The risk of machine learning

Size: px
Start display at page:

Download "The risk of machine learning"

Transcription

1 / 33 The risk of machine learning Alberto Abadie Maximilian Kasy July 27, 27

2 2 / 33 Two key features of machine learning procedures Regularization / shrinkage: Improve prediction or estimation performance by trading off variance and bias ( avoiding overfitting ) 2 Data-dependent choice of tuning parameters: Try to do trade-off optimally Large number of methods: Regularization: Tuning: Ridge, Lasso, Pre-testing, Trees, Neural Networks, Support Vector Machines,... Cross-validation (CV), Stein s Unbiased Risk Estimate (SURE), Empirical Bayes (marginal likelihood),...

3 3 / 33 Questions facing the empirical researcher When should we bother with regularization? 2 What kind of regularization should we choose? What features of the data generating process matter for this choice? 3 When do CV or SURE work for tuning?

4 4 / 33 Roadmap Our answers to these questions A stylized setting: Estimation of many means Backing up our answers, using Theory 2 Empirical examples 3 Simulations Conclusion and summary of our formal contributions

5 ) When should we bother with regularization? Answer: Can reduce risk (mean squared error) when there are many parameters, and we care about point-estimates for each of these. Examples: Causal / predictive effects, many treatment values: Location effects: Chetty and Hendren (2) Teacher effects: Chetty et al. (24) Worker and firm effects: Abowd et al. (999), Card et al. (22) Judge effects: Abrams et al. (22) Binary treatment, many subgroups: Class size effect for different demographic groups: Krueger (999) Event studies: DellaVigna and La Ferrara (2) (many treatments and many treated units) Prediction with many predictive covariates / transformations of covariates: Macro forecasting: Stock and Watson (22) Series regression: Newey (997) / 33

6 6 / 33 2) What kind of regularization should we choose? Answer: Depends on the setting / distribution of parameters. Parameters smoothly distributed, no true zeros: Ridge / linear shrinkage e.g.: location effects (Chetty and Hendren, 2) Arguably most common case in econ settings. Many true zeros, non-zeros well separated: Pre-testing / hard thresholding e.g.: large fixed costs for non-zero behavior (DellaVigna and La Ferrara, 2) Rare! Many true zeros, non-zeros not well separated (intermediate case): Lasso / soft thresholding Robust choice for many settings.

7 7 / 33 3) When do CV or SURE work for tuning? Answer: CV and SURE are uniformly close to the oracle-optimum in high-dimensional settings. Intuition: Optimal tuning depends on the distribution of parameters. When there are many parameters, we can learn this distribution. Requirements: SURE: normality 2 CV: number of observations number of parameters

8 8 / 33 Stylized setting: Estimation of many means We observe n independent random variables X,...,X n, where Componentwise estimators: Squared error loss: E[X i ] = µ i, Var(X i ) = σ 2 i. µ i = m(x i,λ) L( µ, µ) = n ( µ i µ i ) 2 i Many applications: X i equal to OLS estimated coefficients Connection to linear regression and prediction

9 9 / 33 Example Chetty, R. and Hendren, N. (2). The impacts of neighborhoods on intergenerational mobility: Childhood exposure effects and county-level estimates. Working Paper, Harvard University and NBER. µ i : causal effect of growing up in commuting zone i X i : unbiased but noisy estimate of µ i identified from sibling differences of families moving between locations

10 / 33 Componentwise estimators Ridge: Lasso: Pre-test: ( m R (x,λ) = argmin (x c) 2 + λ c 2) c R = + λ x. ( m L (x,λ) = argmin (x c) 2 + 2λ c ) c R = (x < λ)(x + λ) + (x > λ)(x λ). m PT (x,λ) = ( x > λ)x.

