Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes

Size: px
Start display at page:

Download "Part I. Linear regression & LASSO. Linear Regression. Linear Regression. Week 10 Based in part on slides from textbook, slides of Susan Holmes"

Transcription

1 Week 10 Based in part on slides from textbook, slides of Susan Holmes Part I Linear regression & December 5, / 1 2 / 1 We ve talked mostly about classification, where the outcome categorical. If p n and X T X is invertible, this has a unique solution: In regression, the outcome is continuous. Given Y R n and X R n p, the least squares regression problem is ˆβ = (X T X ) 1 X T Y. 1 ˆβ = argmin β R p 2 y X β 2 2. If p > n or, X T X is not invertible, the solution is not unique. 3 / 1 4 / 1

2 Often, due to some other knowledge, we might change the loss function to a Mahalanobis distance 1 2 (Y X β)t Σ 1 (Y X β). Example: Σ is diagonal is often used if Y X has variance dependent on X. Feature Selection in As noted, if p > n there is no unique least squares model. Leads to variable selection problem. Might try fixing a certain number of variables, k and solving best subsets regression by ˆβ k = 1 argmin J={j 1,...,j k } 2 Y X J ˆβ J 2 2 where ˆβ J is a/the least squares solution with features J. Example: if the cases are sampled with some structure, the errors might be correlated with covariance Σ. This is like clustering: a combinatorial optimization problem. 5 / 1 We might be able prove things about the minimizer but we have no algorithm to find it for p > 40 or so, unless X has very special structure. 6 / 1 The l 0 norm Defined as β 0 = # {j : β j 0} (which is not really a norm... ) The l 1 norm: Recall the l 1 norm Best subsets model is equivalent to ˆβ k = 1 argmin β R p : β 0 k 2 Y X β 2 2 A quasi-equivalent problem is its Lagrange version β 1 = (which really is a norm... ) Since it s a norm it is convex. p β j j=1 1 ˆβ λ,l0 = argmin β R p 2 Y X β λ β 0 It is also the best convex approximation to the l 0 norm. This is similar to cost-complexity pruning for the decision tree. 7 / 1 8 / 1

3 The Lasso Why does `1-penalty give sparse ˆ? The problem is 1 minimize 2R p 2 ky X k2 subject to k k 1 apple c ˆβ λ = argmin β R p Y X β λ β 1. β 2 In bound form ˆβ c = argmin β R p : β 1 c Y X β λ β 1. + β^ols This is a convex problem... lots of nice ways to solve it. With l 0 we knew we would get feature selection does this happen with l 1 as well? β^λ β 1 9 / 1 10 / 1 Jacob Bien path Why do we get sparse solutions with the? A Lasso for Hierarchical Interaction The parameter λ controls the sparsity. For λ > X T y, the sup-norm of X T y R p, the solution is ˆβ λ = 0 Just below X T Y only the feature with maximal absolute correlation with Y has a nonzero coefficient. For λ = 0, any least squares solution is a solution. It is possible, depending on X to have multiple solutions, at some fixed λ but for generic X it never happens. 11 / 1 12 / 1

4 So what? (Consistency) The yields sparse solutions, but are they good sparse solutions? Noting that the first variable to enter has largest absolute correlation suggests the answer is yes. Suppose E(Y X ) = j A X A β A. So what? (Consistency) Suppose #A is not too large; the matrix XI T X A is not very big; XA T X A is not too close to singular. Then, for certain values of λ, ˆβ λ makes no false positives. That is, ˆβ λ,j 0 = j A. We call A {1,..., p} the (true) active coefficients and I = A c the (true) inactive features. If (β j ) j A are large enough, then it also makes no false positives. That is, ˆβ λ,j = 0 = j I. 13 / 1 14 / 1 The Lasso Why does `1-penalty give sparse ˆ? 1 minimize 2R p 2 ky X k2 subject to k k 1 apple c β 2 + β^ols Other problems The sparsity property is a property of the l 1 norm, not the smooth loss function. For many smooth objectives, adding this l 1 penalty yields sparse solutions. β^λ β 1 15 / 1 16 / 1

