ailure beore or ater lexural ielding); Lap-splie lamping via rition mehanism at jaketmember interae, i jaket extends to ~.5 times splie length and is bolt-anhored to member at end o splie region & ~/3 its height rom the joint ae (anhor bolts at third-point o side)

Purpose of reinforcement P/2 P/2 P/2 P/2

Purpose of reinforcement P/2 P/2 P/2 P/2 Department o Civil Engineering Purpose o reinorement Consider a simpl supported beam: P/2 P/2 3 1 2 P/2 P/2 3 2 1 1 Purpose o Reinorement Steel reinorement is primaril use beause o the nature o onrete

More information

SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING

SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING SfP PROJECT 9773: SEISMIC ASSESSMENT AND REHABILITATION OF EXISTING BUILDINGS INTERNATIONAL CLOSING WORKSHOP ISTANBUL, 3 MAY-JUNE, 5 SHOTCRETE OR FRP JACKETING OF CONCRETE COLUMNS FOR SEISMIC RETROFITTING

More information

STRENGTH, DEFORMATION CAPACITY AND FAILURE MODE OF RC WALLS IN CYCLIC LOADING

STRENGTH, DEFORMATION CAPACITY AND FAILURE MODE OF RC WALLS IN CYCLIC LOADING STRENGTH, DEFORMATION CAPACITY AND FAILURE MODE OF RC WALLS IN CYCLIC LOADING Grammatikou, S., Biskinis, D., Fardis, M.N. Strutures Laboratory, Dept. o Civil Engineering, University o Patras, 2654, Greee

More information

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS

DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS DEFORMATION CAPACITY OF OLDER RC SHEAR WALLS: EXPERIMENTAL ASSESSMENT AND COMPARISON WITH EUROCODE 8 - PART 3 PROVISIONS Konstantinos CHRISTIDIS 1, Emmanouil VOUGIOUKAS 2 and Konstantinos TREZOS 3 ABSTRACT

More information

The Design of Fiber Reinforced Polymers for Structural Strengthening An Overview of ACI 440 Guidelines. Sarah Witt Fyfe Company November 7, 2008

The Design of Fiber Reinforced Polymers for Structural Strengthening An Overview of ACI 440 Guidelines. Sarah Witt Fyfe Company November 7, 2008 The Design o Fiber Reinored Polymers or Strutural Strengthening An Overview o ACI 440 Guidelines Sarah Witt Fye Company November 7, 2008 1 GUIDE FOR THE DESIGN AND CONSTRUCTION OF EXTERNALLY BONDED FRP

More information

Partial versus full wrapping confinement systems for concrete columns

Partial versus full wrapping confinement systems for concrete columns Partial versus ull wrapping oninement systems or onrete olumns J. A. O. Barros Assistant Pro., Dep. o Civil Eng., Shool o Eng., Univ. o Minho, Azurém, 481 58 Guimarães, Portugal D. R. S. M. Ferreira PhD

More information

Reinforced Concrete Design

Reinforced Concrete Design Reinored Conrete Design Notation: a = depth o the eetive ompression blok in a onrete beam A g = gross area, equal to the total area ignoring any reinorement A s = area o steel reinorement in onrete beam

More information

Confinement of Reinforced Concrete Columns

Confinement of Reinforced Concrete Columns This artile was downloaded by: 10.3.98.93 On: 22 Nov 2018 Aess details: subsription number Publisher: CRC Press Inorma Ltd Registered in England and Wales Registered Number: 1072954 Registered oie: 5 Howik

More information

Design of AAC floor slabs according to EN 12602

Design of AAC floor slabs according to EN 12602 Design of AAC floor slabs aording to EN 160 Example 1: Floor slab with uniform load 1.1 Issue Design of a floor slab under a living room Materials Component with a ompressive strength lass AAC 4,5, densit

