Correction for Tuning Bias in Resampling Based Error Rate Estimation

Size: px
Start display at page:

Download "Correction for Tuning Bias in Resampling Based Error Rate Estimation"

Transcription

1 Correction for Tuning Bias in Resampling Based Error Rate Estimation Christoph Bernau & Anne-Laure Boulesteix Institute of Medical Informatics, Biometry and Epidemiology (IBE), Ludwig-Maximilians University, Munich, Germany Workshop on Validation in Statistics and Machine Learning Berlin / 24

2 1 Bias induced by tuning & classifier selection 2 Alternative approaches for bias correction 3 Simulation study 4 Outlook 2 / 24

3 Bias induced by tuning & classifier selection Bias induced by tuning & classifier selection 3 / 24

4 Bias induced by tuning & classifier selection Tuning & Classifier Selection a lot of different classifiers available for the data at hand no gold standard for classifier selection established in the case of highdimensional data (e.g. microarray data) selection of the classifier performed according to a specific performance measure, commonly obtained by resampling or bootstrap similar situation: optimization of tuning parameters, e.g. the cost parameter of support vector machines 4 / 24

5 Bias induced by tuning & classifier selection Raw Data Subsampling SVM PAM... 5NN LDA Iter. 1 e 11 e e 1,K 1 e 1K Iter. 2 e 12 e e 2,K 1 e 2K Iter. B 1 e B 1,1 e B 1,2... e B 1,K 1 e B 1,K Iter. B e B1 e B2... e B,K 1 e BK Average ē 1 ē 2... ē K 1 ē K e bk : test error of the kth clasifier in the bth resampling iteration ē k : average test error of classifier k in the whole resampling procedure 5 / 24

6 Bias induced by tuning & classifier selection Selection/Tuning Bias downward bias induced by selection/tuning process ([7]) authors in biomedical research inclined to report best performance only information on performance of all classifiers needed in order to avoid overoptimism Is there a way to use the information on the performance of other candidate classifiers in order to estimate the actual performance of the optimal classifier on independent data? 6 / 24

7 Bias induced by tuning & classifier selection Nested Cross-Validation [7] MCR nest = 1 B B b=1 e bk. (1) b two nested loops: inner tuning/selection loop and outer performance estimation loop performs an extra cross-validation on each training set of the outer loop in order to find the most appropriate model for the specific training set (k b ) mimicks the procedure that is actually applied to the whole data set computationally intensive 7 / 24

8 Alternative approaches for bias correction Alternative approaches for bias correction 8 / 24

9 Alternative approaches for bias correction Estimator by Tibshirani & Tibshirani [6] Bias = 1 B B Bias b = 1 B b=1 B ) (e bk e bk b b=1 (2) kb denotes the index corresponding to the classifier performing best on resampling test set b k denotes the index corresponding to the classifier performing best on the whole resampling procedure uses differences between locally and globally optimal classifiers on the different testsets 9 / 24

10 Alternative approaches for bias correction Our new weighted approach MCR WM = K w k ē k (3) k=1 weighted mean of the resampling error rates of all classifiers sensible bounds (worst and optimal MCR) computationally less expensive than NCV theoretical motivation (see slide 12) uses all the information obtained in the classifier selection/tuning process 10 / 24

11 Alternative approaches for bias correction Comparison of NCV and the weighted MCR approach Nested Cross-Validation New Approach Results in Outer Loop Inner Loop Outer Loop Results in Outer Loop Estimating Weights Combined MCR Smooth Weighted MCR Similar Result 11 / 24

12 Alternative approaches for bias correction Theoretical Motivation estimator for E Pn [ε(k (S) S)] rather than for a specific classifier S: whole sample, ɛ: true generalization error decompose the mean E Pn [ε(k (S) S)] into: K P (k (S) = k) E Pn [ε(k S) k (S) = k] k=1 K P (k (S) = k) E Pn (ε(k S)) k=1 crucial assumption: ε(k S) k (S) for each classifier 12 / 24

