Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University

Size: px
Start display at page:

Download "Model Selection, Estimation, and Bootstrap Smoothing. Bradley Efron Stanford University"

Transcription

1 Model Selection, Estimation, and Bootstrap Smoothing Bradley Efron Stanford University

2 Estimation After Model Selection Usually: (a) look at data (b) choose model (linear, quad, cubic...?) (c) fit estimates using chosen model (d) analyze as if pre-chosen Today: include model selection process in the analysis Question: Effects on standard errors, confidence intervals, etc.? Two Examples: nonparametric, parametric Model Selection Estimation Bootstrap Smoothing 1

3 Cholesterol Data n = 164 men took Cholestyramine for 7 years x = compliance measure (adjusted: x N(0, 1)) y = cholesterol decrease Regression y on x? [wish to estimate: µ j = E{y x j }, j = 1, 2,..., n] Model Selection Estimation Bootstrap Smoothing 2

4 Cholesterol data, n=164 subjects: cholesterol decrease plotted versus adjusted compliance; Green curve is OLS cubic regression; Red points indicate 5 featured subjects compliance cholesterol decrease Model Selection Estimation Bootstrap Smoothing 3

5 Regression Model C p Criterion C p Selection Criterion y n 1 = X n m β m 1 y X ˆβ 2 + 2mσ 2 + e n 1 [ ei (0, σ 2 ) ] ˆβ = OLS estimate, m = degrees of freedom Model Selection: From possible models X 1, X 2, X 3,... choose the one minimizing C p. Then use OLS estimate from chosen model. Model Selection Estimation Bootstrap Smoothing 4

6 C p for Cholesterol Data Model df C p (Boot %) M 1 (linear) (19%) M 2 (quad) (12%) M 3 (cubic) (34%) M 4 (quartic) (8%) M 5 (quintic) (21%) M 6 (sextic) (6%) (σ = 22 from full model M 6 ) Model Selection Estimation Bootstrap Smoothing 5

7 Nonparametric Bootstrap Analysis data = {(x i, y i ), i = 1, 2,..., n = 164} gave original estimate ˆµ = X 3 ˆβ 3 Bootstrap data set data = { (x j, y j ), j = 1, 2,..., n } where (x j, y j ) drawn randomly and with replacement from data: data Cp m OLS ˆβ m ˆµ = X m ˆβ m I did this all B = 4000 times. Model Selection Estimation Bootstrap Smoothing 6

8 B=4000 nonparametric bootstrap replications for the model selected regression estimate of Subject 1; boot (m,stdev)=( 2.63,8.02); 76% of the replications less than original estimate 2.71 Frequency ^ 2.71 ^ bootstrap estimates for subject 1 Red triangles are 2.5th and 97.5th boot percentiles Model Selection Estimation Bootstrap Smoothing 7

9 Smooth Estimation Model: ' y ' is observed data; Ellipses indicate bootstrap distribution for ' y* '; Red curves level surfaces of equal estimation for thetahat=t(y) y thetahat =t(y) Model Selection Estimation Bootstrap Smoothing 8

10 Model Selection Estimation Bootstrap Smoothing 9

11 Boxplot of Cp boot estimates for Subject 1; B=4000 bootreps; Red bars indicate selection proportions for Models 1 6 only 1/3 of the bootstrap replications chose Model 3 selected model subject 1 estimates Model3 ********* MODEL 3 Model Selection Estimation Bootstrap Smoothing 10

12 Bootstrap Confidence Intervals Standard: Percentile: ˆµ ± 1.96 ŝe [ ˆµ (.025), ˆµ (.975)] Smoothed Standard: µ ± 1.96 se BCa/ABC: corrects percentiles for bias and changing se Model Selection Estimation Bootstrap Smoothing 11

13 95% Bootstrap Confidence Intervals for Subject 1 Confidence Interval Standard ( 13.0,18.4) Percentile ( 17.8,13.5) Smoothed ( 13.3,8.0) Model Selection Estimation Bootstrap Smoothing 12

14 Bootstrap Smoothing Idea Replace original estimator t(y) with bootstrap average s(y) = B t ( ) / y i B i=1 Model averaging Same as bagging ( bootstrap aggregation Breiman) Removes discontinuities Reduces variance Model Selection Estimation Bootstrap Smoothing 13

15 Accuracy Theorem Notation s 0 = s(y), t i = t(y ), i = 1, 2,... B i Y = # of times jth data point appears in ith boot sample ij cov j = B i=1 Y ij (t i s ) / [ 0 B covariance Y ij with ] t i Theorem The delta method standard deviation estimate for s 0 is always B i=1 sd = n cov 2 j j=1 1/2 1/2 ( t i s ) 2 / 0 B, the boot stdev for t(y)., Model Selection Estimation Bootstrap Smoothing 14

