The lasso, persistence, and cross-validation

Size: px
Start display at page:

Download "The lasso, persistence, and cross-validation"

Transcription

1 The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University danielmc Joint work with: Darren Homrighausen Colorado State University

2 The question: All the results about lasso are for oracle tuning parameter. What happens if you choose it using the data? The answer: YES! 1

3 The question: All the results about lasso are for oracle tuning parameter. What happens if you choose it using the data? The answer: YES! 1

4 The motivation: 2

5 The motivation: 2

6 The Setup Suppose we have data D n = {(Y 1, X1 ),..., (Y n, Xn )} where X i = (X i1,..., X ip ) R p are the features Y i R are the responses We use D n to find a function f that can predict Y from X. The regression function is the best possible function m(x) = E[Y X] = argmin E [ (Y f(x)) 2] f 3

7 Parameterizing this Relationship A good start is to find the best linear approximation of m(x). A linear predictor specifies a β R p and forms f(x) = X 1 β X p β p = X β Important: This does not assume that m is linear in X! We need to find a good estimator of β. 4

8 The lasso

9 l 1 -regularized regression Of course, for large p, small n, we need to regularize Known as lasso basis pursuit The estimator satisfies β t = argmin Y Xβ 2 2 subject to β 1 t β Alternatively: β λ = argmin Y Xβ λ β 1 β 5

10 Some properties Suppose m(x) IS linear, p is small 1... If λ = o(n), then β λ a.s. β If λ n a (0, ), then β λ β in general If λ n, then β λ a.s. 0 If λ = o( n), then n β λ β d A, A is a random variable. 1 Knight and Fu (2000), Chatterjee and Lahiri (2011) 6

11 Different properties What if m(x) is not linear, p n...? Define Z = (Y, X ) to be a new observation [same distribution]. We define the (predictive) risk to be [ ( ) ] 2 R(β) = E Z Y X β. Define the oracle estimator β t = argmin R(β) {β: β 1 t} The excess risk is E( β t, β t ) = R( β t ) R(β t ) 7

12 Different properties (cont.) A procedure is persistent (relative to the oracle) if E( β t, β t ) P 0 Then 2 ( ) If t 4 = o n log n, β t is persistent relative to βt ( ) β t is not necessarily persistent if t 4 / o n log n 2 Greenshtein and Ritov (2004) 8

13 You ve got data... What t to use?

14 Methods for choosing t The tuning parameter can be selected by unbiased risk estimation using degrees of freedom using an adapted Bayesian information criterion However... Many papers recommend cross-validation [3, 4, 7, 8, 9, 10, 11] [It is also the default method in the R package glmnet. See Zou, Hastie, and Tibshirani (2010)] 9

15 Cross-validation Define V n = {v 1,..., v Kn } to be a set of validation sets β (v) t lasso estimator computed on observations not in v {1,..., n} The cross-validation estimator of the risk is R Vn (t) = R ( β(v 1 ) Vn t,..., β (v Kn ) t := 1 K n v V n 1 v r v ) ( Y r X r ) (v) 2 β t Define t := argmin RVn (t) t T n 10

16 Cross-validation Define V n = {v 1,..., v Kn } to be a set of validation sets β (v) t lasso estimator computed on observations not in v {1,..., n} The cross-validation estimator of the risk is R Vn (t) = R ( β(v 1 ) Vn t,..., β (v Kn ) t := 1 K n v V n 1 v r v ) ( Y r X r ) (v) 2 β t Define t := argmin RVn (t) t T n 10

17 Choosing T n In practice, the optimization set T n = [0, t max ] needs to be specified However, if t max is too small, good solutions might be excluded What is too small? 11

18 Choosing T n By definition, β t {β : β 1 t} This constraint is only binding if t < min η K β 0 + η 1 =: t 0, where β 0 := (X X) X Y is a least squares solution K := {a : Xa = 0} is the null space of X If t t 0, then β t is equal to β 0 We define t max := β

19 Does cross-validation work? Prevailing heuristic: Regarding the choice of the regularization parameter, we typically use [the tuning parameter chosen by] cross-validation. Luckily, empirical and some theoretical indications support [good performance]... Peter Bühlmann s comments to Tibshirani (2011). What does theory have to say? 13