More information

An Analytical Formulation of Stress-Block Parameters for Confined Concrete

An Analytical Formulation of Stress-Block Parameters for Confined Concrete The Open Constrution and Building Tehnology Journal, 8,, 37-8 37 Open Aess An Analytial Formulation o Stress-Blok Parameters or Conined Conrete Frano Braga, Rosario Gigliotti, Mihelangelo Laterza* and

More information

INFORMATION CONCERNING MATERIALS TO BE USED IN THE DESIGN

INFORMATION CONCERNING MATERIALS TO BE USED IN THE DESIGN TITLE 5 DESIGN CHAPTER 8 INFORMATION CONCERNING MATERIALS TO BE USED IN THE DESIGN Artile 38. Charateristis o steel or reinorements 38.1 General The harateristis o the steel used or the design desribed

More information

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures fib Model Code 2020 Shear and punhing provisions, needs for improvements with respet to new and existing strutures Aurelio Muttoni Workshop fib Sao Paulo, 29.9.2017 Éole Polytehnique Fédérale de Lausanne,

More information

Beam Stresses Bending and Shear

Beam Stresses Bending and Shear Beam Stresses Bending and Shear Notation: A = name or area A web = area o the web o a wide lange setion b = width o a retangle = total width o material at a horizontal setion = largest distane rom the

More information

Shear-Friction Strength of RC Walls with 550 MPa Bars

Shear-Friction Strength of RC Walls with 550 MPa Bars Proeedings of the Tenth Paifi Conferene on Earthquake Engineering Building an Earthquake-Resilient Paifi 6-8 November 215, Sydney, Australia Shear-Frition Strength of RC Walls with 55 MPa Bars Jang-woon

More information

Masonry Beams. Ultimate Limit States: Flexure and Shear

Masonry Beams. Ultimate Limit States: Flexure and Shear Masonry Beams 4:30 PM 6:30 PM Bennett Banting Ultimate Limit States: Flexure and Shear Leture Outline 1. Overview (5) 2. Design for Flexure a) Tension Reinforement (40) b) Compression Reinforement (20)

More information

Student (Ph.D.), 2 Professor, Department of Applied Mechanics, S.V.N.I.T., Surat , Gujarat, India.

Student (Ph.D.), 2 Professor, Department of Applied Mechanics, S.V.N.I.T., Surat , Gujarat, India. Amerian International Journal o Researh in Siene, Tehnology, Engineering & Mathematis Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Dr. Hazim Dwairi 10/16/2008

Dr. Hazim Dwairi 10/16/2008 10/16/2008 Department o Civil Engineering Flexural Design o R.C. Beams Tpes (Modes) o Failure Tension Failure (Dutile Failure): Reinorement ields eore onrete ruses. Su a eam is alled under- reinored eam.

More information

13 Fitzroy Street London W1T 4BQ Telephone: +44 (0) Facsimile: +44 (0)

13 Fitzroy Street London W1T 4BQ Telephone: +44 (0) Facsimile: +44 (0) Oasys AdSe Theory 13 Fitzroy Street London W1T 4BQ Telephone: +44 (0) 0 7755 330 Fasimile: +44 (0) 0 7755 370 Central Square Forth Street Newastle Upon Tyne NE1 3PL Telephone: +44 (0) 191 38 7559 Fasimile:

More information

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION RC DEEP BEAMS ANAYSIS CONSIDERING OCAIZATION IN COMPRESSION Manakan ERTSAMATTIYAKU* 1, Torsak ERTSRISAKURAT* 1, Tomohiro MIKI* 1 and Junihiro NIWA* ABSTRACT: It has been found that RC deep beams usually

More information

Moment Curvature Characteristics for Structural Elements of RC Building

Moment Curvature Characteristics for Structural Elements of RC Building Moment Curvature Charateristis for Strutural Elements of RC Building Ravi Kumar C M 1,*, Vimal Choudhary 2, K S Babu Narayan 3 and D. Venkat Reddy 3 1 Researh Sholar, 2 PG Student, 3 Professors, Department