5 Sparse Support Vector Machine We can add the l 1 norm to the support vector machine loss: minimize β,α n (1 y i (α + x T i β)) + + λ 2 β λ 1 β 1. i=1 Yields a sparse coefficient vector for the SVM. Sparse Logistic Regression We can add the l 1 norm to the logistic regression loss: minimize β,α n DEV(α + x T i β, y i ) + λ β 1 i=1 Yields a sparse coefficient vector for the logistic regression model. 17 / 1 18 / 1 Fused / Generalized What if we want a solution with small # {β : D i β 0} = Dβ 0? Example: change point detection, a form of outlier detection in a streaming data situation / 1 20 / 1

6 Fused / Generalized Might consider solving ˆβ λ = argmin β R p Y X β λ Dβ 1. Group What if there are disjoint groups (β g ) g G of coefficients in our model and we want a solution with small # {g : β g 0} = β 0,G? A lot of the theory from carries over to this case as well, but not quite all of it... Example: the groups of variables might be indicator variables for different categorical variables. 21 / 1 22 / 1 Group Might consider solving Other problems Why not add l 1 penalty to decision tree problem? ˆβ λ = argmin β R p Y X β λ g G β g 2. Because the original problem is non-convex so their combination is generally still non-convex... Leads to a group version of all your favorites: logistic regression; support vector machine; etc. There are tree-like group penalties... Similarly, we would not add l 1 penalty to K-means objective function / 1 24 / 1

7 No free lunch Of course, we must pay some price for all of this, but what price? Well, the produces biased estimates even when it finds the true active variables. But, general theory says that we should be using some bias in the form of shrinkage... Summary A lot of interesting work in high-dimensional statistics / machine learning over the last few years involves studying problems of the form ˆβ λ = argmin β R p L(β) + λp(β) where L is a loss function like the support vector loss, logistic loss, squared error loss, etc. P is a convex penalty that imparts structure on the solutions. Lots of interesting questions remain / 1 Try STATS315 for a more detailed introduction to the / 1 Final review Part II Overview Before Midterm General goals of data mining. Datatypes. Preprocessing & dimension reduction. Final review Distances. Multidimensional scaling. Multidimensional arrays. Decision trees. Performance measures for classifiers. Discriminant analysis. 27 / 1 28 / 1

8 Final review Rule based classifiers Rule-based Classifier (Example) Overview After Midterm More classifiers: Rule-based Classifiers Nearest-Neighbour Classifiers Naive Bayes Classifiers Neural Networks Support Vector Machines Random Forests Boosting (AdaBoost / Gradient Boosting) Clustering. Outlier detection. Rule based classifiers 29 / 1 R1: (Give Birth = no)! (Can Fly = yes) " Birds R2: (Give Birth = no)! (Live in Water = yes) " Fishes R3: (Give Birth = yes)! (Blood Type = warm) " Mammals R4: (Give Birth = no)! (Can Fly = no) " Reptiles R5: (Live in Water = sometimes) " Amphibians 30 / 1 Nearest Neighbor Classifiers Nearest neighbour classifier Tan,Steinbach, Kumar Introduction to 4/18/2004 3! Basic idea: If it walks like a duck, quacks like a duck, then it s probably a duck Concepts coverage accuracy mutual exclusivity exhaustivity Laplace accuracy Training Records Compute Distance Choose k of the nearest records Test Record Tan,Steinbach, Kumar Introduction to 4/18/ / 1 32 / 1

9 s too large, Nearest neighborhood neighbour classifier may include points from r classes Naive Bayes classifiers Naive Bayes classifiers Model: ar Introduction to 4/18/ icial Neural networks: Networks single layer (ANN) 33 / 1 P(Y = c X 1 = x 1,..., X p = x p ( p ) P(X l = x l Y = c) P(Y = c) l=1 For continuous features, typically a 1-dimensional QDA model is used (i.e. Gaussian within each class). For discrete features: use the Laplace smoothed probabilities P(X j = l Y = c) = # {i : X ij = l, Y i = c} + α. # {Y i = c} + α k Neural networks: double layer 34 / 1 35 / 1 36 / 1