13 Alternative approaches for bias correction Estimating P(k (S) = k) using a parametric approach approximate the probabilities by a Monte Carlo simulation with normality assumption: (ē 1,..., ē K ) N(µ, Σ), (4) where µ and Σ are estimated from the matrix (e bk ) k=1...k b=1...b use these probablities as weights in the new estimator vector of mean MCRs (ē) plugged in as µ 13 / 24

14 Alternative approaches for bias correction The problem of variance estimation proof of nonexistence of an unbiased estimator ([1],[3]) several low biased variance estimators in the literature problem of dependencies between testsets good estimator for ρ(α, β) = Cor(ē b1 k, ē b2 k) required sensible estimator ([3]), if ˆρ(α, β) is provided: ( 1 B + ρ 1 ρ ) 1 B 1 B (e kb ē k ) 2 b=1 14 / 24

15 Alternative approaches for bias correction A new approach for estimating ρ simuation of several independent non-informative response vectors conditional and unconditional error rates known to be 0.5 simulation of R replicates (e.g. 1000) of the response vector with y i B(1, 0.5) for each r: computation of the average test errors for two resampling steps (ē r1 and ē r2 ) estimation of ρ by: ˆρ = Ĉov(ē 1, ē 2 ) Var(ē 1 ) Var(ē 2 ) (5) 15 / 24

16 Alternative approaches for bias correction Estimating ρ Results: Colon Resampling Colon CV rho knncma scdacma svmcma knncma dldacma pls_ldacma plrcma nad & RO rho knncma scdacma svmcma knncma dldacma pls_ldacma plrcma nad RO %Trainingsdaten number of folds n t n ([3]) as a good approximation which ignores the differences between classifiers 16 / 24

17 Simulation study Simulation study 17 / 24

18 Simulation study Setup seven different classifier algorithms (PAM ( = 0.5), linear SVM (cost = 50), knn (k = 1), knn (k = 18), DLDA, PLSLDA (3 components) and PLR (λ = 0.01) ) feature selection according to t-test three different real data sets (Golub, Colon, Singh) 100 resampling iterations with 0.63% or 0.8% and LOOCV 50 replications of the whole procedure in order to asses variability of the different bias correction methods 18 / 24

19 Simulation study Results Singh real data 0.8 Corrected MCR Sim Based Rho Nadeau Nested CV Raw Mean Tibshirani Min. / Max. MCR replication 19 / 24

20 Simulation study Results Golub real data LOOCV Golub noninformative data Corrected MCR Sim Based Rho Nadeau Nested CV Raw Mean Tibshirani Min. / Max. MCR replication Corrected MCR replication 20 / 24

21 Outlook Outlook 21 / 24

22 Outlook Outlook improvement of the estimate of Σ in MC-simulation better estimator for correlation between test sets (ρ) better estimator for correlations between classifiers evaluation of weighted mean approach on independent real data sets and further analysis on simulated data alternative approach: Generalized Degrees of Freedom [2,4,8] tries to correct apparent error [5] provides information on prediction stability for individual observations 22 / 24

23 Outlook Thank you for your attention 23 / 24

24 Outlook References 1 Yoshua Bengio and Yves Grandvalet. No unbiased estimator of the variance of K-Fold Cross-Validation. J. Mach. Learn. Res., 5: , Bradley Efron. The estimation of prediction error. Journal of the American Statistical Association, 99(467): , Claude Nadeau and Yoshua Bengio. Inference for the generalization error. Mach. Learn., 52(3): , Xiaotong Shen and Jianming Ye. Adaptive model selection. Journal of the American Statistical Association, 97(457): , Robert Tibshirani and Keith Knight. The covariance inflation criterion for adaptive model selection. J. ROY. STATIST. SOC. B, 55: , Ryan J Tibshirani and Robert Tibshirani. A bias correction for the minimum error rate in cross-validation. Annals of Applied Statistics 2009, Vol. 3, No. 2, , Sudhir Varma and Richard Simon. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics, 7(1):91, Jianming Ye. On measuring and correcting the effects of data mining and model selection. Journal of the American Statistical Association, 93(441): , March / 24

Full versus incomplete cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation

Full versus incomplete cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation cross-validation: measuring the impact of imperfect separation between training and test sets in prediction error estimation IIM Joint work with Christoph Bernau, Caroline Truntzer, Thomas Stadler and

More information

A Bias Correction for the Minimum Error Rate in Cross-validation

A Bias Correction for the Minimum Error Rate in Cross-validation A Bias Correction for the Minimum Error Rate in Cross-validation Ryan J. Tibshirani Robert Tibshirani Abstract Tuning parameters in supervised learning problems are often estimated by cross-validation.