11 m / 33 Componentwise estimators Ridge Pretest Lasso X (Ridge: λ =, Pretest: λ = 4, Lasso: λ = 2)

12 2 / 33 Risk Risk = expected loss = mean squared error Conceptual subtlety: Think of µ i (more generally: P i ) as fixed or random? Compound risk: µ,..., µ n as fixed effects, average over their sample distribution: R n (m(,λ),p) = n n i= E[(m(X i,λ) µ i ) 2 P i ] Empirical Bayes risk: µ,..., µ n as random effects, average over their population distribution: where (X i, µ i ) π R(m(,λ),π) = E π [(m(x i,λ) µ i ) 2 ],

13 3 / 33 Characterizing mean squared error Random effects setting: Joint distribution (X, µ) π Conditional expectation: m π(x) = E π [µ X = x] Theorem: The empirical Bayes risk of m(,λ) can be written as R = const. + E π [ (m(x,λ) m π (X)) 2], Performance of estimator m(, λ) depends on how closely it approximates m π( ). Fixed effects / compound risk: Completely analogous, with empirical distribution µ,..., µ n instead of π.

14 4 / 33 A useful family of examples: Spike and normal DGP Assume X i N(µ i,) Distribution of µ i across i: Fraction p µ i = Fraction p µ i N(µ,σ 2) Covers many interesting settings: p = : smooth distribution of true parameters p, µ and σ 2 large: sparsity, non-zeros well separated

15 / 33 Comparing risk Consider ridge, lasso, pre-test, optimal shrinkage function. Assume λ is chosen optimally (will return to that). Can calculate, compare, and plot mean squared error: By construction smaller than ( = risk of unregularized estimator, λ = ), larger than risk for optimal shrinkage m π( ) (by previous theorem). Paper: Analytic risk functions R.

16 Best estimator p =. p = σ σ µ µ p =. p = σ σ µ µ is ridge, x is lasso, is pretest 6 / 33

17 7 / 33 Mean squared error p =... σ µ σ ridge lasso µ.. σ µ σ pretest optimal µ

18 7 / 33 Mean squared error p =.2.. σ µ σ ridge lasso µ.. σ µ σ pretest optimal µ

19 7 / 33 Mean squared error p =.4.. σ µ σ ridge lasso µ.. σ µ σ pretest optimal µ

20 7 / 33 Mean squared error p =.6.. σ µ σ ridge lasso µ.. σ µ σ pretest optimal µ

21 7 / 33 Mean squared error p =.8.. σ µ σ ridge lasso µ.. σ µ σ pretest optimal µ

22 8 / 33 Estimating λ So far: Benchmark of optimal (oracle) λ. Can we consistently estimate λ, and do almost as well as if we knew it? Answer: Yes, for large n, suitably bounded moments. We show this for two methods: Stein s Unbiased Risk Estimate (SURE) (requires normality) 2 Cross-validation (CV) (requires panel data)

23 9 / 33 Uniform loss consistency Shorthand notation for loss: L n (λ) = n (m(x i,λ) µ i ) 2 i Definition: Uniform loss consistency of m(., λ) for m(., λ ): sup π ( Ln P π ( λ) L n ( λ ) > ε as n for all ε >, where P i iid π. )

24 2 / 33 Minimizing estimated risk Estimate λ by minimizing estimated risk: λ = argmin λ R(λ) Different estimators R(λ) of risk: CV, SURE Theorem: Regularization using SURE or CV is uniformly loss consistent as n in the random effects setting under some regularity conditions. Contrast with Leeb and Pötscher (26)! (fixed dimension of parameter vector) Key ingredient: uniform laws of larger numbers to get convergence of L n (λ), R(λ).

25 2 / 33 Two methods to estimate risk Stein s Unbiased Risk Estimate (SURE) Requires normality of X i. R(λ) = n (m(x i,λ) X i ) 2 + penalty i 2 Ridge : +λ penalty = Lasso : 2P n ( X > λ) Pre-test : 2P n ( X > λ) + 2λ ( f( λ) + f(λ)) 2 Cross validation (CV) Requires multiple observations X ij for µ i. R(λ) = kn n k i= j= (m(x i, j,λ) X ij ) 2 X i, j = leave-one-out-mean.