10 Support Support Vector vector machine Machines Support vector machines Support vector machines Solves the problem minimize β,α,ξ β 2 subject to y i (x T i β + α) 1 ξ i, ξ i 0, n i=1 ξ i C 37 / 1 38 / 1! Find hyperplane maximizes the margin => B1 is better than B2 Support vector machines Tan,Steinbach, Kumar Introduction to 4/18/ Logistic vs. SVM Non-separable problems The ξ i s can be removed from this problem, yielding Logistic SVM n minimize β,α β γ (1 y i f α,β (x i )) + i=1 where (z) + = max(z, 0) is the positive part function. Or, n minimize β,α i=1 (1 y i f α,β (x i )) + + λ β / 1 40 / 1

11 General Idea Ensemble methods Ensemble methods Bagging / Random Forests In this method, one takes several bootstrap samples (samples with replacement) of the data. For each bootstrap sample S b, 1 b B, fit a model, retaining the classifier f,b. After all models have been fit, use majority vote f (x) = majority vote of (f,b (x)) 1 i B. Defined the OOB estimate of error. 41 / 1 42 / 1 Tan,Steinbach, Kumar Introduction to 4/18/ Ensemble methods Illustrating AdaBoost Initial weights for each data point Data points for training Ensemble methods Illustrating AdaBoost 43 / 1 Tan,Steinbach, Kumar Introduction to 4/18/ / 1

12 Ensemble methods Boosting as gradient descent It turns out that boosting can be thought of as something like gradient descent. In some sense, the boosting algorithm is a steepest descent algorithm to find What is Cluster Analysis? Cluster analysis! Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups Intra-cluster distances are minimized Inter-cluster distances are maximized argmin f F n L(y i, f (x i )). i=1 Tan,Steinbach, Kumar Introduction to 4/18/ / 1 46 / 1 Clustering Cluster analysis Unsupervised Learning Types of clustering Partitional A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset. Hierarchical A set of nested clusters organized as a hierarchical tree. Each data object is in exactly one subset for any horizontal cut of the tree... X2 X 1 47 / 1 FIGURE Simulated data in the plane, clustered into three classes (represented A partitional by orange, example blue and green) by the K-means clustering algorithm 48 / 1

13 K-means Unsupervised Learning K-medoid log WK Number of Clusters Gap Number of Clusters Algorithm Same as K-means, except that centroid is estimated not by the average, but by the observation having minimum pairwise distance with the other cluster members. Advantage: centroid is one of the observations useful, eg when features are 0 or 1. Also, one only needs pairwise distances for K-medoids rather than the raw observations. FIGURE (Left panel): observed (green) and expected (blue) values of log W K for the simulatedfigure data of : Figure Gap statistic Both curves have been translated to equal zero at one cluster. (Right panel): Gap curve, equal to the difference between the observed and expected values of log W K.TheGapestimateK is the smallest K producing a gap within one standard deviation of the gap at K +1; here K 49 / 1 =2. 50 / 1 Silhouette plot This gives K = 2, which looks reasonable from Figure Cluster analysis Hierarchical Clustering The results of applying K-means or K-medoids clustering algorithms depend on the choice for the number of clusters to be searched and a starting configuration assignment. In contrast, hierarchical clustering methods do not require such specifications. Instead, they require the user to specify a measure of dissimilarity between (disjoint) groups of observations, based on the pairwise dissimilarities among the observations in the two groups. As the name suggests, they produce hierarchical representations in which the clusters at each level of the hierarchy are created by merging clusters at the next lower level. At the lowest level, each cluster contains a single observation. At the highest level there is only one cluster containing all of the data. Strategies for hierarchical clustering divide into two basic paradigms: agglomerative (bottom-up) and divisive (top-down). Agglomerative strategies start at the bottom and at each level recursively merge a selected pair of clusters into a single cluster. This produces a grouping at the next higher level with one less cluster. The pair chosen for merging consist of the two groups with the smallest intergroup dissimilarity. Divisive methods start at the top and at each level recursively split one of the existing clusters at 51 / Unsupervised Learning LEUKEMIA LEUKEMIA LEUKEMIA LEUKEMIA K562B-repro K562A-repro LEUKEMIA LEUKEMIA BREAST BREAST BREAST OVARIAN OVARIAN UNKNOWN OVARIAN OVARIAN OVARIAN PROSTATE OVARIAN PROSTATE CNS CNS CNS CNS CNS BREAST BREAST MCF7A-repro BREAST MCF7D-repro COLON COLON COLON COLON COLON COLON COLON FIGURE Dendrogram from agglomerative hierarchical clustering with average linkage to the human tumor microarray data. A hierarchical example chical structure produced by the algorithm. Hierarchical methods impose BREAST 52 / 1