More information

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed. ARCH 631 Note Set 11 F015abn Case Study in Reinfored Conrete adapted from Simplified Design of Conrete Strutures, James Ambrose, 7 th ed. Building desription The building is a three-story offie building

More information

Uniaxial Concrete Material Behavior

Uniaxial Concrete Material Behavior COMPUTERS AND STRUCTURES, INC., JULY 215 TECHNICAL NOTE MODIFIED DARWIN-PECKNOLD 2-D REINFORCED CONCRETE MATERIAL MODEL Overview This tehnial note desribes the Modified Darwin-Peknold reinfored onrete

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members-

CE5510 Advanced Structural Concrete Design - Design & Detailing of Openings in RC Flexural Members- CE5510 Advanced Structural Concrete Design - Design & Detailing Openings in RC Flexural Members- Assoc Pr Tan Kiang Hwee Department Civil Engineering National In this lecture DEPARTMENT OF CIVIL ENGINEERING

More information

Software Verification

Software Verification EC-4-004 Example-001 STEEL DESIGNERS MANUAL SEVENTH EDITION - DESIGN OF SIMPLY SUPPORTED COMPOSITE BEAM EXAMPLE DESCRIPTION Consider an internal seondary omposite beam of 1-m span between olumns and subjet

More information

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells

Shear Strength of Squat Reinforced Concrete Walls with Flanges and Barbells Transations, SMiRT 19, Toronto, August 2007 Shear Strength of Squat Reinfored Conrete Walls with Flanges and Barbells Cevdet K. Gule 1), Andrew S. Whittaker 1), Bozidar Stojadinovi 2) 1) Dept. of Civil,

More information

Compression Members Local Buckling and Section Classification

Compression Members Local Buckling and Section Classification Compression Memers Loal Bukling and Setion Classifiation Summary: Strutural setions may e onsidered as an assemly of individual plate elements. Plate elements may e internal (e.g. the wes of open eams

More information

Oasys. Concrete Code Reference

Oasys. Concrete Code Reference Conrete Code Reerene 13 Fitzroy Street London W1T 4BQ Telephone: +44 () 2 7755 332 Fasimile: +44 () 2 7755 372 Central Square Forth Street Newastle Upon Tyne N1 3PL Telephone: +44 () 191 238 7559 Fasimile:

More information

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl

Seismic Design, Assessment & Retrofitting of Concrete Buildings. fctm. h w, 24d bw, 175mm 8d bl, 4. w 4 (4) 2 cl Seismic Design, Assessment & Retroitting o Concrete Buildings Table 5.1: EC8 rules or detailing and dimensioning o primary beams (secondary beams: as in DCL) DC H DCM DCL critical region length 1.5h w

More information

SeismoBuild Verification Report (KANEPE) For version 2018

SeismoBuild Verification Report (KANEPE) For version 2018 SeismoBuild Verification Report (KANEPE) For version 2018 Copyright Copyright 2002-2018 Seismosoft Ltd. All rights reserved. SeismoBuild is a registered trademark of Seismosoft Ltd. Copyright law protects

More information

Ch. 10 Design of Short Columns Subject to Axial Load and Bending

Ch. 10 Design of Short Columns Subject to Axial Load and Bending Ch. 10 Design o Short Columns Subjet to Axial Load and Bending Axial Loading and Bending Development o Interation Diagram Column Design Using P-M Interation Diagram Shear in Columns Biaxial Bending Examples

More information

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS 13 th World Conferene on Earthquake Engineering anouver, B.C., Canada August 1-6, 24 Paper No. 58 STRUCTURAL BEHAIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS Soo-Yeon SEO 1, Seung-Joe YOON

More information

Software Verification

Software Verification Sotware Veriiation EXAMPLE CSA A23.3-04 RC-BM-00 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veri lab lexural deign in. The load level i adjuted or the ae orreponding