More information

The computationally optimal test set size in simulation studies on supervised learning

The computationally optimal test set size in simulation studies on supervised learning Mathias Fuchs, Xiaoyu Jiang, Anne-Laure Boulesteix The computationally optimal test set size in simulation studies on supervised learning Technical Report Number 189, 2016 Department of Statistics University

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part VI: Cross-validation Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD) 453 Modern

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

No Unbiased Estimator of the Variance of K-Fold Cross-Validation

No Unbiased Estimator of the Variance of K-Fold Cross-Validation No Unbiased Estimator of the Variance of K-Fold Cross-Validation Yoshua Bengio and Yves Grandvalet Dept. IRO, Université de Montréal C.P. 6128, Montreal, Qc, H3C 3J7, Canada {bengioy,grandvay}@iro.umontreal.ca

More information

PDEEC Machine Learning 2016/17

PDEEC Machine Learning 2016/17 PDEEC Machine Learning 2016/17 Lecture - Model assessment, selection and Ensemble Jaime S. Cardoso jaime.cardoso@inesctec.pt INESC TEC and Faculdade Engenharia, Universidade do Porto Nov. 07, 2017 1 /

More information

application in microarrays

application in microarrays Biostatistics Advance Access published April 7, 2006 Regularized linear discriminant analysis and its application in microarrays Yaqian Guo, Trevor Hastie and Robert Tibshirani Abstract In this paper,

More information

Regularized Discriminant Analysis and Its Application in Microarrays

Regularized Discriminant Analysis and Its Application in Microarrays Biostatistics (2005), 1, 1, pp. 1 18 Printed in Great Britain Regularized Discriminant Analysis and Its Application in Microarrays By YAQIAN GUO Department of Statistics, Stanford University Stanford,

More information

Is cross-validation valid for small-sample microarray classification?

Is cross-validation valid for small-sample microarray classification? Is cross-validation valid for small-sample microarray classification? Braga-Neto et al. Bioinformatics 2004 Topics in Bioinformatics Presented by Lei Xu October 26, 2004 1 Review 1) Statistical framework

More information

A Magiv CV Theory for Large-Margin Classifiers

A Magiv CV Theory for Large-Margin Classifiers A Magiv CV Theory for Large-Margin Classifiers Hui Zou School of Statistics, University of Minnesota June 30, 2018 Joint work with Boxiang Wang Outline 1 Background 2 Magic CV formula 3 Magic support vector

More information

Machine learning, shrinkage estimation, and economic theory

Machine learning, shrinkage estimation, and economic theory Machine learning, shrinkage estimation, and economic theory Maximilian Kasy December 14, 2018 1 / 43 Introduction Recent years saw a boom of machine learning methods. Impressive advances in domains such

More information

Look before you leap: Some insights into learner evaluation with cross-validation

Look before you leap: Some insights into learner evaluation with cross-validation Look before you leap: Some insights into learner evaluation with cross-validation Gitte Vanwinckelen and Hendrik Blockeel Department of Computer Science, KU Leuven, Belgium, {gitte.vanwinckelen,hendrik.blockeel}@cs.kuleuven.be

More information

A Statistical Framework for Hypothesis Testing in Real Data Comparison Studies

A Statistical Framework for Hypothesis Testing in Real Data Comparison Studies Anne-Laure Boulesteix, Robert Hable, Sabine Lauer, Manuel Eugster A Statistical Framework for Hypothesis Testing in Real Data Comparison Studies Technical Report Number 136, 2013 Department of Statistics

More information

Regularized Discriminant Analysis and Its Application in Microarray

Regularized Discriminant Analysis and Its Application in Microarray Regularized Discriminant Analysis and Its Application in Microarray Yaqian Guo, Trevor Hastie and Robert Tibshirani May 5, 2004 Abstract In this paper, we introduce a family of some modified versions of