14 Hierarchical clustering Mixture models Concepts Mixture models Similar to K-means but assignment to clusters is soft. Top-down vs. bottom up Different linkages: single linkage (minimum distance) complete linkage (maximum distance) Often applied with multivariate normal as the model within classes. EM algorithm used to fit the model: Estimate responsibilities. Estimate within class parameters replacing labels (unobserved) with responsibilities. 53 / 1 54 / 1 Model-based clustering Outliers Summary 1 Choose a type of mixture model (e.g. multivariate Normal) and a maximum number of clusters, K 2 Use a specialized hierarchical clustering technique: model-based hierarchical agglomeration. 3 Use clusters from previous step to initialize EM for the mixture model. 4 Uses BIC to compare different mixture models and models with different numbers of clusters. 55 / 1 56 / 1

15 Outliers General steps Build a profile of the normal behavior. Use these summary statistics to detect anomalies, i.e. points whose characteristics are very far from the normal profile. General types of schemes involve a statistical model of normal, and far is measured in terms of likelihood. Example: Grubbs test chooses an outlier threshold to control Type I error of any declared outliers if data does actually follow the model / 1

Part I Week 7 Based in part on slides from textbook, slides of Susan Holmes

Part I Week 7 Based in part on slides from textbook, slides of Susan Holmes Part I Week 7 Based in part on slides from textbook, slides of Susan Holmes Support Vector Machine, Random Forests, Boosting December 2, 2012 1 / 1 2 / 1 Neural networks Artificial Neural networks: Networks

More information

Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes. December 2, 2012

Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes. December 2, 2012 Support Vector Machine, Random Forests, Boosting Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Neural networks Neural network Another classifier (or regression technique)

More information

Statistics 202: Data Mining. c Jonathan Taylor. Week 6 Based in part on slides from textbook, slides of Susan Holmes. October 29, / 1

Statistics 202: Data Mining. c Jonathan Taylor. Week 6 Based in part on slides from textbook, slides of Susan Holmes. October 29, / 1 Week 6 Based in part on slides from textbook, slides of Susan Holmes October 29, 2012 1 / 1 Part I Other classification techniques 2 / 1 Rule based classifiers Rule based classifiers Examples: if Refund==No

More information

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan

Clustering. CSL465/603 - Fall 2016 Narayanan C Krishnan Clustering CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Supervised vs Unsupervised Learning Supervised learning Given x ", y " "%& ', learn a function f: X Y Categorical output classification

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis

Part I. Linear Discriminant Analysis. Discriminant analysis. Discriminant analysis Week 5 Based in part on slides from textbook, slides of Susan Holmes Part I Linear Discriminant Analysis October 29, 2012 1 / 1 2 / 1 Nearest centroid rule Suppose we break down our data matrix as by the

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

Course in Data Science

Course in Data Science Course in Data Science About the Course: In this course you will get an introduction to the main tools and ideas which are required for Data Scientist/Business Analyst/Data Analyst. The course gives an

More information

Stat 502X Exam 2 Spring 2014

Stat 502X Exam 2 Spring 2014 Stat 502X Exam 2 Spring 2014 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed This exam consists of 12 parts. I'll score it at 10 points per problem/part