20 Stability (or lack thereoff) Sparsity inducing algorithms, such as lasso, are not (uniformly) algorithmically stable Algorithmic stability is sufficient, but not necessary, for persistence 4 4 Xu and Mannor (2008) and Bousquet and Elisseeff (2002) 14

21 Model selection and cross-validation There is a close connection between lasso and model selection [e.g. the LARS algorithm] For model selection 5... Leave-one-out cross-validation is inconsistent If c n /n 1 and n c n, then cross-validation is consistent [[c n is the size of the smallest held-out set]] Very restrictive: asymptotically, all the data is used for validation 5 Shao (1993) 15

22 Results: Cross-validation does work

23 Conditions C1. E [ t max 4 ] [ ] 1 = E β = o(t 4 n) C2. Held-out sets contain at least c n observations, don t overlap. C3. Let Z = (Y, X ) F n. Then, (F n ) n 1 is such that C < for all n where E Fn max (Z jz k E Fn Z j Z k ) 2 C 0 j,k p 16

24 Results (cont.) Theorem Assume C1 C3 and that p n = n α for some α > 0. Then, for any δ > 0, ( ) log n P (E( β t, β t n ) > δ) = o. t 2 n c n Some remarks c n n for K-fold cross-validation leave-one-out cross-validation has c n = 1 E( β t, β t n ) CAN be negative (don t care) 17

25 Properties of t n The faster t n... the less restrictive condition C1 becomes R n (β tn ) shrinks faster But, if t n grows as fast or faster than necessarily persistent [ ] ( ( ) ) 1/4 Can E β = o(t 4 n) if t n = o n log n? ( n log n) 1/4, then βtn is not Yes... 18

26 When it works... Suppose Y = m(x) + ɛ, m(x) bounded, E[ɛ 4 ] < Example 1: X i R p i.i.d sub-gaussian with independent components Example 2: Fixed design e i = i/n X ij = h 1 φ( e j e i /h) φ satisfies h 1 φ(1/h) 0 as h Example 3: Orthogonal basis regression 19

27 Future work Show similar results for lasso-type estimators, such as group lasso G is a partition of {1,..., p} G u := {β : g G g βg 2 u} Theorem Suppose 1 E [ ( g G β 0 g 2 ) 4 ] = o(u 4 n) 2 p n = n α for some α > 0 3 max g G g = a n 4 conditions C2 and C3 Then, for any δ > 0, ) P Fn (E ( β û, β un ( ) > δ = o a n u 2 n ) log n. c n 20

28 References I [1] K. Knight and W. Fu. Asymptotics for lasso-type estimators. Annals of Statistics, 28(5): , [2] A. Chatterjee and SN Lahiri. Strong consistency of lasso estimators. Sankhya A-Mathematical Statistics and Probability, 73(1):55 78, [3] E. Greenshtein and Y.A. Ritov. Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli, 10(6): , [4] H. Zou, T. Hastie, and R. Tibshirani. On the degrees of freedom of the lasso. The Annals of Statistics, 35(5): , [5] R.J. Tibshirani and J. Taylor. Degrees of freedom in lasso problems. Annals of Statistics, 40: , [6] H. Wang and C. Leng. Unified lasso estimation by least squares approximation. Journal of the American Statistical Association, 102(479): ,

29 References II [7] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 58(1): , [8] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Verlag, [9] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. The Annals of Statistics, 32(2): , [10] R. Tibshirani. Regression shrinkage and selection via the lasso: A retrospective. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(3): , [11] S. van de Geer and J. Lederer. The lasso, correlated design, and improved oracle inequalities, [12] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1 22,

30 References III [13] H. Xu, S. Mannor, and C. Caramanis. Sparse algorithms are not stable: A no-free-lunch theorem. In 46th Annual Allerton Conference on Communication, Control, and Computing, pages IEEE, [14] O. Bousquet and A. Elisseeff. Stability and generalization. The Journal of Machine Learning Research, 2: , [15] J. Shao. Linear model selection by cross-validation. Journal of the American Statistical Association, 88: , [16] M. Rudelson and R. Vershynin. Smallest singular value of a random rectangular matrix. Communications on Pure and Applied Mathematics, 62(12): ,