More information

Eurocode 8 Part 3: Assessment and retrofitting of buildings

Eurocode 8 Part 3: Assessment and retrofitting of buildings in the Euro-Mediterranean Area Eurocode 8 Part 3: Assessment and retrofitting of buildings Paolo Emilio Pinto Università di Roma La Sapienza Urgency of guidance documents for assessment and retrofit in

More information

MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP OF CONCRETE IN UNIAXIAL COMPRESSION

MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP OF CONCRETE IN UNIAXIAL COMPRESSION VIII International Conferene on Frature Mehanis of Conrete and Conrete Strutures FraMCoS-8 J.G.M. Van Mier, G. Ruiz, C. Andrade, R.C. Yu and X.X. Zhang Eds) MODELLING THE POSTPEAK STRESS DISPLACEMENT RELATIONSHIP

More information

Drift Capacity of Lightly Reinforced Concrete Columns

Drift Capacity of Lightly Reinforced Concrete Columns Australian Earthquake Engineering Soiety Conferene, Perth, Western Australia Drift Capaity of ightly Reinfored Conrete Columns A Wibowo, J Wilson, NTK am, EF Gad,, M Fardipour, K Rodsin, P ukkunaprasit

More information

WRAP-AROUND GUSSET PLATES

WRAP-AROUND GUSSET PLATES WRAP-AROUND GUSSET PLATES Where a horizontal brae is loated at a beam-to-olumn intersetion, the gusset plate must be ut out around the olumn as shown in Figure. These are alled wrap-around gusset plates.

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT

FORCE DISTRIBUTION OF REINFORCED CONCRETE COUPLING BEAMS WITH DIAGONAL REINFORCEMENT FORCE DISTRIBUTION OF REINFORCED CONCRETE COULING BEAMS WITH DIAGONAL REINFORCEMENT Yenny Nurhasanah Jurusan Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol os 1 abelan

More information

Non-linear finite element analysis of reinforced concrete members and punching shear strength of HSC slabs

Non-linear finite element analysis of reinforced concrete members and punching shear strength of HSC slabs MATEC Web o Conerenes 49, 56 (8) CMSS-7 https://doi.org/.5/mateon/84956 Non-linear inite element analysis o reinored onrete members and punhing shear strength o HSC slabs Kernou Nassim, Belakhdar Khalil

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Software Verification

Software Verification Sotare Veriiation EXAMPLE NZS 3101-06 RC-BM-001 Flexural and Shear Beam Deign PROBLEM DESCRIPTION The purpoe o thi example i to veriy lab lexural deign in. The load level i adjuted or the ae orreponding

More information

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD

NON-LINEAR BENDING CHARACTERISTICS OF PHC PILES UNDER VARYING AXIAL LOAD 13 th World Conferene on Earthquake Engineering Vanouver, B.C., Canada August 1-6, 24 aper No. 356 NON-LINEAR BENDING CHARACTERISTICS OF HC ILES UNDER VARYING AXIAL LOAD Toshihiko ASO 1 Fusanori MIURA

More information

Behavior and Modeling of Existing Reinforced Concrete Columns

Behavior and Modeling of Existing Reinforced Concrete Columns Behavior and Modeling of Existing Reinforced Concrete Columns Kenneth J. Elwood University of British Columbia with contributions from Jose Pincheira, Univ of Wisconsin John Wallace, UCLA Questions? What

More information

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect

Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effect World Aademy of Siene, Engineering and Tehnology Vol:8, No:6, 04 Flexural Strength Design of RC Beams with Consideration of Strain Gradient Effet Mantai Chen, Johnny Ching Ming Ho International Siene Index,

More information

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method Slenderness Effets for Conrete Columns in Sway Frame - Moment Magnifiation Method Slender Conrete Column Design in Sway Frame Buildings Evaluate slenderness effet for olumns in a sway frame multistory

More information

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement

Flexural Drift Capacity of Reinforced Concrete Wall with Limited Confinement ACI STRUCTURAL JOURNAL TECHNICAL PAPER Title no. 110-S10 Flexural Drift Capaity of Reinfored Conrete Wall with Limited Confinement by S. Takahashi, K. Yoshida, T. Ihinose, Y. Sanada, K. Matsumoto, H. Fukuyama,