More information

VBM683 Machine Learning

VBM683 Machine Learning VBM683 Machine Learning Pinar Duygulu Slides are adapted from Dhruv Batra Bias is the algorithm's tendency to consistently learn the wrong thing by not taking into account all the information in the data

More information

FINAL: CS 6375 (Machine Learning) Fall 2014

FINAL: CS 6375 (Machine Learning) Fall 2014 FINAL: CS 6375 (Machine Learning) Fall 2014 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Undirected Graphical Models Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 3: 2 late days to hand it in today, Thursday is final day. Assignment 4:

More information

Advanced Statistical Methods: Beyond Linear Regression

Advanced Statistical Methods: Beyond Linear Regression Advanced Statistical Methods: Beyond Linear Regression John R. Stevens Utah State University Notes 3. Statistical Methods II Mathematics Educators Worshop 28 March 2009 1 http://www.stat.usu.edu/~jrstevens/pcmi

More information

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017

CPSC 340: Machine Learning and Data Mining. MLE and MAP Fall 2017 CPSC 340: Machine Learning and Data Mining MLE and MAP Fall 2017 Assignment 3: Admin 1 late day to hand in tonight, 2 late days for Wednesday. Assignment 4: Due Friday of next week. Last Time: Multi-Class

More information

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II)

Contents Lecture 4. Lecture 4 Linear Discriminant Analysis. Summary of Lecture 3 (II/II) Summary of Lecture 3 (I/II) Contents Lecture Lecture Linear Discriminant Analysis Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University Email: fredriklindsten@ituuse Summary of lecture

More information

Statistical Data Mining and Machine Learning Hilary Term 2016

Statistical Data Mining and Machine Learning Hilary Term 2016 Statistical Data Mining and Machine Learning Hilary Term 2016 Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/sdmml Naïve Bayes

More information

The Bayes classifier

The Bayes classifier The Bayes classifier Consider where is a random vector in is a random variable (depending on ) Let be a classifier with probability of error/risk given by The Bayes classifier (denoted ) is the optimal

More information

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 5. Introduction to Data Mining

Data Mining Classification: Alternative Techniques. Lecture Notes for Chapter 5. Introduction to Data Mining Data Mining Classification: Alternative Techniques Lecture Notes for Chapter 5 Introduction to Data Mining by Tan, Steinbach, Kumar Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 1 Neural networks

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 7/8 - High-dimensional modeling part 1 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Classification

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber

Machine Learning. Regression-Based Classification & Gaussian Discriminant Analysis. Manfred Huber Machine Learning Regression-Based Classification & Gaussian Discriminant Analysis Manfred Huber 2015 1 Logistic Regression Linear regression provides a nice representation and an efficient solution to

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Statistics 202: Data Mining. c Jonathan Taylor. Model-based clustering Based in part on slides from textbook, slides of Susan Holmes.

Statistics 202: Data Mining. c Jonathan Taylor. Model-based clustering Based in part on slides from textbook, slides of Susan Holmes. Model-based clustering Based in part on slides from textbook, slides of Susan Holmes December 2, 2012 1 / 1 Model-based clustering General approach Choose a type of mixture model (e.g. multivariate Normal)

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: August 30, 2018, 14.00 19.00 RESPONSIBLE TEACHER: Niklas Wahlström NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

Lecture 4 Discriminant Analysis, k-nearest Neighbors

Lecture 4 Discriminant Analysis, k-nearest Neighbors Lecture 4 Discriminant Analysis, k-nearest Neighbors Fredrik Lindsten Division of Systems and Control Department of Information Technology Uppsala University. Email: fredrik.lindsten@it.uu.se fredrik.lindsten@it.uu.se

More information

Classification Lecture 2: Methods

Classification Lecture 2: Methods Classification Lecture 2: Methods Jing Gao SUNY Buffalo 1 Outline Basics Problem, goal, evaluation Methods Nearest Neighbor Decision Tree Naïve Bayes Rule-based Classification Logistic Regression Support