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables

A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables A New Combined Approach for Inference in High-Dimensional Regression Models with Correlated Variables Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider the problem of

More information

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider variable

More information

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection

TECHNICAL REPORT NO. 1091r. A Note on the Lasso and Related Procedures in Model Selection DEPARTMENT OF STATISTICS University of Wisconsin 1210 West Dayton St. Madison, WI 53706 TECHNICAL REPORT NO. 1091r April 2004, Revised December 2004 A Note on the Lasso and Related Procedures in Model

More information

Least squares under convex constraint

Least squares under convex constraint Stanford University Questions Let Z be an n-dimensional standard Gaussian random vector. Let µ be a point in R n and let Y = Z + µ. We are interested in estimating µ from the data vector Y, under the assumption

More information

Convex Optimization for High-Dimensional Portfolio Construction

Convex Optimization for High-Dimensional Portfolio Construction Convex Optimization for High-Dimensional Portfolio Construction R/Finance 2017 R. Michael Weylandt 2017-05-20 Rice University In the beginning... 2 The Markowitz Problem Given µ, Σ minimize w T Σw λµ T

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

High-dimensional covariance estimation based on Gaussian graphical models

High-dimensional covariance estimation based on Gaussian graphical models High-dimensional covariance estimation based on Gaussian graphical models Shuheng Zhou Department of Statistics, The University of Michigan, Ann Arbor IMA workshop on High Dimensional Phenomena Sept. 26,

More information

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Journal of Data Science 9(2011), 549-564 Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Masaru Kanba and Kanta Naito Shimane University Abstract: This paper discusses the

More information

Sparsity and the Lasso

Sparsity and the Lasso Sparsity and the Lasso Statistical Machine Learning, Spring 205 Ryan Tibshirani (with Larry Wasserman Regularization and the lasso. A bit of background If l 2 was the norm of the 20th century, then l is

More information

Chapter 3. Linear Models for Regression

Chapter 3. Linear Models for Regression Chapter 3. Linear Models for Regression Wei Pan Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455 Email: weip@biostat.umn.edu PubH 7475/8475 c Wei Pan Linear

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables

Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables Smoothly Clipped Absolute Deviation (SCAD) for Correlated Variables LIB-MA, FSSM Cadi Ayyad University (Morocco) COMPSTAT 2010 Paris, August 22-27, 2010 Motivations Fan and Li (2001), Zou and Li (2008)

More information

Least Angle Regression, Forward Stagewise and the Lasso

Least Angle Regression, Forward Stagewise and the Lasso January 2005 Rob Tibshirani, Stanford 1 Least Angle Regression, Forward Stagewise and the Lasso Brad Efron, Trevor Hastie, Iain Johnstone and Robert Tibshirani Stanford University Annals of Statistics,

More information

Risk estimation for high-dimensional lasso regression

Risk estimation for high-dimensional lasso regression Risk estimation for high-dimensional lasso regression arxiv:161522v1 [stat.me] 4 Feb 216 Darren Homrighausen Department of Statistics Colorado State University darrenho@stat.colostate.edu Daniel J. McDonald

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

MSA220/MVE440 Statistical Learning for Big Data

MSA220/MVE440 Statistical Learning for Big Data MSA220/MVE440 Statistical Learning for Big Data Lecture 9-10 - High-dimensional regression Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Recap from

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

arxiv: v1 [math.st] 8 Jan 2008

arxiv: v1 [math.st] 8 Jan 2008 arxiv:0801.1158v1 [math.st] 8 Jan 2008 Hierarchical selection of variables in sparse high-dimensional regression P. J. Bickel Department of Statistics University of California at Berkeley Y. Ritov Department

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Adaptive Lasso for correlated predictors

Adaptive Lasso for correlated predictors Adaptive Lasso for correlated predictors Keith Knight Department of Statistics University of Toronto e-mail: keith@utstat.toronto.edu This research was supported by NSERC of Canada. OUTLINE 1. Introduction