More information

Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data

Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data Performance evaluation and hyperparameter tuning of statistical and machine-learning models using spatial data Patrick Schratz 1, Jannes Muenchow 1, Eugenia Iturritxa 2, Jakob Richter 3, Alexander Brenning

More information

Data splitting. INSERM Workshop: Evaluation of predictive models: goodness-of-fit and predictive power #+TITLE:

Data splitting. INSERM Workshop: Evaluation of predictive models: goodness-of-fit and predictive power #+TITLE: #+TITLE: Data splitting INSERM Workshop: Evaluation of predictive models: goodness-of-fit and predictive power #+AUTHOR: Thomas Alexander Gerds #+INSTITUTE: Department of Biostatistics, University of Copenhagen

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1

MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 MA 575 Linear Models: Cedric E. Ginestet, Boston University Bootstrap for Regression Week 9, Lecture 1 1 The General Bootstrap This is a computer-intensive resampling algorithm for estimating the empirical

More information

Research Article Quantification of the Impact of Feature Selection on the Variance of Cross-Validation Error Estimation

Research Article Quantification of the Impact of Feature Selection on the Variance of Cross-Validation Error Estimation Hindawi Publishing Corporation EURASIP Journal on Bioinformatics and Systems Biology Volume 7, Article ID, pages doi:./7/ Research Article Quantification of the Impact of Feature Selection on the Variance

More information

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University babu.

Bootstrap. Director of Center for Astrostatistics. G. Jogesh Babu. Penn State University  babu. Bootstrap G. Jogesh Babu Penn State University http://www.stat.psu.edu/ babu Director of Center for Astrostatistics http://astrostatistics.psu.edu Outline 1 Motivation 2 Simple statistical problem 3 Resampling

More information

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University Correlation, z-values, and the Accuracy of Large-Scale Estimators Bradley Efron Stanford University Correlation and Accuracy Modern Scientific Studies N cases (genes, SNPs, pixels,... ) each with its own

More information

Diagnostics. Gad Kimmel

Diagnostics. Gad Kimmel Diagnostics Gad Kimmel Outline Introduction. Bootstrap method. Cross validation. ROC plot. Introduction Motivation Estimating properties of an estimator. Given data samples say the average. x 1, x 2,...,

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Resampling techniques for statistical modeling

Resampling techniques for statistical modeling Resampling techniques for statistical modeling Gianluca Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Resampling techniques p.1/33 Beyond the empirical error

More information

COMPARING LEARNING METHODS FOR CLASSIFICATION

COMPARING LEARNING METHODS FOR CLASSIFICATION Statistica Sinica 162006, 635-657 COMPARING LEARNING METHODS FOR CLASSIFICATION Yuhong Yang University of Minnesota Abstract: We address the consistency property of cross validation CV for classification.

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

Variable Selection in Data Mining Project

Variable Selection in Data Mining Project Variable Selection Variable Selection in Data Mining Project Gilles Godbout IFT 6266 - Algorithmes d Apprentissage Session Project Dept. Informatique et Recherche Opérationnelle Université de Montréal

More information

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances

A Simulation Comparison Study for Estimating the Process Capability Index C pm with Asymmetric Tolerances Available online at ijims.ms.tku.edu.tw/list.asp International Journal of Information and Management Sciences 20 (2009), 243-253 A Simulation Comparison Study for Estimating the Process Capability Index

More information

Finite Population Correction Methods

Finite Population Correction Methods Finite Population Correction Methods Moses Obiri May 5, 2017 Contents 1 Introduction 1 2 Normal-based Confidence Interval 2 3 Bootstrap Confidence Interval 3 4 Finite Population Bootstrap Sampling 5 4.1

More information

Statistical aspects of prediction models with high-dimensional data

Statistical aspects of prediction models with high-dimensional data Statistical aspects of prediction models with high-dimensional data Anne Laure Boulesteix Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie February 15th, 2017 Typeset by

More information

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1

BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 BANA 7046 Data Mining I Lecture 2. Linear Regression, Model Assessment, and Cross-validation 1 Shaobo Li University of Cincinnati 1 Partially based on Hastie, et al. (2009) ESL, and James, et al. (2013)