16 Projection Interpretation 0 Model Selection Estimation Bootstrap Smoothing 15

17 Standard Deviation of smoothed estimate relative to original (Red) for five subjects; green line is stdev Naive Cubic Model Relative stdev * * * * * Subject number bottom numbers show original standard deviations Model Selection Estimation Bootstrap Smoothing 16

18 How Many Bootstrap Replications Are Enough? How accurate is sd? Jackknife Divide the 4000 bootreps t into 20 groups of 200 each i Recompute sd with each group removed in turn Jackknife gave coef variation ( sd ) 0.02 for all 164 subjects (could have stopped at B = 500) Model Selection Estimation Bootstrap Smoothing 17

19 How Stable Are The Standard Deviations? Smoothed standard interval µ ± 1.96 sd assumes sd stable Acceleration ã = d sd/d µ, ã 1 6 / ( cov 3 j cov 2 j ) 3/2 ã 0.02 for all 164 subjects Model Selection Estimation Bootstrap Smoothing 18

20 Model Probability Estimates 34% of the 4000 bootreps chose the cubic model Poor man s Bayes posterior prob for cubic How accurate is that 34%? Apply accuracy theorem to indicator function for choosing cubic Model Selection Estimation Bootstrap Smoothing 19

21 Model Boot % ± Standard Error M 1 (linear) 19% ±24 M 2 (quad) 12% ±18 M 3 (cubic) 34% ±24 M 4 (quartic) 8% ±14 M 5 (quintic) 21% ±27 M 6 (sextic) 6% ±6 Model Selection Estimation Bootstrap Smoothing 20

22 The Supernova Data data = { (x j, y j ), j = 1, 2,..., n = 39 } y j = absolute magnitude of Type Ia supernova x j = vector of 10 spectral energies ( nm) [ ] ind Full Model y = X β + e e i N(0, 1) Model Selection Estimation Bootstrap Smoothing 21

23 Ordinary Least Squares Prediction Full Model y N 39 (Xβ, I) OLS Estimates ˆµ OLS = X ˆβ OLS [ arg min y Xβ 2 ] Naive R 2 = 0.82 Adjusted R 2 = 0.69 [ = ĉor ( ˆµOLS, y ) 2 ] [ R 2 ( 1 R 2) ] m n m where m = 10 the df Model Selection Estimation Bootstrap Smoothing 22

24 Adjusted absolute magnitudes for 39 Type1A supernovas plotted versus OLS predictions from 10 spectral measurments; Naive R2 (squared correlation)=.82; Adjusted R2=.62 Red points are 5 featured cases Full Model OLS Prediction > Absolute Magnitude > Model Selection Estimation Bootstrap Smoothing 23

25 Lasso Model Selection Lasso estimate is ˆβ minimizing y Xβ 2 + λ p 1 β k Shrinks OLS estimates toward zero (all the way for some) Degrees of freedom m = number of nonzero ˆβ k s Model Selection: Choose λ (or m) to maximize adjusted R 2. Then ˆµ = X ˆβ m. Model Selection Estimation Bootstrap Smoothing 24

26 Lasso for the Supernova Data λ m (# nonzero ˆβ k s) Naive R 2 Adjusted R (Selected) (OLS) Model Selection Estimation Bootstrap Smoothing 25

27 Parametric Bootstrap Smoothing Original Estimates y Lasso m, ˆβ m ˆµ = X ˆβ m Full Model Bootstrap y N 39 ( ˆµ OLS, I) y m, ˆβ m ˆµ = X ˆβ m I did this all B = 4000 times. t ik = ˆµ ik Smoothed Estimates s k = 4000 i=1 t ik/ 4000 [k = 1, 2,..., 39] Model Selection Estimation Bootstrap Smoothing 26

28 Parametric Accuracy Theorem Theorem is The delta method standard deviation estimate for s k ŝd k = [ ĉov k G ĉov k ] 1/2, where G = X X and ĉov k is bootstrap covariance between ˆβ OLS and t k. Always less than the bootstrap estimate of stdev for t k Projection into L ( ) ˆβ OLS Exponential families Model Selection Estimation Bootstrap Smoothing 27

29 Standard Deviation of smoothed estimate relative to original (Red) for five Supernova; green line using Bootstrap reweighting Relative stdev * * * * * Supernova number bottom numbers show original standard deviations Model Selection Estimation Bootstrap Smoothing 28