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Final Exam, Machine Learning, Spring 2009

Final Exam, Machine Learning, Spring 2009 Name: Andrew ID: Final Exam, 10701 Machine Learning, Spring 2009 - The exam is open-book, open-notes, no electronics other than calculators. - The maximum possible score on this exam is 100. You have 3

More information

5. Discriminant analysis

5. Discriminant analysis 5. Discriminant analysis We continue from Bayes s rule presented in Section 3 on p. 85 (5.1) where c i is a class, x isap-dimensional vector (data case) and we use class conditional probability (density

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Machine Learning Practice Page 2 of 2 10/28/13

Machine Learning Practice Page 2 of 2 10/28/13 Machine Learning 10-701 Practice Page 2 of 2 10/28/13 1. True or False Please give an explanation for your answer, this is worth 1 pt/question. (a) (2 points) No classifier can do better than a naive Bayes

More information

CS7267 MACHINE LEARNING

CS7267 MACHINE LEARNING CS7267 MACHINE LEARNING ENSEMBLE LEARNING Ref: Dr. Ricardo Gutierrez-Osuna at TAMU, and Aarti Singh at CMU Mingon Kang, Ph.D. Computer Science, Kennesaw State University Definition of Ensemble Learning

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

Chapter 14 Combining Models

Chapter 14 Combining Models Chapter 14 Combining Models T-61.62 Special Course II: Pattern Recognition and Machine Learning Spring 27 Laboratory of Computer and Information Science TKK April 3th 27 Outline Independent Mixing Coefficients

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

PATTERN CLASSIFICATION

PATTERN CLASSIFICATION PATTERN CLASSIFICATION Second Edition Richard O. Duda Peter E. Hart David G. Stork A Wiley-lnterscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Singapore Toronto CONTENTS

More information

10-701/ Machine Learning - Midterm Exam, Fall 2010

10-701/ Machine Learning - Midterm Exam, Fall 2010 10-701/15-781 Machine Learning - Midterm Exam, Fall 2010 Aarti Singh Carnegie Mellon University 1. Personal info: Name: Andrew account: E-mail address: 2. There should be 15 numbered pages in this exam

More information

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients

9/26/17. Ridge regression. What our model needs to do. Ridge Regression: L2 penalty. Ridge coefficients. Ridge coefficients What our model needs to do regression Usually, we are not just trying to explain observed data We want to uncover meaningful trends And predict future observations Our questions then are Is β" a good estimate

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning Christoph Lampert Spring Semester 2015/2016 // Lecture 12 1 / 36 Unsupervised Learning Dimensionality Reduction 2 / 36 Dimensionality Reduction Given: data X = {x 1,..., x

More information

Microarray Data Analysis: Discovery

Microarray Data Analysis: Discovery Microarray Data Analysis: Discovery Lecture 5 Classification Classification vs. Clustering Classification: Goal: Placing objects (e.g. genes) into meaningful classes Supervised Clustering: Goal: Discover

More information

Statistical Methods for SVM

Statistical Methods for SVM Statistical Methods for SVM Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot,

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information

UVA CS 4501: Machine Learning

UVA CS 4501: Machine Learning UVA CS 4501: Machine Learning Lecture 21: Decision Tree / Random Forest / Ensemble Dr. Yanjun Qi University of Virginia Department of Computer Science Where are we? è Five major sections of this course

More information

Learning with multiple models. Boosting.

Learning with multiple models. Boosting. CS 2750 Machine Learning Lecture 21 Learning with multiple models. Boosting. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Learning with multiple models: Approach 2 Approach 2: use multiple models

More information

Is the test error unbiased for these programs?