More information

Pathwise coordinate optimization

Pathwise coordinate optimization Stanford University 1 Pathwise coordinate optimization Jerome Friedman, Trevor Hastie, Holger Hoefling, Robert Tibshirani Stanford University Acknowledgements: Thanks to Stephen Boyd, Michael Saunders,

More information

The Risk of James Stein and Lasso Shrinkage

The Risk of James Stein and Lasso Shrinkage Econometric Reviews ISSN: 0747-4938 (Print) 1532-4168 (Online) Journal homepage: http://tandfonline.com/loi/lecr20 The Risk of James Stein and Lasso Shrinkage Bruce E. Hansen To cite this article: Bruce

More information

A Confidence Region Approach to Tuning for Variable Selection

A Confidence Region Approach to Tuning for Variable Selection A Confidence Region Approach to Tuning for Variable Selection Funda Gunes and Howard D. Bondell Department of Statistics North Carolina State University Abstract We develop an approach to tuning of penalized

More information

Adaptive Piecewise Polynomial Estimation via Trend Filtering

Adaptive Piecewise Polynomial Estimation via Trend Filtering Adaptive Piecewise Polynomial Estimation via Trend Filtering Liubo Li, ShanShan Tu The Ohio State University li.2201@osu.edu, tu.162@osu.edu October 1, 2015 Liubo Li, ShanShan Tu (OSU) Trend Filtering

More information

Regularization: Ridge Regression and the LASSO

Regularization: Ridge Regression and the LASSO Agenda Wednesday, November 29, 2006 Agenda Agenda 1 The Bias-Variance Tradeoff 2 Ridge Regression Solution to the l 2 problem Data Augmentation Approach Bayesian Interpretation The SVD and Ridge Regression

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets

Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets Non-linear Supervised High Frequency Trading Strategies with Applications in US Equity Markets Nan Zhou, Wen Cheng, Ph.D. Associate, Quantitative Research, J.P. Morgan nan.zhou@jpmorgan.com The 4th Annual

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

arxiv: v2 [math.st] 12 Feb 2008

arxiv: v2 [math.st] 12 Feb 2008 arxiv:080.460v2 [math.st] 2 Feb 2008 Electronic Journal of Statistics Vol. 2 2008 90 02 ISSN: 935-7524 DOI: 0.24/08-EJS77 Sup-norm convergence rate and sign concentration property of Lasso and Dantzig

More information

Approximate Principal Components Analysis of Large Data Sets

Approximate Principal Components Analysis of Large Data Sets Approximate Principal Components Analysis of Large Data Sets Daniel J. McDonald Department of Statistics Indiana University mypage.iu.edu/ dajmcdon April 27, 2016 Approximation-Regularization for Analysis

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

On Model Selection Consistency of Lasso

On Model Selection Consistency of Lasso On Model Selection Consistency of Lasso Peng Zhao Department of Statistics University of Berkeley 367 Evans Hall Berkeley, CA 94720-3860, USA Bin Yu Department of Statistics University of Berkeley 367

More information

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club

Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club Summary and discussion of: Exact Post-selection Inference for Forward Stepwise and Least Angle Regression Statistics Journal Club 36-825 1 Introduction Jisu Kim and Veeranjaneyulu Sadhanala In this report

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu, Daniel F. Schmidt, Enes Makalic, Guoqi Qian, and John L. Hopper Centre for Epidemiology and Biostatistics, Melbourne

More information

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu 1,2, Daniel F. Schmidt 1, Enes Makalic 1, Guoqi Qian 2, John L. Hopper 1 1 Centre for Epidemiology and Biostatistics,

More information

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich

DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO. By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich Submitted to the Annals of Statistics DISCUSSION OF A SIGNIFICANCE TEST FOR THE LASSO By Peter Bühlmann, Lukas Meier and Sara van de Geer ETH Zürich We congratulate Richard Lockhart, Jonathan Taylor, Ryan