More information

ANALYTICAL MODELING ON DEBONDING FAILURE OF FRP-STRENGTHENED RC FLEXURAL STRUCTURES. Abstract. Introduction

ANALYTICAL MODELING ON DEBONDING FAILURE OF FRP-STRENGTHENED RC FLEXURAL STRUCTURES. Abstract. Introduction ANALYTICAL MODELING ON DEBONDING FAILURE OF FR-STRENGTHENED RC FLEXURAL STRUCTURES Dr. Hedong Niu, Ibaraki University, Hitahi, Japan ro. Zhishen Wu, Ibaraki University, Hitahi, Japan Abstrat Eetive appliation

More information

CIRCULAR RC COLUMNS PARTIALLY CONFINED WITH FRP

CIRCULAR RC COLUMNS PARTIALLY CONFINED WITH FRP University o Kentuky UKnowledge Theses and Dissertations--Civil Engineering Civil Engineering 2016 CIRCULAR RC COLUMNS PARTIALLY CONFINED WITH FRP Sahar Y. Ghanem University o Kentuky, sayghanem@yahoo.om

More information

Universities of Leeds, Sheffield and York

Universities of Leeds, Sheffield and York promoting aess to White Rose researh papers Universities of Leeds, Sheffield and York http://eprints.whiterose.a.uk/ This is an author produed version of a paper published in Journal of Composites for

More information

Leif Otto Nielsen. Concrete Plasticity Notes BYG DTU T E K N I S K E UNIVERSITET. Undervisningsnotat BYG DTU U ISSN

Leif Otto Nielsen. Concrete Plasticity Notes BYG DTU T E K N I S K E UNIVERSITET. Undervisningsnotat BYG DTU U ISSN BYG DTU Lei Otto Nielsen Conrete Plastiit Notes DANMARKS T E K N I S K E UNIVERSITET Undervisningsnotat BYG DTU U-087 008 ISSN 60-8605 CONCRETE PLASTICITY NOTES Lei Otto Nielsen 6 de 008 CONTENTS. COULOMB

More information

TORSION By Prof. Ahmed Amer

TORSION By Prof. Ahmed Amer ORSION By Prof. Ahmed Amer orque wisting moments or torques are fores ating through distane so as to promote rotation. Example Using a wrenh to tighten a nut in a bolt. If the bolt, wrenh and fore are

More information

SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS

SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS SIMULATION OF BEHAVIOR OF REINFORCED CONCRETE COLUMNS SUBJECTED TO CYCLIC LATERAL LOADS H. Sezen 1, M.S. Lodhi 2, E. Setzler 3, and T. Chowdhury 4 1,2 Department of Civil and Environmental Engineering

More information

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment

OUTLINE. CHAPTER 7: Flexural Members. Types of beams. Types of loads. Concentrated load Distributed load. Moment OUTLINE CHTER 7: Fleural embers -Tpes of beams, loads and reations -Shear fores and bending moments -Shear fore and bending - -The fleure formula -The elasti urve -Slope and defletion b diret integration

More information

BEAMS: SHEARING STRESS

BEAMS: SHEARING STRESS LECTURE Third Edition BEAMS: SHEARNG STRESS A. J. Clark Shool of Engineering Department of Civil and Environmental Engineering 14 Chapter 6.1 6.4 b Dr. brahim A. Assakkaf SPRNG 200 ENES 220 Mehanis of

More information

Beams on Elastic Foundation

Beams on Elastic Foundation Professor Terje Haukaas University of British Columbia, Vanouver www.inrisk.ub.a Beams on Elasti Foundation Beams on elasti foundation, suh as that in Figure 1, appear in building foundations, floating