Is the test error unbiased for these programs? Is the test error unbiased for these programs? Xtrain avg N o Preprocessing by de meaning using whole TEST set 2017 Kevin Jamieson 1 Is the test error unbiased for this program? e Stott see non for f x

More information

Final Exam, Fall 2002

Final Exam, Fall 2002 15-781 Final Exam, Fall 22 1. Write your name and your andrew email address below. Name: Andrew ID: 2. There should be 17 pages in this exam (excluding this cover sheet). 3. If you need more room to work

More information

Linear and Logistic Regression. Dr. Xiaowei Huang

Linear and Logistic Regression. Dr. Xiaowei Huang Linear and Logistic Regression Dr. Xiaowei Huang https://cgi.csc.liv.ac.uk/~xiaowei/ Up to now, Two Classical Machine Learning Algorithms Decision tree learning K-nearest neighbor Model Evaluation Metrics

More information

Probabilistic Methods in Bioinformatics. Pabitra Mitra

Probabilistic Methods in Bioinformatics. Pabitra Mitra Probabilistic Methods in Bioinformatics Pabitra Mitra pabitra@cse.iitkgp.ernet.in Probability in Bioinformatics Classification Categorize a new object into a known class Supervised learning/predictive

More information

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d)

COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) COMP 551 Applied Machine Learning Lecture 3: Linear regression (cont d) Instructor: Herke van Hoof (herke.vanhoof@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting Readings: Murphy 16.4; Hastie 16 Dhruv Batra Virginia Tech Administrativia HW3 Due: April 14, 11:55pm You will implement

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12 Ensemble Methods Charles Sutton Data Mining and Exploration Spring 2012 Bias and Variance Consider a regression problem Y = f(x)+ N(0, 2 ) With an estimate regression function ˆf, e.g., ˆf(x) =w > x Suppose

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining Linear Classifiers: predictions Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due Friday of next

More information

Generative Clustering, Topic Modeling, & Bayesian Inference

Generative Clustering, Topic Modeling, & Bayesian Inference Generative Clustering, Topic Modeling, & Bayesian Inference INFO-4604, Applied Machine Learning University of Colorado Boulder December 12-14, 2017 Prof. Michael Paul Unsupervised Naïve Bayes Last week

More information

Introduction to Support Vector Machines

Introduction to Support Vector Machines Introduction to Support Vector Machines Hsuan-Tien Lin Learning Systems Group, California Institute of Technology Talk in NTU EE/CS Speech Lab, November 16, 2005 H.-T. Lin (Learning Systems Group) Introduction

More information

Notes on Discriminant Functions and Optimal Classification

Notes on Discriminant Functions and Optimal Classification Notes on Discriminant Functions and Optimal Classification Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Discriminant Functions Consider a classification problem

More information

Click Prediction and Preference Ranking of RSS Feeds

Click Prediction and Preference Ranking of RSS Feeds Click Prediction and Preference Ranking of RSS Feeds 1 Introduction December 11, 2009 Steven Wu RSS (Really Simple Syndication) is a family of data formats used to publish frequently updated works. RSS

More information

CPSC 340: Machine Learning and Data Mining

CPSC 340: Machine Learning and Data Mining CPSC 340: Machine Learning and Data Mining MLE and MAP Original version of these slides by Mark Schmidt, with modifications by Mike Gelbart. 1 Admin Assignment 4: Due tonight. Assignment 5: Will be released

More information

Machine Learning 2017

Machine Learning 2017 Machine Learning 2017 Volker Roth Department of Mathematics & Computer Science University of Basel 21st March 2017 Volker Roth (University of Basel) Machine Learning 2017 21st March 2017 1 / 41 Section

More information

Feature Engineering, Model Evaluations

Feature Engineering, Model Evaluations Feature Engineering, Model Evaluations Giri Iyengar Cornell University gi43@cornell.edu Feb 5, 2018 Giri Iyengar (Cornell Tech) Feature Engineering Feb 5, 2018 1 / 35 Overview 1 ETL 2 Feature Engineering

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

BAYESIAN DECISION THEORY

BAYESIAN DECISION THEORY Last updated: September 17, 2012 BAYESIAN DECISION THEORY Problems 2 The following problems from the textbook are relevant: 2.1 2.9, 2.11, 2.17 For this week, please at least solve Problem 2.3. We will