26 22 / 33 Applications Neighborhood effects: The effect of location during childhood on adult income (Chetty and Hendren, 2) Arms trading event study: Changes in the stock prices of arms manufacturers following changes in the intensity of conflicts in countries under arms trade embargoes (DellaVigna and La Ferrara, 2) Nonparametric Mincer equation: A nonparametric regression equation of log wages on education and potential experience (Belloni and Chernozhukov, 2)

27 23 / 33 Estimated Risk Stein s unbiased risk estimate R at the optimized tuning parameter λ for each application and estimator considered. n Ridge Lasso Pre-test location effects 9 R λ arms trade 24 R λ returns to education 6 R λ..9.4

28 SURE(6) Neighborhood effects: SURE estimates.8 SURE as function of 6 ridge lasso pretest / 33

29 bm(x) Neighborhood effects: shrinkage estimators 2. Shrinkage estimators x Kernel estimate of the density of X b f(x) x Solid line in top figure is an estimate of m π(x) 2 / 33

30 SURE(6) Arms event study: SURE estimates.8 SURE as function of 6 ridge lasso pretest / 33

31 bm(x) Arms event study: shrinkage estimators 4 Shrinkage estimators x Kernel estimate of the density of X b f(x) x Solid line in top figure is an estimate of m π(x) 27 / 33

32 SURE(6) Mincer regression: SURE estimates.2. SURE as function of 6 ridge lasso pretest / 33

33 bm(x) Mincer regression: shrinkage estimators Shrinkage estimators x Kernel estimate of the density of X b f(x) x Solid line in top figure is an estimate of m π(x) 29 / 33

34 3 / 33 Monte Carlo simulations Spike and normal DGP Number of parameters n =,2, λ chosen using SURE, CV with 4,2 folds Relative performance: As predicted. Simulation results

35 3 / 33 Summary and Conclusion We study the risk properties of machine learning estimators in the context of the problem of estimating many means µ i based on observations X i We provide a simple characterization of the risk of machine learning estimators based on proximity to the optimal shrinkage function We use a spike-and-normal setting to investigate how simple features of the DGP affect the relative performance of the different estimators We obtain uniform loss consistency results under SURE and CV based choices of regularization parameters We use data from recent empirical studies to demonstrate the practical applicability of our findings

36 32 / 33 Recommendations for empirical work Use regularization / shrinkage when you have many parameters of interest, and high variance (overfitting) is a concern. 2 Pick a regularization method appropriate for your application: Ridge: Smoothly distributed true effects, no special role of zero: 2 Pre-testing: Many zeros, non-zeros well separated 3 Lasso: Robust choice, especially for series regression / prediction 3 Use CV or SURE in high dimensional settings, when number of observations number of parameters.

37 Thank you! 33 / 33

38 Connection to linear regression and prediction Normal linear regression model: Y W N(W β,σ 2 ). Sample W,...,W n. Let Ω = N N j= W jw j. Draw new value of covariates from sample for prediction. Expected squared prediction error R = E [(Y W β) ] ( ) 2 = tr Ω E[( β β)( β β) ] + σ 2. Orthogonalize: Let µ = Ω /2 β, X = Ω /2 β OLS, µi = m(x i,λ). Then and X N (µ, σ 2 N I n ), [ ] R = E ( µ i µ i ) 2 + E[ε 2 ]. i Back / 4

39 2 / 4 Table: Average Compound Loss Across Simulations with N = SURE Cross-Validation Cross-Validation NPEB (k = 4) (k = 2) p µ σ ridge lasso pretest ridge lasso pretest ridge lasso pretest

40 3 / 4 Table: Average Compound Loss Across Simulations with N = 2 SURE Cross-Validation Cross-Validation NPEB (k = 4) (k = 2) p µ σ ridge lasso pretest ridge lasso pretest ridge lasso pretest

41 4 / 4 Table: Average Compound Loss Across Simulations with N = SURE Cross-Validation Cross-Validation NPEB (k = 4) (k = 2) p µ σ ridge lasso pretest ridge lasso pretest ridge lasso pretest Back

Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory

Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory Habilitationsvortrag: Machine learning, shrinkage estimation, and economic theory Maximilian Kasy May 25, 218 1 / 27 Introduction Recent years saw a boom of machine learning methods. Impressive advances

More information

Machine learning, shrinkage estimation, and economic theory

Machine learning, shrinkage estimation, and economic theory Machine learning, shrinkage estimation, and economic theory Maximilian Kasy December 14, 2018 1 / 43 Introduction Recent years saw a boom of machine learning methods. Impressive advances in domains such

More information

The Risk of Machine Learning

The Risk of Machine Learning The Risk of Machine Learning Alberto Abadie MIT Maximilian Kasy Harvard University August, 7 Abstract Many applied settings in empirical economics involve simultaneous estimation of a large number of parameters.