More information

A General Framework for High-Dimensional Inference and Multiple Testing

A General Framework for High-Dimensional Inference and Multiple Testing A General Framework for High-Dimensional Inference and Multiple Testing Yang Ning Department of Statistical Science Joint work with Han Liu 1 Overview Goal: Control false scientific discoveries in high-dimensional

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Statistics for high-dimensional data: Group Lasso and additive models

Statistics for high-dimensional data: Group Lasso and additive models Statistics for high-dimensional data: Group Lasso and additive models Peter Bühlmann and Sara van de Geer Seminar für Statistik, ETH Zürich May 2012 The Group Lasso (Yuan & Lin, 2006) high-dimensional

More information

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives

A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives A New Perspective on Boosting in Linear Regression via Subgradient Optimization and Relatives Paul Grigas May 25, 2016 1 Boosting Algorithms in Linear Regression Boosting [6, 9, 12, 15, 16] is an extremely

More information

Biostatistics Advanced Methods in Biostatistics IV

Biostatistics Advanced Methods in Biostatistics IV Biostatistics 140.754 Advanced Methods in Biostatistics IV Jeffrey Leek Assistant Professor Department of Biostatistics jleek@jhsph.edu Lecture 12 1 / 36 Tip + Paper Tip: As a statistician the results

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA

The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA The Adaptive Lasso and Its Oracle Properties Hui Zou (2006), JASA Presented by Dongjun Chung March 12, 2010 Introduction Definition Oracle Properties Computations Relationship: Nonnegative Garrote Extensions:

More information

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R Xingguo Li Tuo Zhao Tong Zhang Han Liu Abstract We describe an R package named picasso, which implements a unified framework

More information

P-Values for High-Dimensional Regression

P-Values for High-Dimensional Regression P-Values for High-Dimensional Regression Nicolai einshausen Lukas eier Peter Bühlmann November 13, 2008 Abstract Assigning significance in high-dimensional regression is challenging. ost computationally

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Package Grace. R topics documented: April 9, Type Package

Package Grace. R topics documented: April 9, Type Package Type Package Package Grace April 9, 2017 Title Graph-Constrained Estimation and Hypothesis Tests Version 0.5.3 Date 2017-4-8 Author Sen Zhao Maintainer Sen Zhao Description Use

More information

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725

Gradient descent. Barnabas Poczos & Ryan Tibshirani Convex Optimization /36-725 Gradient descent Barnabas Poczos & Ryan Tibshirani Convex Optimization 10-725/36-725 1 Gradient descent First consider unconstrained minimization of f : R n R, convex and differentiable. We want to solve

More information

Variable Selection for Highly Correlated Predictors

Variable Selection for Highly Correlated Predictors Variable Selection for Highly Correlated Predictors Fei Xue and Annie Qu Department of Statistics, University of Illinois at Urbana-Champaign WHOA-PSI, Aug, 2017 St. Louis, Missouri 1 / 30 Background Variable

More information

Sparse recovery by thresholded non-negative least squares

Sparse recovery by thresholded non-negative least squares Sparse recovery by thresholded non-negative least squares Martin Slawski and Matthias Hein Department of Computer Science Saarland University Campus E., Saarbrücken, Germany {ms,hein}@cs.uni-saarland.de

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. August 2008 Trevor

More information

Uncertainty quantification in high-dimensional statistics

Uncertainty quantification in high-dimensional statistics Uncertainty quantification in high-dimensional statistics Peter Bühlmann ETH Zürich based on joint work with Sara van de Geer Nicolai Meinshausen Lukas Meier 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

More information

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725

Proximal Newton Method. Ryan Tibshirani Convex Optimization /36-725 Proximal Newton Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: primal-dual interior-point method Given the problem min x subject to f(x) h i (x) 0, i = 1,... m Ax = b where f, h

More information

On High-Dimensional Cross-Validation

On High-Dimensional Cross-Validation On High-Dimensional Cross-Validation BY WEI-CHENG HSIAO Institute of Statistical Science, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei 11529, Taiwan hsiaowc@stat.sinica.edu.tw 5 WEI-YING