More information

VARIABLE SELECTION AND INDEPENDENT COMPONENT

VARIABLE SELECTION AND INDEPENDENT COMPONENT VARIABLE SELECTION AND INDEPENDENT COMPONENT ANALYSIS, PLUS TWO ADVERTS Richard Samworth University of Cambridge Joint work with Rajen Shah and Ming Yuan My core research interests A broad range of methodological

More information

Random projection ensemble classification

Random projection ensemble classification Random projection ensemble classification Timothy I. Cannings Statistics for Big Data Workshop, Brunel Joint work with Richard Samworth Introduction to classification Observe data from two classes, pairs

More information

Big Data Classification - Many Features, Many Observations

Big Data Classification - Many Features, Many Observations Big Data Classification - Many Features, Many Observations Claus Weihs, Daniel Horn, and Bernd Bischl Department of Statistics, TU Dortmund University {claus.weihs, daniel.horn, bernd.bischl}@tu-dortmund.de

More information

A Significance Test for the Lasso

A Significance Test for the Lasso A Significance Test for the Lasso Lockhart R, Taylor J, Tibshirani R, and Tibshirani R Ashley Petersen May 14, 2013 1 Last time Problem: Many clinical covariates which are important to a certain medical

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Degrees of Freedom in Regression Ensembles

Degrees of Freedom in Regression Ensembles Degrees of Freedom in Regression Ensembles Henry WJ Reeve Gavin Brown University of Manchester - School of Computer Science Kilburn Building, University of Manchester, Oxford Rd, Manchester M13 9PL Abstract.

More information

ESS2222. Lecture 4 Linear model

ESS2222. Lecture 4 Linear model ESS2222 Lecture 4 Linear model Hosein Shahnas University of Toronto, Department of Earth Sciences, 1 Outline Logistic Regression Predicting Continuous Target Variables Support Vector Machine (Some Details)

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Defect Detection using Nonparametric Regression

Defect Detection using Nonparametric Regression Defect Detection using Nonparametric Regression Siana Halim Industrial Engineering Department-Petra Christian University Siwalankerto 121-131 Surabaya- Indonesia halim@petra.ac.id Abstract: To compare

More information

Likelihood-Based Methods

Likelihood-Based Methods Likelihood-Based Methods Handbook of Spatial Statistics, Chapter 4 Susheela Singh September 22, 2016 OVERVIEW INTRODUCTION MAXIMUM LIKELIHOOD ESTIMATION (ML) RESTRICTED MAXIMUM LIKELIHOOD ESTIMATION (REML)

More information

Comparing Learning Methods for Classification

Comparing Learning Methods for Classification Comparing Learning Methods for Classification Yuhong Yang School of Statistics University of Minnesota 224 Church Street S.E. Minneapolis, MN 55455 April 4, 2006 Abstract We address the consistency property

More information

Rank conditional coverage and confidence intervals in high dimensional problems

Rank conditional coverage and confidence intervals in high dimensional problems conditional coverage and confidence intervals in high dimensional problems arxiv:1702.06986v1 [stat.me] 22 Feb 2017 Jean Morrison and Noah Simon Department of Biostatistics, University of Washington, Seattle,

More information

Bioinformatics. Genotype -> Phenotype DNA. Jason H. Moore, Ph.D. GECCO 2007 Tutorial / Bioinformatics.

Bioinformatics. Genotype -> Phenotype DNA. Jason H. Moore, Ph.D. GECCO 2007 Tutorial / Bioinformatics. Bioinformatics Jason H. Moore, Ph.D. Frank Lane Research Scholar in Computational Genetics Associate Professor of Genetics Adjunct Associate Professor of Biological Sciences Adjunct Associate Professor

More information

Building a Prognostic Biomarker

Building a Prognostic Biomarker Building a Prognostic Biomarker Noah Simon and Richard Simon July 2016 1 / 44 Prognostic Biomarker for a Continuous Measure On each of n patients measure y i - single continuous outcome (eg. blood pressure,

More information

The Design and Analysis of Benchmark Experiments

The Design and Analysis of Benchmark Experiments University of Wollongong Research Online Faculty of Commerce - Papers Archive) Faculty of Business 25 The Design and Analysis of Benchmark Experiments Torsten Hothorn University of Erlangen-Nuremberg Friedrich

More information

Variable Selection and Model Choice in Survival Models with Time-Varying Effects

Variable Selection and Model Choice in Survival Models with Time-Varying Effects Variable Selection and Model Choice in Survival Models with Time-Varying Effects Boosting Survival Models Benjamin Hofner 1 Department of Medical Informatics, Biometry and Epidemiology (IMBE) Friedrich-Alexander-Universität

More information

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes.