More information

The Risk of Machine Learning

The Risk of Machine Learning The Risk of Machine Learning Alberto Abadie MIT Maximilian Kasy Harvard University February, 7 Abstract Many applied settings in empirical economics involve simultaneous estimation of a large number of

More information

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines

Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Econ 2148, fall 2017 Gaussian process priors, reproducing kernel Hilbert spaces, and Splines Maximilian Kasy Department of Economics, Harvard University 1 / 37 Agenda 6 equivalent representations of the

More information

Econ 2140, spring 2018, Part IIa Statistical Decision Theory

Econ 2140, spring 2018, Part IIa Statistical Decision Theory Econ 2140, spring 2018, Part IIa Maximilian Kasy Department of Economics, Harvard University 1 / 35 Examples of decision problems Decide whether or not the hypothesis of no racial discrimination in job

More information

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility

Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility American Economic Review: Papers & Proceedings 2016, 106(5): 400 404 http://dx.doi.org/10.1257/aer.p20161082 Fixed Effects, Invariance, and Spatial Variation in Intergenerational Mobility By Gary Chamberlain*

More information

Why experimenters should not randomize, and what they should do instead

Why experimenters should not randomize, and what they should do instead Why experimenters should not randomize, and what they should do instead Maximilian Kasy Department of Economics, Harvard University Maximilian Kasy (Harvard) Experimental design 1 / 42 project STAR Introduction

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

COMS 4771 Regression. Nakul Verma

COMS 4771 Regression. Nakul Verma COMS 4771 Regression Nakul Verma Last time Support Vector Machines Maximum Margin formulation Constrained Optimization Lagrange Duality Theory Convex Optimization SVM dual and Interpretation How get the

More information

Ultra High Dimensional Variable Selection with Endogenous Variables

Ultra High Dimensional Variable Selection with Endogenous Variables 1 / 39 Ultra High Dimensional Variable Selection with Endogenous Variables Yuan Liao Princeton University Joint work with Jianqing Fan Job Market Talk January, 2012 2 / 39 Outline 1 Examples of Ultra High

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina

Direct Learning: Linear Regression. Donglin Zeng, Department of Biostatistics, University of North Carolina Direct Learning: Linear Regression Parametric learning We consider the core function in the prediction rule to be a parametric function. The most commonly used function is a linear function: squared loss:

More information

Econ 2148, spring 2019 Statistical decision theory

Econ 2148, spring 2019 Statistical decision theory Econ 2148, spring 2019 Statistical decision theory Maximilian Kasy Department of Economics, Harvard University 1 / 53 Takeaways for this part of class 1. A general framework to think about what makes a

More information

High-dimensional regression with unknown variance

High-dimensional regression with unknown variance High-dimensional regression with unknown variance Christophe Giraud Ecole Polytechnique march 2012 Setting Gaussian regression with unknown variance: Y i = f i + ε i with ε i i.i.d. N (0, σ 2 ) f = (f

More information

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Gaussian Processes Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 01 Pictorial view of embedding distribution Transform the entire distribution to expected features Feature space Feature

More information

41903: Introduction to Nonparametrics

41903: Introduction to Nonparametrics 41903: Notes 5 Introduction Nonparametrics fundamentally about fitting flexible models: want model that is flexible enough to accommodate important patterns but not so flexible it overspecializes to specific

More information

Final Overview. Introduction to ML. Marek Petrik 4/25/2017

Final Overview. Introduction to ML. Marek Petrik 4/25/2017 Final Overview Introduction to ML Marek Petrik 4/25/2017 This Course: Introduction to Machine Learning Build a foundation for practice and research in ML Basic machine learning concepts: max likelihood,