30 Better Confidence Intervals Smoothed standard intervals and percentile intervals have coverage errors of order O ( 1 / ) n. ABC intervals have errors O(1/n): corrects for bias and acceleration (change in stdev as estimate varies). Uses local reweighting for 2nd order correction Model Selection Estimation Bootstrap Smoothing 29

31 95% intervals five selected SNs (subtracting smoothed ests); ABC black; smoothed standard red. centered 95%iInterval supernova index Model Selection Estimation Bootstrap Smoothing 30

32 Brute Force Simulation Sample 500 times: y N ( ˆµ OLS, I ) ; gives ˆµ OLS Resample B = 1000 times: y N ( ˆµ OLS, I) Use ABC to get sd, bias, acceleration Calculate ABC coverage of one-sided interval (, s k ) [s k the original smoothed estimate] Should be uniform [0, 1] Model Selection Estimation Bootstrap Smoothing 31

33 K=500 Brute force sims, B=1000 bootreps each; SN1 Supernova 2 Frequency ^ ^ Frequency ^ ^ Asl Asl Supernova 3 Supernova 4 Frequency ^ ^ Frequency ^ ^ Asl Asl Model Selection Estimation Bootstrap Smoothing 32

34 References Berk, R., Brown, L., Buja, A., Zhang, K. and Zhao, L. (2012). Valid post-selection inference. Submitted Ann. Statist. http: //stat.wharton.upenn.edu/ zhangk/posi-submit.pdf; conservative frequentist intervals à la Tukey, Scheffé. Buja, A. and Stuetzle, W. (2006). Observations on bagging. Statist. Sinica 16: , more on bagging. DiCiccio, T. J. and Efron, B. (1992). More accurate confidence intervals in exponential families. Biometrika 79: , ABC confidence intervals. DiCiccio, T. J. and Efron, B. (1996). Bootstrap confidence Model Selection Estimation Bootstrap Smoothing 33

35 intervals. Statist. Sci. 11: , with comments and a rejoinder by the authors. Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Springer Series in Statistics. New York: Springer, 2nd ed., Section 8.7, bagging. Hjort, N. L. and Claeskens, G. (2003). Frequentist model average estimators. J. Amer. Statist. Assoc. 98: , model selection asymptotics. Model Selection Estimation Bootstrap Smoothing 34

MODEL SELECTION, ESTIMATION, AND BOOTSTRAP SMOOTHING. Bradley Efron. Division of Biostatistics STANFORD UNIVERSITY Stanford, California

MODEL SELECTION, ESTIMATION, AND BOOTSTRAP SMOOTHING. Bradley Efron. Division of Biostatistics STANFORD UNIVERSITY Stanford, California MODEL SELECTION, ESTIMATION, AND BOOTSTRAP SMOOTHING By Bradley Efron Technical Report 262 August 2012 Division of Biostatistics STANFORD UNIVERSITY Stanford, California MODEL SELECTION, ESTIMATION, AND

More information

Discussant: Lawrence D Brown* Statistics Department, Wharton, Univ. of Penn.

Discussant: Lawrence D Brown* Statistics Department, Wharton, Univ. of Penn. Discussion of Estimation and Accuracy After Model Selection By Bradley Efron Discussant: Lawrence D Brown* Statistics Department, Wharton, Univ. of Penn. lbrown@wharton.upenn.edu JSM, Boston, Aug. 4, 2014

More information

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University

Bayesian Inference and the Parametric Bootstrap. Bradley Efron Stanford University Bayesian Inference and the Parametric Bootstrap Bradley Efron Stanford University Importance Sampling for Bayes Posterior Distribution Newton and Raftery (1994 JRSS-B) Nonparametric Bootstrap: good choice

More information

Frequentist Accuracy of Bayesian Estimates

Frequentist Accuracy of Bayesian Estimates Frequentist Accuracy of Bayesian Estimates Bradley Efron Stanford University RSS Journal Webinar Objective Bayesian Inference Probability family F = {f µ (x), µ Ω} Parameter of interest: θ = t(µ) Prior

More information

Frequentist Accuracy of Bayesian Estimates

Frequentist Accuracy of Bayesian Estimates Frequentist Accuracy of Bayesian Estimates Bradley Efron Stanford University Bayesian Inference Parameter: µ Ω Observed data: x Prior: π(µ) Probability distributions: Parameter of interest: { fµ (x), µ

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

The automatic construction of bootstrap confidence intervals

The automatic construction of bootstrap confidence intervals The automatic construction of bootstrap confidence intervals Bradley Efron Balasubramanian Narasimhan Abstract The standard intervals, e.g., ˆθ ± 1.96ˆσ for nominal 95% two-sided coverage, are familiar