Random Forests. These notes rely heavily on Biau and Scornet (2016) as well as the other references at the end of the notes. Random Forests One of the best known classifiers is the random forest. It is very simple and effective but there is still a large gap between theory and practice. Basically, a random forest is an average

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

Confidence Intervals for Process Capability Indices Using Bootstrap Calibration and Satterthwaite s Approximation Method

Confidence Intervals for Process Capability Indices Using Bootstrap Calibration and Satterthwaite s Approximation Method CHAPTER 4 Confidence Intervals for Process Capability Indices Using Bootstrap Calibration and Satterthwaite s Approximation Method 4.1 Introduction In chapters and 3, we addressed the problem of comparing

More information

arxiv: v2 [stat.ml] 1 Mar 2013

arxiv: v2 [stat.ml] 1 Mar 2013 arxiv:1302.7175v2 [stat.ml] 1 Mar 2013 Estimating the Maximum Expected Value: An Analysis of (Nested) Cross Validation and the Maximum Sample Average Hado van Hasselt H.van.Hasselt@cwi.nl March 4, 2013

More information

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA

International Journal of Pure and Applied Mathematics Volume 19 No , A NOTE ON BETWEEN-GROUP PCA International Journal of Pure and Applied Mathematics Volume 19 No. 3 2005, 359-366 A NOTE ON BETWEEN-GROUP PCA Anne-Laure Boulesteix Department of Statistics University of Munich Akademiestrasse 1, Munich,

More information

Tests for Covariance Matrices, particularly for High-dimensional Data

Tests for Covariance Matrices, particularly for High-dimensional Data M. Rauf Ahmad Tests for Covariance Matrices, particularly for High-dimensional Data Technical Report Number 09, 200 Department of Statistics University of Munich http://www.stat.uni-muenchen.de Tests for

More information

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University

Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University Model Selection, Estimation, and Bootstrap Smoothing Bradley Efron Stanford University Estimation After Model Selection Usually: (a) look at data (b) choose model (linear, quad, cubic...?) (c) fit estimates

More information

A Practitioner s Guide to Cluster-Robust Inference

A Practitioner s Guide to Cluster-Robust Inference A Practitioner s Guide to Cluster-Robust Inference A. C. Cameron and D. L. Miller presented by Federico Curci March 4, 2015 Cameron Miller Cluster Clinic II March 4, 2015 1 / 20 In the previous episode

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text

Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text Yi Zhang Machine Learning Department Carnegie Mellon University yizhang1@cs.cmu.edu Jeff Schneider The Robotics Institute

More information

Bootstrap Simulation Procedure Applied to the Selection of the Multiple Linear Regressions

Bootstrap Simulation Procedure Applied to the Selection of the Multiple Linear Regressions JKAU: Sci., Vol. 21 No. 2, pp: 197-212 (2009 A.D. / 1430 A.H.); DOI: 10.4197 / Sci. 21-2.2 Bootstrap Simulation Procedure Applied to the Selection of the Multiple Linear Regressions Ali Hussein Al-Marshadi

More information

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC)

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Eunsik Park 1 and Y-c Ivan Chang 2 1 Chonnam National University, Gwangju, Korea 2 Academia Sinica, Taipei,

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Bias Correction in Classification Tree Construction ICML 2001

Bias Correction in Classification Tree Construction ICML 2001 Bias Correction in Classification Tree Construction ICML 21 Alin Dobra Johannes Gehrke Department of Computer Science Cornell University December 15, 21 Classification Tree Construction Outlook Temp. Humidity

More information

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION

Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION Eric Shou Stat 598B / CSE 598D METHODS FOR MICRODATA PROTECTION INTRODUCTION Statistical disclosure control part of preparations for disseminating microdata. Data perturbation techniques: Methods assuring

More information

Black-box α-divergence Minimization

Black-box α-divergence Minimization Black-box α-divergence Minimization José Miguel Hernández-Lobato, Yingzhen Li, Daniel Hernández-Lobato, Thang Bui, Richard Turner, Harvard University, University of Cambridge, Universidad Autónoma de Madrid.