More information

Problem Set 7. Ideally, these would be the same observations left out when you

Problem Set 7. Ideally, these would be the same observations left out when you Business 4903 Instructor: Christian Hansen Problem Set 7. Use the data in MROZ.raw to answer this question. The data consist of 753 observations. Before answering any of parts a.-b., remove 253 observations

More information

Econ 583 Final Exam Fall 2008

Econ 583 Final Exam Fall 2008 Econ 583 Final Exam Fall 2008 Eric Zivot December 11, 2008 Exam is due at 9:00 am in my office on Friday, December 12. 1 Maximum Likelihood Estimation and Asymptotic Theory Let X 1,...,X n be iid random

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Machine Learning. Regression basics. Marc Toussaint University of Stuttgart Summer 2015

Machine Learning. Regression basics. Marc Toussaint University of Stuttgart Summer 2015 Machine Learning Regression basics Linear regression, non-linear features (polynomial, RBFs, piece-wise), regularization, cross validation, Ridge/Lasso, kernel trick Marc Toussaint University of Stuttgart

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Stochastic Gradient Descent

Stochastic Gradient Descent Stochastic Gradient Descent Machine Learning CSE546 Carlos Guestrin University of Washington October 9, 2013 1 Logistic Regression Logistic function (or Sigmoid): Learn P(Y X) directly Assume a particular

More information

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015

CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 CSE446: Linear Regression Regulariza5on Bias / Variance Tradeoff Winter 2015 Luke ZeElemoyer Slides adapted from Carlos Guestrin Predic5on of con5nuous variables Billionaire says: Wait, that s not what

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

COMS 4771 Introduction to Machine Learning. James McInerney Adapted from slides by Nakul Verma

COMS 4771 Introduction to Machine Learning. James McInerney Adapted from slides by Nakul Verma COMS 4771 Introduction to Machine Learning James McInerney Adapted from slides by Nakul Verma Announcements HW1: Please submit as a group Watch out for zero variance features (Q5) HW2 will be released

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning 3. Instance Based Learning Alex Smola Carnegie Mellon University http://alex.smola.org/teaching/cmu2013-10-701 10-701 Outline Parzen Windows Kernels, algorithm Model selection

More information

Lecture 2 Machine Learning Review

Lecture 2 Machine Learning Review Lecture 2 Machine Learning Review CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago March 29, 2017 Things we will look at today Formal Setup for Supervised Learning Things

More information

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet.

The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. CS 189 Spring 013 Introduction to Machine Learning Final You have 3 hours for the exam. The exam is closed book, closed notes except your one-page (two sides) or two-page (one side) crib sheet. Please

More information

Linear regression methods

Linear regression methods Linear regression methods Most of our intuition about statistical methods stem from linear regression. For observations i = 1,..., n, the model is Y i = p X ij β j + ε i, j=1 where Y i is the response

More information

Support Vector Machine I

Support Vector Machine I Support Vector Machine I Jia-Bin Huang ECE-5424G / CS-5824 Virginia Tech Spring 2019 Administrative Please use piazza. No emails. HW 0 grades are back. Re-grade request for one week. HW 1 due soon. HW

More information

The prediction of house price

The prediction of house price 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Section 7 Model Assessment This section is based on Stock and Watson s Chapter 9. Internal vs. external validity Internal validity refers to whether the analysis is valid for the population and sample

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă

STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă STAT 535 Lecture 5 November, 2018 Brief overview of Model Selection and Regularization c Marina Meilă mmp@stat.washington.edu Reading: Murphy: BIC, AIC 8.4.2 (pp 255), SRM 6.5 (pp 204) Hastie, Tibshirani

More information

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning

Lecture 3: More on regularization. Bayesian vs maximum likelihood learning Lecture 3: More on regularization. Bayesian vs maximum likelihood learning L2 and L1 regularization for linear estimators A Bayesian interpretation of regularization Bayesian vs maximum likelihood fitting

More information

Econometrics in a nutshell: Variation and Identification Linear Regression Model in STATA. Research Methods. Carlos Noton.