More information

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties

Max. thick. of part to be fixed. Min. thick. of base material. anchor depth. Anchor mechanical properties zin oated steel version 1/6 High seurity, high performane fixing for use in raked and non-raked onrete ETA European Tehnial Assessment ETA Option 1-05/0044 d T inst T inst d f t fix APPLICATIO Safety ritial

More information

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8

Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 1 Seismic Assessment of a RC Building according to FEMA 356 and Eurocode 8 Ioannis P. GIANNOPOULOS 1 Key words: Pushover analysis, FEMA 356, Eurocode 8, seismic assessment, plastic rotation, limit states

More information

CODES OF ASSESSMENT OF BUILDINGS: A COMPARATIVE STUDY ABSTRACT

CODES OF ASSESSMENT OF BUILDINGS: A COMPARATIVE STUDY ABSTRACT CODES OF ASSESSMENT OF BUILDINGS: A COMPARATIVE STUDY S. G. Chassioti 1, D. V. Syntzirma 2 and S. J. Pantazopoulou 3 ABSTRACT In displaement based design, the so-alled aeptane riteria ride on the ability

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

Minimum flexural reinforcement in rectangular and T-section concrete beams

Minimum flexural reinforcement in rectangular and T-section concrete beams Tehnial Paper lberto Carpinteri Eria Cadamuro Mauro Corrado* DOI: 10.1002/suo.201300056 Minimum lexural reinorement in retangular and T-setion onrete beams The presriptions provided by odes o pratie or

More information

3.5 Analysis of Members under Flexure (Part IV)

3.5 Analysis of Members under Flexure (Part IV) 3.5 Analysis o Members under Flexure (Part IV) This section covers the ollowing topics. Analysis o a Flanged Section 3.5.1 Analysis o a Flanged Section Introduction A beam can have langes or lexural eiciency.

More information

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL

A NORMALIZED EQUATION OF AXIALLY LOADED PILES IN ELASTO-PLASTIC SOIL Journal of Geongineering, Vol. Yi-Chuan 4, No. 1, Chou pp. 1-7, and April Yun-Mei 009 Hsiung: A Normalized quation of Axially Loaded Piles in lasto-plasti Soil 1 A NORMALIZD QUATION OF AXIALLY LOADD PILS

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

FRP Seismic Strengthening of Columns in Frames

FRP Seismic Strengthening of Columns in Frames FRP Seismic Strengthening of Columns in Frames Dr Mihaela-Anca Ciupala (EU Marie Curie Research Fellow) Dr Kypros Pilakoutas (Reader) Professor Nicolae Taranu Centre for Cement and Concrete Department

More information

Chapter 6. Compression Reinforcement - Flexural Members

Chapter 6. Compression Reinforcement - Flexural Members Chapter 6. Compression Reinforement - Flexural Members If a beam ross setion is limite beause of arhitetural or other onsierations, it may happen that the onrete annot evelop the ompression fore require

More information

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft)

OS MODELER - EXAMPLES OF APPLICATION Version 1.0. (Draft) OS MODELER - EXAMPLES OF APPLICATION Version 1.0 (Draft) Matjaž Dolšek February 2008 Content 1. Introduction... 1 2. Four-storey reinforced concrete frame designed according to EC8... 2 2.1. Description

More information

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Two-Way Flat Slab (Conrete Floor with Drop Panels) System Analysis and Design Design the onrete floor slab system shown below

More information

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending Amerian Journal of Applied Sienes 5 (9): 115-114, 8 ISSN 1546-99 8 Siene Publiations The Servieability Considerations of HSC Heavily Steel Reinfored Members under Bending 1 Ali Akbar ghsoudi and Yasser

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Lecture 11 Buckling of Plates and Sections

Lecture 11 Buckling of Plates and Sections Leture Bukling of lates and Setions rolem -: A simpl-supported retangular plate is sujeted to a uniaxial ompressive load N, as shown in the sketh elow. a 6 N N a) Calulate and ompare ukling oeffiients

More information

CFRP-Confined Reinforced Concrete Elements Subjected to Cyclic Compressive Loading