More information

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS

ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Statistica Sinica 18(2008), 1603-1618 ADAPTIVE LASSO FOR SPARSE HIGH-DIMENSIONAL REGRESSION MODELS Jian Huang, Shuangge Ma and Cun-Hui Zhang University of Iowa, Yale University and Rutgers University Abstract:

More information

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution

MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution 1/16 MATH 829: Introduction to Data Mining and Analysis Computing the lasso solution Dominique Guillot Departments of Mathematical Sciences University of Delaware February 26, 2016 Computing the lasso

More information

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation

Shrinkage Tuning Parameter Selection in Precision Matrices Estimation arxiv:0909.1123v1 [stat.me] 7 Sep 2009 Shrinkage Tuning Parameter Selection in Precision Matrices Estimation Heng Lian Division of Mathematical Sciences School of Physical and Mathematical Sciences Nanyang

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

High-dimensional Ordinary Least-squares Projection for Screening Variables

High-dimensional Ordinary Least-squares Projection for Screening Variables 1 / 38 High-dimensional Ordinary Least-squares Projection for Screening Variables Chenlei Leng Joint with Xiangyu Wang (Duke) Conference on Nonparametric Statistics for Big Data and Celebration to Honor

More information

Robust Variable Selection Through MAVE

Robust Variable Selection Through MAVE Robust Variable Selection Through MAVE Weixin Yao and Qin Wang Abstract Dimension reduction and variable selection play important roles in high dimensional data analysis. Wang and Yin (2008) proposed sparse

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Fast Regularization Paths via Coordinate Descent

Fast Regularization Paths via Coordinate Descent KDD August 2008 Trevor Hastie, Stanford Statistics 1 Fast Regularization Paths via Coordinate Descent Trevor Hastie Stanford University joint work with Jerry Friedman and Rob Tibshirani. KDD August 2008

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

The risk of machine learning

The risk of machine learning / 33 The risk of machine learning Alberto Abadie Maximilian Kasy July 27, 27 2 / 33 Two key features of machine learning procedures Regularization / shrinkage: Improve prediction or estimation performance

More information

ORIE 4741: Learning with Big Messy Data. Regularization

ORIE 4741: Learning with Big Messy Data. Regularization ORIE 4741: Learning with Big Messy Data Regularization Professor Udell Operations Research and Information Engineering Cornell October 26, 2017 1 / 24 Regularized empirical risk minimization choose model

More information

Least Absolute Shrinkage is Equivalent to Quadratic Penalization

Least Absolute Shrinkage is Equivalent to Quadratic Penalization Least Absolute Shrinkage is Equivalent to Quadratic Penalization Yves Grandvalet Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne, BP 20.529, 60205 Compiègne Cedex, France Yves.Grandvalet@hds.utc.fr

More information

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss

An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss An efficient ADMM algorithm for high dimensional precision matrix estimation via penalized quadratic loss arxiv:1811.04545v1 [stat.co] 12 Nov 2018 Cheng Wang School of Mathematical Sciences, Shanghai Jiao

More information

Sparse survival regression

Sparse survival regression Sparse survival regression Anders Gorst-Rasmussen gorst@math.aau.dk Department of Mathematics Aalborg University November 2010 1 / 27 Outline Penalized survival regression The semiparametric additive risk

More information

Comparisons of penalized least squares. methods by simulations

Comparisons of penalized least squares. methods by simulations Comparisons of penalized least squares arxiv:1405.1796v1 [stat.co] 8 May 2014 methods by simulations Ke ZHANG, Fan YIN University of Science and Technology of China, Hefei 230026, China Shifeng XIONG Academy

More information

The Iterated Lasso for High-Dimensional Logistic Regression

The Iterated Lasso for High-Dimensional Logistic Regression The Iterated Lasso for High-Dimensional Logistic Regression By JIAN HUANG Department of Statistics and Actuarial Science, 241 SH University of Iowa, Iowa City, Iowa 52242, U.S.A. SHUANGE MA Division of

More information

arxiv: v2 [stat.me] 29 Jul 2017

arxiv: v2 [stat.me] 29 Jul 2017 arxiv:177.8692v2 [stat.me] 29 Jul 217 Extended Comparisons of Best Subset Selection, Forward Stepwise Selection, and the Lasso Following Best Subset Selection from a Modern Optimization Lens by Bertsimas,