Econometrics in a nutshell: Variation and Identification Linear Regression Model in STATA. Research Methods. Carlos Noton. 1/17 Research Methods Carlos Noton Term 2-2012 Outline 2/17 1 Econometrics in a nutshell: Variation and Identification 2 Main Assumptions 3/17 Dependent variable or outcome Y is the result of two forces:

More information

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question

Reminders. Thought questions should be submitted on eclass. Please list the section related to the thought question Linear regression Reminders Thought questions should be submitted on eclass Please list the section related to the thought question If it is a more general, open-ended question not exactly related to a

More information

Dimension Reduction Methods

Dimension Reduction Methods Dimension Reduction Methods And Bayesian Machine Learning Marek Petrik 2/28 Previously in Machine Learning How to choose the right features if we have (too) many options Methods: 1. Subset selection 2.

More information

Cross-Validation with Confidence

Cross-Validation with Confidence Cross-Validation with Confidence Jing Lei Department of Statistics, Carnegie Mellon University WHOA-PSI Workshop, St Louis, 2017 Quotes from Day 1 and Day 2 Good model or pure model? Occam s razor We really

More information

A Magiv CV Theory for Large-Margin Classifiers

A Magiv CV Theory for Large-Margin Classifiers A Magiv CV Theory for Large-Margin Classifiers Hui Zou School of Statistics, University of Minnesota June 30, 2018 Joint work with Boxiang Wang Outline 1 Background 2 Magic CV formula 3 Magic support vector

More information

PAC-learning, VC Dimension and Margin-based Bounds

PAC-learning, VC Dimension and Margin-based Bounds More details: General: http://www.learning-with-kernels.org/ Example of more complex bounds: http://www.research.ibm.com/people/t/tzhang/papers/jmlr02_cover.ps.gz PAC-learning, VC Dimension and Margin-based

More information

Quantile Regression for Panel/Longitudinal Data

Quantile Regression for Panel/Longitudinal Data Quantile Regression for Panel/Longitudinal Data Roger Koenker University of Illinois, Urbana-Champaign University of Minho 12-14 June 2017 y it 0 5 10 15 20 25 i = 1 i = 2 i = 3 0 2 4 6 8 Roger Koenker

More information

Model Selection for Gaussian Processes

Model Selection for Gaussian Processes Institute for Adaptive and Neural Computation School of Informatics,, UK December 26 Outline GP basics Model selection: covariance functions and parameterizations Criteria for model selection Marginal

More information

Cross-Validation with Confidence

Cross-Validation with Confidence Cross-Validation with Confidence Jing Lei Department of Statistics, Carnegie Mellon University UMN Statistics Seminar, Mar 30, 2017 Overview Parameter est. Model selection Point est. MLE, M-est.,... Cross-validation

More information

IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade

IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade IV Quantile Regression for Group-level Treatments, with an Application to the Distributional Effects of Trade Denis Chetverikov Brad Larsen Christopher Palmer UCLA, Stanford and NBER, UC Berkeley September

More information

Recap from previous lecture

Recap from previous lecture Recap from previous lecture Learning is using past experience to improve future performance. Different types of learning: supervised unsupervised reinforcement active online... For a machine, experience

More information

Nonparametric Bayesian Methods (Gaussian Processes)

Nonparametric Bayesian Methods (Gaussian Processes) [70240413 Statistical Machine Learning, Spring, 2015] Nonparametric Bayesian Methods (Gaussian Processes) Jun Zhu dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent

More information

arxiv: v2 [math.st] 9 Feb 2017

arxiv: v2 [math.st] 9 Feb 2017 Submitted to the Annals of Statistics PREDICTION ERROR AFTER MODEL SEARCH By Xiaoying Tian Harris, Department of Statistics, Stanford University arxiv:1610.06107v math.st 9 Feb 017 Estimation of the prediction

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 6: Model complexity scores (v3) Ramesh Johari ramesh.johari@stanford.edu Fall 2015 1 / 34 Estimating prediction error 2 / 34 Estimating prediction error We saw how we can estimate

More information

Applied Machine Learning Annalisa Marsico

Applied Machine Learning Annalisa Marsico Applied Machine Learning Annalisa Marsico OWL RNA Bionformatics group Max Planck Institute for Molecular Genetics Free University of Berlin 22 April, SoSe 2015 Goals Feature Selection rather than Feature