More information

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods

Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods Chapter 4 Confidence Intervals in Ridge Regression using Jackknife and Bootstrap Methods 4.1 Introduction It is now explicable that ridge regression estimator (here we take ordinary ridge estimator (ORE)

More information

The bootstrap and Markov chain Monte Carlo

The bootstrap and Markov chain Monte Carlo The bootstrap and Markov chain Monte Carlo Bradley Efron Stanford University Abstract This note concerns the use of parametric bootstrap sampling to carry out Bayesian inference calculations. This is only

More information

Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference

Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference Higher-Order von Mises Expansions, Bagging and Assumption-Lean Inference Andreas Buja joint with: Richard Berk, Lawrence Brown, Linda Zhao, Arun Kuchibhotla, Kai Zhang Werner Stützle, Ed George, Mikhail

More information

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models

Supporting Information for Estimating restricted mean. treatment effects with stacked survival models Supporting Information for Estimating restricted mean treatment effects with stacked survival models Andrew Wey, David Vock, John Connett, and Kyle Rudser Section 1 presents several extensions to the simulation

More information

Bootstrap, Jackknife and other resampling methods

Bootstrap, Jackknife and other resampling methods Bootstrap, Jackknife and other resampling methods Part VI: Cross-validation Rozenn Dahyot Room 128, Department of Statistics Trinity College Dublin, Ireland dahyot@mee.tcd.ie 2005 R. Dahyot (TCD) 453 Modern

More information

Finite Population Correction Methods

Finite Population Correction Methods Finite Population Correction Methods Moses Obiri May 5, 2017 Contents 1 Introduction 1 2 Normal-based Confidence Interval 2 3 Bootstrap Confidence Interval 3 4 Finite Population Bootstrap Sampling 5 4.1

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

Selective Inference for Effect Modification

Selective Inference for Effect Modification Inference for Modification (Joint work with Dylan Small and Ashkan Ertefaie) Department of Statistics, University of Pennsylvania May 24, ACIC 2017 Manuscript and slides are available at http://www-stat.wharton.upenn.edu/~qyzhao/.

More information

Bootstrap & Confidence/Prediction intervals

Bootstrap & Confidence/Prediction intervals Bootstrap & Confidence/Prediction intervals Olivier Roustant Mines Saint-Étienne 2017/11 Olivier Roustant (EMSE) Bootstrap & Confidence/Prediction intervals 2017/11 1 / 9 Framework Consider a model with

More information

Bootstrap Confidence Intervals

Bootstrap Confidence Intervals Bootstrap Confidence Intervals Patrick Breheny September 18 Patrick Breheny STA 621: Nonparametric Statistics 1/22 Introduction Bootstrap confidence intervals So far, we have discussed the idea behind

More information

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference 1 / 171 Bootstrap inference Francisco Cribari-Neto Departamento de Estatística Universidade Federal de Pernambuco Recife / PE, Brazil email: cribari@gmail.com October 2013 2 / 171 Unpaid advertisement

More information

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205

Bootstrap (Part 3) Christof Seiler. Stanford University, Spring 2016, Stats 205 Bootstrap (Part 3) Christof Seiler Stanford University, Spring 2016, Stats 205 Overview So far we used three different bootstraps: Nonparametric bootstrap on the rows (e.g. regression, PCA with random

More information

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University

Correlation, z-values, and the Accuracy of Large-Scale Estimators. Bradley Efron Stanford University Correlation, z-values, and the Accuracy of Large-Scale Estimators Bradley Efron Stanford University Correlation and Accuracy Modern Scientific Studies N cases (genes, SNPs, pixels,... ) each with its own

More information

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University

REGRESSION WITH SPATIALLY MISALIGNED DATA. Lisa Madsen Oregon State University David Ruppert Cornell University REGRESSION ITH SPATIALL MISALIGNED DATA Lisa Madsen Oregon State University David Ruppert Cornell University SPATIALL MISALIGNED DATA 10 X X X X X X X X 5 X X X X X 0 X 0 5 10 OUTLINE 1. Introduction 2.