More information

Sparse Additive machine

Sparse Additive machine Sparse Additive machine Tuo Zhao Han Liu Department of Biostatistics and Computer Science, Johns Hopkins University Abstract We develop a high dimensional nonparametric classification method named sparse

More information

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization

Proximal Newton Method. Zico Kolter (notes by Ryan Tibshirani) Convex Optimization Proximal Newton Method Zico Kolter (notes by Ryan Tibshirani) Convex Optimization 10-725 Consider the problem Last time: quasi-newton methods min x f(x) with f convex, twice differentiable, dom(f) = R

More information

The lasso: some novel algorithms and applications

The lasso: some novel algorithms and applications 1 The lasso: some novel algorithms and applications Newton Institute, June 25, 2008 Robert Tibshirani Stanford University Collaborations with Trevor Hastie, Jerome Friedman, Holger Hoefling, Gen Nowak,

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

An Introduction to Graphical Lasso

An Introduction to Graphical Lasso An Introduction to Graphical Lasso Bo Chang Graphical Models Reading Group May 15, 2015 Bo Chang (UBC) Graphical Lasso May 15, 2015 1 / 16 Undirected Graphical Models An undirected graph, each vertex represents

More information

Machine Learning. Regression basics. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Regression basics. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Regression basics Linear regression, non-linear features (polynomial, RBFs, piece-wise), regularization, cross validation, Ridge/Lasso, kernel trick Marc Toussaint University of Stuttgart

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008

Regularized Estimation of High Dimensional Covariance Matrices. Peter Bickel. January, 2008 Regularized Estimation of High Dimensional Covariance Matrices Peter Bickel Cambridge January, 2008 With Thanks to E. Levina (Joint collaboration, slides) I. M. Johnstone (Slides) Choongsoon Bae (Slides)

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

A Modern Look at Classical Multivariate Techniques

A Modern Look at Classical Multivariate Techniques A Modern Look at Classical Multivariate Techniques Yoonkyung Lee Department of Statistics The Ohio State University March 16-20, 2015 The 13th School of Probability and Statistics CIMAT, Guanajuato, Mexico

More information

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression

Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Stepwise Searching for Feature Variables in High-Dimensional Linear Regression Qiwei Yao Department of Statistics, London School of Economics q.yao@lse.ac.uk Joint work with: Hongzhi An, Chinese Academy

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Lass0: sparse non-convex regression by local search

Lass0: sparse non-convex regression by local search Lass0: sparse non-convex regression by local search William Herlands Maria De-Arteaga Daniel Neill Artur Dubrawski Carnegie Mellon University herlands@cmu.edu, mdeartea@andrew.cmu.edu, neill@cs.cmu.edu,

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Identifying a Minimal Class of Models for High dimensional Data

Identifying a Minimal Class of Models for High dimensional Data Journal of Machine Learning Research 18 (2017) 1-29 Submitted 4/16; Revised 1/17; Published 4/17 Identifying a Minimal Class of Models for High dimensional Data Daniel Nevo Department of Statistics The

More information

Permutation-invariant regularization of large covariance matrices. Liza Levina

Permutation-invariant regularization of large covariance matrices. Liza Levina Liza Levina Permutation-invariant covariance regularization 1/42 Permutation-invariant regularization of large covariance matrices Liza Levina Department of Statistics University of Michigan Joint work

More information

A significance test for the lasso

A significance test for the lasso 1 First part: Joint work with Richard Lockhart (SFU), Jonathan Taylor (Stanford), and Ryan Tibshirani (Carnegie-Mellon Univ.) Second part: Joint work with Max Grazier G Sell, Stefan Wager and Alexandra

More information

A note on the group lasso and a sparse group lasso

A note on the group lasso and a sparse group lasso A note on the group lasso and a sparse group lasso arxiv:1001.0736v1 [math.st] 5 Jan 2010 Jerome Friedman Trevor Hastie and Robert Tibshirani January 5, 2010 Abstract We consider the group lasso penalty

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information