CFRP-Confined Reinforced Concrete Elements Subjected to Cyclic Compressive Loading SP-258 6 CFRP-Confined Reinfored Conrete Elements Subjeted to Cyli Compressive Loading by J.A.O. Barros, D.R.S.M. Ferreira, and R.K. Varma Synopsis: The effetiveness of disrete and ontinuous CFRP wrapping

More information

Punching Shear Retrofit Method Using Shear Bolts for Reinforced Concrete Slabs under Seismic Loading

Punching Shear Retrofit Method Using Shear Bolts for Reinforced Concrete Slabs under Seismic Loading Punhing Shear Retroit Method Using Shear Bolts or Reinored Conrete Slabs under Seismi Loading by Wensheng Bu A thesis presented to the University o Waterloo in ulillment o the thesis requirement or the

More information

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM

THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIVE CAPACITY OF RC BEAM - Tehnial Paper - THE EQUATION CONSIDERING CONCRETE STRENGTH AND STIRRUPS FOR DIAGONAL COMPRESSIE CAPACITY OF RC BEAM Patarapol TANTIPIDOK *, Koji MATSUMOTO *, Ken WATANABE *3 and Junihiro NIWA *4 ABSTRACT

More information

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS

SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS SHEAR DESIGN EQUATIONS FOR FRP RC BEAMS Dr. Maurizio Guadagnini Dr. Kypros Pilakoutas Professor Peter Waldron Centre for Dept. of Civil and Structural Engineering The University of Sheffield, UK Outline

More information

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3

Professor, Institute of Engineering Mechanics, Harbin. China 2. Ph.D Student, Institute of Engineering Mechanics, Harbin. China 3 The 14 th World Conerence on Earthquake Engineering COMPARISON OF FRP-RETROFITTING STRATEGIES IN CHINESE AND ITALIAN CODES J. W. DAI 1, Y.R. WANG 2, B. JIN 1, 3, D.F.ZU 4, Silvia Alessandri 5, Giorgio

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : IG1_CE_G_Concrete Structures_100818 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 011-451461 CLASS TEST 018-19 CIVIL ENGINEERING

More information

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS Attaullah Shah* Allama Iqbal Open University Islamabad Pakistan Saeed Ahmad Department of Civil Engineering,

More information

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2

Detailing. Lecture 9 16 th November Reinforced Concrete Detailing to Eurocode 2 Detailing Lecture 9 16 th November 2017 Reinforced Concrete Detailing to Eurocode 2 EC2 Section 8 - Detailing of Reinforcement - General Rules Bar spacing, Minimum bend diameter Anchorage of reinforcement

More information

ELASTO-PLASTIC AND ELASTO-DAMAGE MODELS BASED ON STRAIN GRADIENT ELASTICITY WITH EVOLVING INTERNAL LENGTH

ELASTO-PLASTIC AND ELASTO-DAMAGE MODELS BASED ON STRAIN GRADIENT ELASTICITY WITH EVOLVING INTERNAL LENGTH ELASTO-PLASTIC AND ELASTO-DAMAGE MODELS BASED ON STRAIN GRADIENT ELASTICITY WITH EVOLVING INTERNAL LENGTH Triantafyllou 1,, A.E. Giannakopoulos T. Papatheoharis 1, P.C. Perdikaris 1 1 Laboratory of Reinfored

More information

Seismic performance evaluation of existing RC buildings designed as per past codes of practice

Seismic performance evaluation of existing RC buildings designed as per past codes of practice Sādhanā Vol. 37, Part 2, April 2012, pp. 281 297. c Indian Academy of Sciences Seismic performance evaluation of existing RC buildings designed as per past codes of practice 1. Introduction K RAMA RAJU,

More information

Horizontal Distribution of Forces to Individual Shear Walls

Horizontal Distribution of Forces to Individual Shear Walls Horizontal Distribtion of Fores to ndividal Shear Walls nteration of Shear Walls ith Eah Other n the shon figre the slabs at as horizontal diaphragms etending beteen antilever alls and the are epeted to