More information

Multicategory Vertex Discriminant Analysis for High-Dimensional Data

Multicategory Vertex Discriminant Analysis for High-Dimensional Data Multicategory Vertex Discriminant Analysis for High-Dimensional Data Tong Tong Wu Department of Epidemiology and Biostatistics University of Maryland, College Park October 8, 00 Joint work with Prof. Kenneth

More information

8. Nonstandard standard error issues 8.1. The bias of robust standard errors

8. Nonstandard standard error issues 8.1. The bias of robust standard errors 8.1. The bias of robust standard errors Bias Robust standard errors are now easily obtained using e.g. Stata option robust Robust standard errors are preferable to normal standard errors when residuals

More information

interval forecasting

interval forecasting Interval Forecasting Based on Chapter 7 of the Time Series Forecasting by Chatfield Econometric Forecasting, January 2008 Outline 1 2 3 4 5 Terminology Interval Forecasts Density Forecast Fan Chart Most

More information

Machine learning for ligand-based virtual screening and chemogenomics!

Machine learning for ligand-based virtual screening and chemogenomics! Machine learning for ligand-based virtual screening and chemogenomics! Jean-Philippe Vert Institut Curie - INSERM U900 - Mines ParisTech In silico discovery of molecular probes and drug-like compounds:

More information

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution

Regularized Discriminant Analysis. Part I. Linear and Quadratic Discriminant Analysis. Discriminant Analysis. Example. Example. Class distribution Part I 09.06.2006 Discriminant Analysis The purpose of discriminant analysis is to assign objects to one of several (K) groups based on a set of measurements X = (X 1, X 2,..., X p ) which are obtained

More information

Different Criteria for Active Learning in Neural Networks: A Comparative Study

Different Criteria for Active Learning in Neural Networks: A Comparative Study Different Criteria for Active Learning in Neural Networks: A Comparative Study Jan Poland and Andreas Zell University of Tübingen, WSI - RA Sand 1, 72076 Tübingen, Germany Abstract. The field of active

More information

Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction

Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction Structured Statistical Learning with Support Vector Machine for Feature Selection and Prediction Yoonkyung Lee Department of Statistics The Ohio State University http://www.stat.ohio-state.edu/ yklee Predictive

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables?

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, What about continuous variables? Linear Regression Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2014 1 What about continuous variables? n Billionaire says: If I am measuring a continuous variable, what

More information

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables?

Machine Learning CSE546 Sham Kakade University of Washington. Oct 4, What about continuous variables? Linear Regression Machine Learning CSE546 Sham Kakade University of Washington Oct 4, 2016 1 What about continuous variables? Billionaire says: If I am measuring a continuous variable, what can you do

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

A Simple Algorithm for Learning Stable Machines

A Simple Algorithm for Learning Stable Machines A Simple Algorithm for Learning Stable Machines Savina Andonova and Andre Elisseeff and Theodoros Evgeniou and Massimiliano ontil Abstract. We present an algorithm for learning stable machines which is

More information

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013

Machine Learning CSE546 Carlos Guestrin University of Washington. September 30, 2013 Bayesian Methods Machine Learning CSE546 Carlos Guestrin University of Washington September 30, 2013 1 What about prior n Billionaire says: Wait, I know that the thumbtack is close to 50-50. What can you

More information

Confidence Estimation Methods for Neural Networks: A Practical Comparison

Confidence Estimation Methods for Neural Networks: A Practical Comparison , 6-8 000, Confidence Estimation Methods for : A Practical Comparison G. Papadopoulos, P.J. Edwards, A.F. Murray Department of Electronics and Electrical Engineering, University of Edinburgh Abstract.