More information

SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION. University of Minnesota

SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION. University of Minnesota Submitted to the Annals of Statistics arxiv: math.pr/0000000 SUPPLEMENT TO PARAMETRIC OR NONPARAMETRIC? A PARAMETRICNESS INDEX FOR MODEL SELECTION By Wei Liu and Yuhong Yang University of Minnesota In

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference 1 / 172 Bootstrap inference Francisco Cribari-Neto Departamento de Estatística Universidade Federal de Pernambuco Recife / PE, Brazil email: cribari@gmail.com October 2014 2 / 172 Unpaid advertisement

More information

Lawrence D. Brown* and Daniel McCarthy*

Lawrence D. Brown* and Daniel McCarthy* Comments on the paper, An adaptive resampling test for detecting the presence of significant predictors by I. W. McKeague and M. Qian Lawrence D. Brown* and Daniel McCarthy* ABSTRACT: This commentary deals

More information

On the equivalence of confidence interval estimation based on frequentist model averaging and least-squares of the full model in linear regression

On the equivalence of confidence interval estimation based on frequentist model averaging and least-squares of the full model in linear regression Working Paper 2016:1 Department of Statistics On the equivalence of confidence interval estimation based on frequentist model averaging and least-squares of the full model in linear regression Sebastian

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

Inference After Variable Selection

Inference After Variable Selection Department of Mathematics, SIU Carbondale Inference After Variable Selection Lasanthi Pelawa Watagoda lasanthi@siu.edu June 12, 2017 Outline 1 Introduction 2 Inference For Ridge and Lasso 3 Variable Selection

More information

UNIVERSITÄT POTSDAM Institut für Mathematik

UNIVERSITÄT POTSDAM Institut für Mathematik UNIVERSITÄT POTSDAM Institut für Mathematik Testing the Acceleration Function in Life Time Models Hannelore Liero Matthias Liero Mathematische Statistik und Wahrscheinlichkeitstheorie Universität Potsdam

More information

Spatial Lasso with Applications to GIS Model Selection

Spatial Lasso with Applications to GIS Model Selection Spatial Lasso with Applications to GIS Model Selection Hsin-Cheng Huang Institute of Statistical Science, Academia Sinica Nan-Jung Hsu National Tsing-Hua University David Theobald Colorado State University

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

The Nonparametric Bootstrap

The Nonparametric Bootstrap The Nonparametric Bootstrap The nonparametric bootstrap may involve inferences about a parameter, but we use a nonparametric procedure in approximating the parametric distribution using the ECDF. We use

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 9: Basis Expansions Department of Statistics & Biostatistics Rutgers University Nov 01, 2011 Regression and Classification Linear Regression. E(Y X) = f(x) We want to learn

More information

ABSTRACT. POST, JUSTIN BLAISE. Methods to Improve Prediction Accuracy under Structural Constraints. (Under the direction of Howard Bondell.

ABSTRACT. POST, JUSTIN BLAISE. Methods to Improve Prediction Accuracy under Structural Constraints. (Under the direction of Howard Bondell. ABSTRACT POST, JUSTIN BLAISE. Methods to Improve Prediction Accuracy under Structural Constraints. (Under the direction of Howard Bondell.) Statisticians are often faced with the difficult task of model

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

4 Resampling Methods: The Bootstrap

4 Resampling Methods: The Bootstrap 4 Resampling Methods: The Bootstrap Situation: Let x 1, x 2,..., x n be a SRS of size n taken from a distribution that is unknown. Let θ be a parameter of interest associated with this distribution and

More information

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Hypothesis Testing with the Bootstrap. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Hypothesis Testing with the Bootstrap Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Bootstrap Hypothesis Testing A bootstrap hypothesis test starts with a test statistic

More information

Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996

Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996 Bootstrap confidence levels for phylogenetic trees B. Efron, E. Halloran, and S. Holmes, 1996 Following Confidence limits on phylogenies: an approach using the bootstrap, J. Felsenstein, 1985 1 I. Short

More information

Classification using stochastic ensembles

Classification using stochastic ensembles July 31, 2014 Topics Introduction Topics Classification Application and classfication Classification and Regression Trees Stochastic ensemble methods Our application: USAID Poverty Assessment Tools Topics

More information

Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory

Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory Why Do Statisticians Treat Predictors as Fixed? A Conspiracy Theory Andreas Buja joint with the PoSI Group: Richard Berk, Lawrence Brown, Linda Zhao, Kai Zhang Ed George, Mikhail Traskin, Emil Pitkin,

More information

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich Submitted to the Annals of Statistics DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich We congratulate Richard Lockhart, Jonathan Taylor, Ryan

More information

Bagging and the Bayesian Bootstrap

Bagging and the Bayesian Bootstrap Bagging and the Bayesian Bootstrap erlise A. Clyde and Herbert K. H. Lee Institute of Statistics & Decision Sciences Duke University Durham, NC 27708 Abstract Bagging is a method of obtaining more robust

More information

Exploratory quantile regression with many covariates: An application to adverse birth outcomes