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October,

MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, MIDTERM: CS 6375 INSTRUCTOR: VIBHAV GOGATE October, 23 2013 The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run

More information

Machine Learning, Midterm Exam

Machine Learning, Midterm Exam 10-601 Machine Learning, Midterm Exam Instructors: Tom Mitchell, Ziv Bar-Joseph Wednesday 12 th December, 2012 There are 9 questions, for a total of 100 points. This exam has 20 pages, make sure you have

More information

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification

10-810: Advanced Algorithms and Models for Computational Biology. Optimal leaf ordering and classification 10-810: Advanced Algorithms and Models for Computational Biology Optimal leaf ordering and classification Hierarchical clustering As we mentioned, its one of the most popular methods for clustering gene

More information

Introduction to Machine Learning

Introduction to Machine Learning 1, DATA11002 Introduction to Machine Learning Lecturer: Teemu Roos TAs: Ville Hyvönen and Janne Leppä-aho Department of Computer Science University of Helsinki (based in part on material by Patrik Hoyer

More information

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION 1 Outline Basic terminology Features Training and validation Model selection Error and loss measures Statistical comparison Evaluation measures 2 Terminology

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://wwwcstauacil/~apartzin/machinelearning/ and wwwcsprincetonedu/courses/archive/fall01/cs302 /notes/11/emppt The MIT Press, 2010

More information

Building a Prognostic Biomarker

Building a Prognostic Biomarker Building a Prognostic Biomarker Noah Simon and Richard Simon July 2016 1 / 44 Prognostic Biomarker for a Continuous Measure On each of n patients measure y i - single continuous outcome (eg. blood pressure,

More information

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining

Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes. November 9, Statistics 202: Data Mining Linear Discriminant Analysis Based in part on slides from textbook, slides of Susan Holmes November 9, 2012 1 / 1 Nearest centroid rule Suppose we break down our data matrix as by the labels yielding (X

More information

Clustering using Mixture Models

Clustering using Mixture Models Clustering using Mixture Models The full posterior of the Gaussian Mixture Model is p(x, Z, µ,, ) =p(x Z, µ, )p(z )p( )p(µ, ) data likelihood (Gaussian) correspondence prob. (Multinomial) mixture prior

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015

ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 ROBERTO BATTITI, MAURO BRUNATO. The LION Way: Machine Learning plus Intelligent Optimization. LIONlab, University of Trento, Italy, Apr 2015 http://intelligentoptimization.org/lionbook Roberto Battiti

More information

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know

The classifier. Theorem. where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know The Bayes classifier Theorem The classifier satisfies where the min is over all possible classifiers. To calculate the Bayes classifier/bayes risk, we need to know Alternatively, since the maximum it is

More information

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA

The classifier. Linear discriminant analysis (LDA) Example. Challenges for LDA The Bayes classifier Linear discriminant analysis (LDA) Theorem The classifier satisfies In linear discriminant analysis (LDA), we make the (strong) assumption that where the min is over all possible classifiers.

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Mixture Models, Density Estimation, Factor Analysis Mark Schmidt University of British Columbia Winter 2016 Admin Assignment 2: 1 late day to hand it in now. Assignment 3: Posted,

More information

Gaussian and Linear Discriminant Analysis; Multiclass Classification

Gaussian and Linear Discriminant Analysis; Multiclass Classification Gaussian and Linear Discriminant Analysis; Multiclass Classification Professor Ameet Talwalkar Slide Credit: Professor Fei Sha Professor Ameet Talwalkar CS260 Machine Learning Algorithms October 13, 2015

More information

COMS 4771 Regression. Nakul Verma

COMS 4771 Regression. Nakul Verma COMS 4771 Regression Nakul Verma Last time Support Vector Machines Maximum Margin formulation Constrained Optimization Lagrange Duality Theory Convex Optimization SVM dual and Interpretation How get the

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Le Song Machine Learning I CSE 6740, Fall 2013 Naïve Bayes classifier Still use Bayes decision rule for classification P y x = P x y P y P x But assume p x y = 1 is fully factorized

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information