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS

SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXIBLE FIBER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS SHEAR CAPACITY OF REINFORCED CONCRETE COLUMNS RETROFITTED WITH VERY FLEXILE FIER REINFORCED POLYMER WITH VERY LOW YOUNG S MODULUS Hu Shaoqing Supervisor: Susumu KONO ** MEE8165 ASTRACT FRP with low Young

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 9-22 from Hibbeler - Statics and Mechanics of Materials) A short

More information

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING

MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING CD02-003 MODELING OF NONLINEAR BEHAVIOR OF RC SHEAR WALLS UNDER COMBINED AXIAL, SHEAR AND FLEXURAL LOADING B. Ghiassi 1, M. Soltani 2, A. A. Tasnimi 3 1 M.Sc. Student, School of Engineering, Tarbiat Modares

More information

Department of Mechanical Engineering

Department of Mechanical Engineering Department o Mehanial Engineering AMEE41 / ATO4 Aerodynamis Instrutor: Marios M. Fyrillas Email: eng.m@it.a.y Homework Assignment #4 QESTION 1 Consider the boundary layer low on a lat plate o width b (shown

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Strength of Materials

Strength of Materials Strength of Materials Session Pure Bending 04 Leture note : Praudianto, M.Eng. g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà g{ V ä Ä tçw ÄtÇÇ Çz XÇz ÇÜ Çz Xwâvtà ÉÇ WÑtÜàÅÇà Pure Bending: Prisati

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis

IVIL.COM, C. English - Arabic. Arrow Assume Assumption Available Average Axes Axial Axis Abrupt Action Accuracy Accurate Advantage Algebra Algebraic Algebraic equation English - Arabic Algebraic expression Algebraic sum Allow Allowable Ambiguous Analyze Analysis f sections Structural analysis

More information

Bending resistance of high performance concrete elements

Bending resistance of high performance concrete elements High Performane Strutures and Materials IV 89 Bending resistane of high performane onrete elements D. Mestrovi 1 & L. Miulini 1 Faulty of Civil Engineering, University of Zagreb, Croatia Faulty of Civil

More information

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET

A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET N. Kishi, E-89, 1/8 A PROPOSAL OF DESIGN PROCEDURE FOR FLEXURAL STRENGTHENING RC BEAMS WITH FRP SHEET Yusuke Kurihashi Norimitsu Kishi Hiroshi Mikami Sumiyuki Sawada Civil Engrg. Research Muroran Inst.

More information

Analysis of Leakage Paths Induced by Longitudinal Differential Settlement of the Shield-driven Tunneling

Analysis of Leakage Paths Induced by Longitudinal Differential Settlement of the Shield-driven Tunneling 2016 rd International Conferene on Engineering Tehnology and Appliation (ICETA 2016) ISBN: 978-1-60595-8-0 Analysis of Leakage Paths Indued by Longitudinal Differential Settlement of the Shield-driven

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Three-dimensional Meso-scopic Analyses of Mortar and Concrete Model by Rigid Body Spring Model

Three-dimensional Meso-scopic Analyses of Mortar and Concrete Model by Rigid Body Spring Model Three-dimensional Meso-sopi Analyses of Mortar and Conrete Model by Rigid Body Spring Model K. Nagai, Y. Sato & T. Ueda Hokkaido University, Sapporo, Hokkaido, JAPAN ABSTRACT: Conrete is a heterogeneity

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS

five mechanics of materials Mechanics of Materials Mechanics of Materials Knowledge Required MECHANICS MATERIALS RCHITECTUR STRUCTURES: FORM, BEHVIOR, ND DESIGN DR. NNE NICHOS SUMMER 2014 Mechanics o Materials MECHNICS MTERIS lecture ive mechanics o materials www.carttalk.com Mechanics o Materials 1 rchitectural

More information