Exploratory quantile regression with many covariates: An application to adverse birth outcomes Exploratory quantile regression with many covariates: An application to adverse birth outcomes June 3, 2011 eappendix 30 Percent of Total 20 10 0 0 1000 2000 3000 4000 5000 Birth weights efigure 1: Histogram

More information

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2

MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 MA 575 Linear Models: Cedric E. Ginestet, Boston University Non-parametric Inference, Polynomial Regression Week 9, Lecture 2 1 Bootstrapped Bias and CIs Given a multiple regression model with mean and

More information

1/sqrt(B) convergence 1/B convergence B

1/sqrt(B) convergence 1/B convergence B The Error Coding Method and PICTs Gareth James and Trevor Hastie Department of Statistics, Stanford University March 29, 1998 Abstract A new family of plug-in classication techniques has recently been

More information

Regularization Paths

Regularization Paths December 2005 Trevor Hastie, Stanford Statistics 1 Regularization Paths Trevor Hastie Stanford University drawing on collaborations with Brad Efron, Saharon Rosset, Ji Zhu, Hui Zhou, Rob Tibshirani and

More information

Rank conditional coverage and confidence intervals in high dimensional problems

Rank conditional coverage and confidence intervals in high dimensional problems conditional coverage and confidence intervals in high dimensional problems arxiv:1702.06986v1 [stat.me] 22 Feb 2017 Jean Morrison and Noah Simon Department of Biostatistics, University of Washington, Seattle,

More information

AFT Models and Empirical Likelihood

AFT Models and Empirical Likelihood AFT Models and Empirical Likelihood Mai Zhou Department of Statistics, University of Kentucky Collaborators: Gang Li (UCLA); A. Bathke; M. Kim (Kentucky) Accelerated Failure Time (AFT) models: Y = log(t

More information

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University

Integrated Likelihood Estimation in Semiparametric Regression Models. Thomas A. Severini Department of Statistics Northwestern University Integrated Likelihood Estimation in Semiparametric Regression Models Thomas A. Severini Department of Statistics Northwestern University Joint work with Heping He, University of York Introduction Let Y

More information

Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs

Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs Estimation of AUC from 0 to Infinity in Serial Sacrifice Designs Martin J. Wolfsegger Department of Biostatistics, Baxter AG, Vienna, Austria Thomas Jaki Department of Statistics, University of South Carolina,

More information

11. Bootstrap Methods

11. Bootstrap Methods 11. Bootstrap Methods c A. Colin Cameron & Pravin K. Trivedi 2006 These transparencies were prepared in 20043. They can be used as an adjunct to Chapter 11 of our subsequent book Microeconometrics: Methods

More information

Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model

Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model Olubusoye, O. E., J. O. Olaomi, and O. O. Odetunde Abstract A bootstrap simulation approach

More information

A better way to bootstrap pairs

A better way to bootstrap pairs A better way to bootstrap pairs Emmanuel Flachaire GREQAM - Université de la Méditerranée CORE - Université Catholique de Louvain April 999 Abstract In this paper we are interested in heteroskedastic regression

More information

Least Angle Regression, Forward Stagewise and the Lasso

Least Angle Regression, Forward Stagewise and the Lasso January 2005 Rob Tibshirani, Stanford 1 Least Angle Regression, Forward Stagewise and the Lasso Brad Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani Stanford University Annals of Statistics,

More information

A Bias Correction for the Minimum Error Rate in Cross-validation

A Bias Correction for the Minimum Error Rate in Cross-validation A Bias Correction for the Minimum Error Rate in Cross-validation Ryan J. Tibshirani Robert Tibshirani Abstract Tuning parameters in supervised learning problems are often estimated by cross-validation.

More information

Heteroskedasticity. Part VII. Heteroskedasticity

Heteroskedasticity. Part VII. Heteroskedasticity Part VII Heteroskedasticity As of Oct 15, 2015 1 Heteroskedasticity Consequences Heteroskedasticity-robust inference Testing for Heteroskedasticity Weighted Least Squares (WLS) Feasible generalized Least

More information

Bayesian inference and the parametric bootstrap

Bayesian inference and the parametric bootstrap Bayesian inference and the parametric bootstrap Bradley Efron Stanford University Abstract The parametric bootstrap can be used for the efficient computation of Bayes posterior distributions. Importance

More information

Empirical Bayes Deconvolution Problem

Empirical Bayes Deconvolution Problem Empirical Bayes Deconvolution Problem Bayes Deconvolution Problem Unknown prior density g(θ) gives unobserved realizations Θ 1, Θ 2,..., Θ N iid g(θ) Each Θ k gives observed X k p Θk (x) [p Θ (x) known]

More information

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7]

8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] 8.6 Bayesian neural networks (BNN) [Book, Sect. 6.7] While cross-validation allows one to find the weight penalty parameters which would give the model good generalization capability, the separation of

More information

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University Tweedie s Formula and Selection Bias Bradley Efron Stanford University Selection Bias Observe z i N(µ i, 1) for i = 1, 2,..., N Select the m biggest ones: z (1) > z (2) > z (3) > > z (m) Question: µ values?