More information

Model Averaging With Holdout Estimation of the Posterior Distribution

Model Averaging With Holdout Estimation of the Posterior Distribution Model Averaging With Holdout stimation of the Posterior Distribution Alexandre Lacoste alexandre.lacoste.1@ulaval.ca François Laviolette francois.laviolette@ift.ulaval.ca Mario Marchand mario.marchand@ift.ulaval.ca

More information

Tutorial on Machine Learning for Advanced Electronics

Tutorial on Machine Learning for Advanced Electronics Tutorial on Machine Learning for Advanced Electronics Maxim Raginsky March 2017 Part I (Some) Theory and Principles Machine Learning: estimation of dependencies from empirical data (V. Vapnik) enabling

More information

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, 2012 1 / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If

More information

SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION. University of Minnesota

SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION. University of Minnesota Submitted to the Annals of Statistics arxiv: math.pr/0000000 SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION By Wei Liu and Yuhong Yang University of Minnesota In

More information

Practical Bayesian Optimization of Machine Learning. Learning Algorithms

Practical Bayesian Optimization of Machine Learning. Learning Algorithms Practical Bayesian Optimization of Machine Learning Algorithms CS 294 University of California, Berkeley Tuesday, April 20, 2016 Motivation Machine Learning Algorithms (MLA s) have hyperparameters that

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

A Sparse Solution Approach to Gene Selection for Cancer Diagnosis Using Microarray Data

A Sparse Solution Approach to Gene Selection for Cancer Diagnosis Using Microarray Data A Sparse Solution Approach to Gene Selection for Cancer Diagnosis Using Microarray Data Yoonkyung Lee Department of Statistics The Ohio State University http://www.stat.ohio-state.edu/ yklee May 13, 2005

More information

Faster Kriging on Graphs

Faster Kriging on Graphs Faster Kriging on Graphs Omkar Muralidharan Abstract [Xu et al. 2009] introduce a graph prediction method that is accurate but slow. My project investigates faster methods based on theirs that are nearly

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Post-selection inference with an application to internal inference

Post-selection inference with an application to internal inference Post-selection inference with an application to internal inference Robert Tibshirani, Stanford University November 23, 2015 Seattle Symposium in Biostatistics, 2015 Joint work with Sam Gross, Will Fithian,

More information

STAT 830 Non-parametric Inference Basics

STAT 830 Non-parametric Inference Basics STAT 830 Non-parametric Inference Basics Richard Lockhart Simon Fraser University STAT 801=830 Fall 2012 Richard Lockhart (Simon Fraser University)STAT 830 Non-parametric Inference Basics STAT 801=830

More information

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms 03/Feb/2010 VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms Presented by Andriy Temko Department of Electrical and Electronic Engineering Page 2 of

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Introduction to Supervised Learning. Performance Evaluation

Introduction to Supervised Learning. Performance Evaluation Introduction to Supervised Learning Performance Evaluation Marcelo S. Lauretto Escola de Artes, Ciências e Humanidades, Universidade de São Paulo marcelolauretto@usp.br Lima - Peru Performance Evaluation

More information

Bootstrap & Confidence/Prediction intervals

Bootstrap & Confidence/Prediction intervals Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9 Framework Consider a model with

More information

Blocked 3 2 Cross-Validated t-test for Comparing Supervised Classification Learning Algorithms

Blocked 3 2 Cross-Validated t-test for Comparing Supervised Classification Learning Algorithms LETTER Communicated by Hector Corrada Bravo Bloced 3 Cross-Validated t-test for Comparing Supervised Classification Learning Algorithms Wang Yu wangyu@sxu.edu.cn Wang Ruibo wangruibo@sxu.edu.cn Computer

More information

STATISTICAL DATA CLONING FOR MACHINE LEARNING RESEARCH THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

STATISTICAL DATA CLONING FOR MACHINE LEARNING RESEARCH THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF STATISTICAL DATA CLONING FOR MACHINE LEARNING RESEARCH THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN COMPUTER SCIENCE GREGORY SHAKHNAROVICH SUBMITTED

More information

Learning Time-Series Shapelets

Learning Time-Series Shapelets Learning Time-Series Shapelets Josif Grabocka, Nicolas Schilling, Martin Wistuba and Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) University of Hildesheim, Germany SIGKDD 14,

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information