More information

High-dimensional regression modeling

High-dimensional regression modeling High-dimensional regression modeling David Causeur Department of Statistics and Computer Science Agrocampus Ouest IRMAR CNRS UMR 6625 http://www.agrocampus-ouest.fr/math/causeur/ Course objectives Making

More information

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science

Likelihood Ratio Tests. that Certain Variance Components Are Zero. Ciprian M. Crainiceanu. Department of Statistical Science 1 Likelihood Ratio Tests that Certain Variance Components Are Zero Ciprian M. Crainiceanu Department of Statistical Science www.people.cornell.edu/pages/cmc59 Work done jointly with David Ruppert, School

More information

7 Estimation. 7.1 Population and Sample (P.91-92)

7 Estimation. 7.1 Population and Sample (P.91-92) 7 Estimation MATH1015 Biostatistics Week 7 7.1 Population and Sample (P.91-92) Suppose that we wish to study a particular health problem in Australia, for example, the average serum cholesterol level for

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Analytical Bootstrap Methods for Censored Data

Analytical Bootstrap Methods for Censored Data JOURNAL OF APPLIED MATHEMATICS AND DECISION SCIENCES, 6(2, 129 141 Copyright c 2002, Lawrence Erlbaum Associates, Inc. Analytical Bootstrap Methods for Censored Data ALAN D. HUTSON Division of Biostatistics,

More information

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon

Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Discussion of the paper Inference for Semiparametric Models: Some Questions and an Answer by Bickel and Kwon Jianqing Fan Department of Statistics Chinese University of Hong Kong AND Department of Statistics

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation

Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation Choosing the Summary Statistics and the Acceptance Rate in Approximate Bayesian Computation COMPSTAT 2010 Revised version; August 13, 2010 Michael G.B. Blum 1 Laboratoire TIMC-IMAG, CNRS, UJF Grenoble

More information

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club 36-825 1 Introduction Jisu Kim and Veeranjaneyulu Sadhanala In this report

More information

A Study of Relative Efficiency and Robustness of Classification Methods

A Study of Relative Efficiency and Robustness of Classification Methods A Study of Relative Efficiency and Robustness of Classification Methods Yoonkyung Lee* Department of Statistics The Ohio State University *joint work with Rui Wang April 28, 2011 Department of Statistics

More information

Generalized Cp (GCp) in a Model Lean Framework

Generalized Cp (GCp) in a Model Lean Framework Generalized Cp (GCp) in a Model Lean Framework Linda Zhao University of Pennsylvania Dedicated to Lawrence Brown (1940-2018) September 9th, 2018 WHOA 3 Joint work with Larry Brown, Juhui Cai, Arun Kumar

More information

Defect Detection using Nonparametric Regression

Defect Detection using Nonparametric Regression Defect Detection using Nonparametric Regression Siana Halim Industrial Engineering Department-Petra Christian University Siwalankerto 121-131 Surabaya- Indonesia halim@petra.ac.id Abstract: To compare

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

Interval Estimation III: Fisher's Information & Bootstrapping

Interval Estimation III: Fisher's Information & Bootstrapping Interval Estimation III: Fisher's Information & Bootstrapping Frequentist Confidence Interval Will consider four approaches to estimating confidence interval Standard Error (+/- 1.96 se) Likelihood Profile

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 016 Full points may be obtained for correct answers to eight questions. Each numbered question which may have several parts is worth

More information

STAT 518 Intro Student Presentation

STAT 518 Intro Student Presentation STAT 518 Intro Student Presentation Wen Wei Loh April 11, 2013 Title of paper Radford M. Neal [1999] Bayesian Statistics, 6: 475-501, 1999 What the paper is about Regression and Classification Flexible

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008.

Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter Model Assessment and Selection. CN700/March 4, 2008. Hastie, Tibshirani & Friedman: Elements of Statistical Learning Chapter 7.1-7.9 Model Assessment and Selection CN700/March 4, 2008 Satyavarta sat@cns.bu.edu Auditory Neuroscience Laboratory, Department

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

CMSC858P Supervised Learning Methods

CMSC858P Supervised Learning Methods CMSC858P Supervised Learning Methods Hector Corrada Bravo March, 2010 Introduction Today we discuss the classification setting in detail. Our setting is that we observe for each subject i a set of p predictors

More information

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly

Robust Variable Selection Methods for Grouped Data. Kristin Lee Seamon Lilly Robust Variable Selection Methods for Grouped Data by Kristin Lee Seamon Lilly A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

ASSESSING A VECTOR PARAMETER

ASSESSING A VECTOR PARAMETER SUMMARY ASSESSING A VECTOR PARAMETER By D.A.S. Fraser and N. Reid Department of Statistics, University of Toronto St. George Street, Toronto, Canada M5S 3G3 dfraser@utstat.toronto.edu Some key words. Ancillary;

More information

ITERATED BOOTSTRAP PREDICTION INTERVALS

ITERATED BOOTSTRAP PREDICTION INTERVALS Statistica Sinica 8(1998), 489-504 ITERATED BOOTSTRAP PREDICTION INTERVALS Majid Mojirsheibani Carleton University Abstract: In this article we study the effects of bootstrap iteration as a method to improve

More information

Homoskedasticity. Var (u X) = σ 2. (23)

Homoskedasticity. Var (u X) = σ 2. (23) Homoskedasticity How big is the difference between the OLS estimator and the true parameter? To answer this question, we make an additional assumption called homoskedasticity: Var (u X) = σ 2. (23) This

More information

Prediction Intervals for Regression Models

Prediction Intervals for Regression Models Southern Illinois University Carbondale OpenSIUC Articles and Preprints Department of Mathematics 3-2007 Prediction Intervals for Regression Models David J. Olive Southern Illinois University Carbondale,

More information

NONINFORMATIVE NONPARAMETRIC BAYESIAN ESTIMATION OF QUANTILES

NONINFORMATIVE NONPARAMETRIC BAYESIAN ESTIMATION OF QUANTILES NONINFORMATIVE NONPARAMETRIC BAYESIAN ESTIMATION OF QUANTILES Glen Meeden School of Statistics University of Minnesota Minneapolis, MN 55455 Appeared in Statistics & Probability Letters Volume 16 (1993)

More information

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects

Contents. 1 Review of Residuals. 2 Detecting Outliers. 3 Influential Observations. 4 Multicollinearity and its Effects Contents 1 Review of Residuals 2 Detecting Outliers 3 Influential Observations 4 Multicollinearity and its Effects W. Zhou (Colorado State University) STAT 540 July 6th, 2015 1 / 32 Model Diagnostics:

More information

. a m1 a mn. a 1 a 2 a = a n

. a m1 a mn. a 1 a 2 a = a n Biostat 140655, 2008: Matrix Algebra Review 1 Definition: An m n matrix, A m n, is a rectangular array of real numbers with m rows and n columns Element in the i th row and the j th column is denoted by

More information

Resampling and the Bootstrap

Resampling and the Bootstrap Resampling and the Bootstrap Axel Benner Biostatistics, German Cancer Research Center INF 280, D-69120 Heidelberg benner@dkfz.de Resampling and the Bootstrap 2 Topics Estimation and Statistical Testing

More information

The assumptions are needed to give us... valid standard errors valid confidence intervals valid hypothesis tests and p-values

The assumptions are needed to give us... valid standard errors valid confidence intervals valid hypothesis tests and p-values Statistical Consulting Topics The Bootstrap... The bootstrap is a computer-based method for assigning measures of accuracy to statistical estimates. (Efron and Tibshrani, 1998.) What do we do when our

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Constructing Prediction Intervals for Random Forests

Constructing Prediction Intervals for Random Forests Senior Thesis in Mathematics Constructing Prediction Intervals for Random Forests Author: Benjamin Lu Advisor: Dr. Jo Hardin Submitted to Pomona College in Partial Fulfillment of the Degree of Bachelor

More information

Regularization Paths. Theme

Regularization Paths. Theme June 00 Trevor Hastie, Stanford Statistics June 00 Trevor Hastie, Stanford Statistics Theme Regularization Paths Trevor Hastie Stanford University drawing on collaborations with Brad Efron, Mee-Young Park,

More information

Knockoffs as Post-Selection Inference

Knockoffs as Post-Selection Inference Knockoffs as Post-Selection Inference Lucas Janson Harvard University Department of Statistics blank line blank line WHOA-PSI, August 12, 2017 Controlled Variable Selection Conditional modeling setup:

More information

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K.

Basis Penalty Smoothers. Simon Wood Mathematical Sciences, University of Bath, U.K. Basis Penalty Smoothers Simon Wood Mathematical Sciences, University of Bath, U.K. Estimating functions It is sometimes useful to estimate smooth functions from data, without being too precise about the

More information