More information

Data analysis strategies for high dimensional social science data M3 Conference May 2013

Data analysis strategies for high dimensional social science data M3 Conference May 2013 Data analysis strategies for high dimensional social science data M3 Conference May 2013 W. Holmes Finch, Maria Hernández Finch, David E. McIntosh, & Lauren E. Moss Ball State University High dimensional

More information

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models

Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Statistics 203: Introduction to Regression and Analysis of Variance Penalized models Jonathan Taylor - p. 1/15 Today s class Bias-Variance tradeoff. Penalized regression. Cross-validation. - p. 2/15 Bias-variance

More information

On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong

On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality. Weiqiang Dong On Bias, Variance, 0/1-Loss, and the Curse-of-Dimensionality Weiqiang Dong 1 The goal of the work presented here is to illustrate that classification error responds to error in the target probability estimates

More information

Probability and Statistical Decision Theory

Probability and Statistical Decision Theory Tufts COMP 135: Introduction to Machine Learning https://www.cs.tufts.edu/comp/135/2019s/ Probability and Statistical Decision Theory Many slides attributable to: Erik Sudderth (UCI) Prof. Mike Hughes

More information

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11

Peter Hoff Minimax estimation October 31, Motivation and definition. 2 Least favorable prior 3. 3 Least favorable prior sequence 11 Contents 1 Motivation and definition 1 2 Least favorable prior 3 3 Least favorable prior sequence 11 4 Nonparametric problems 15 5 Minimax and admissibility 18 6 Superefficiency and sparsity 19 Most of

More information

Qualifying Exam in Machine Learning

Qualifying Exam in Machine Learning Qualifying Exam in Machine Learning October 20, 2009 Instructions: Answer two out of the three questions in Part 1. In addition, answer two out of three questions in two additional parts (choose two parts

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

Is the test error unbiased for these programs?

Is the test error unbiased for these programs? Is the test error unbiased for these programs? Xtrain avg N o Preprocessing by de meaning using whole TEST set 2017 Kevin Jamieson 1 Is the test error unbiased for this program? e Stott see non for f x

More information

Sample questions for Fundamentals of Machine Learning 2018

Sample questions for Fundamentals of Machine Learning 2018 Sample questions for Fundamentals of Machine Learning 2018 Teacher: Mohammad Emtiyaz Khan A few important informations: In the final exam, no electronic devices are allowed except a calculator. Make sure

More information

Short Questions (Do two out of three) 15 points each

Short Questions (Do two out of three) 15 points each Econometrics Short Questions Do two out of three) 5 points each ) Let y = Xβ + u and Z be a set of instruments for X When we estimate β with OLS we project y onto the space spanned by X along a path orthogonal

More information

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c

cxx ab.ec Warm up OH 2 ax 16 0 axtb Fix any a, b, c > What is the x 2 R that minimizes ax 2 + bx + c Warm up D cai.yo.ie p IExrL9CxsYD Sglx.Ddl f E Luo fhlexi.si dbll Fix any a, b, c > 0. 1. What is the x 2 R that minimizes ax 2 + bx + c x a b Ta OH 2 ax 16 0 x 1 Za fhkxiiso3ii draulx.h dp.d 2. What is

More information

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity

Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity Bayesian regression tree models for causal inference: regularization, confounding and heterogeneity P. Richard Hahn, Jared Murray, and Carlos Carvalho June 22, 2017 The problem setting We want to estimate

More information

Transparent Structural Estimation. Matthew Gentzkow Fisher-Schultz Lecture (from work w/ Isaiah Andrews & Jesse M. Shapiro)

Transparent Structural Estimation. Matthew Gentzkow Fisher-Schultz Lecture (from work w/ Isaiah Andrews & Jesse M. Shapiro) Transparent Structural Estimation Matthew Gentzkow Fisher-Schultz Lecture (from work w/ Isaiah Andrews & Jesse M. Shapiro) 1 A hallmark of contemporary applied microeconomics is a conceptual framework

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2014 Exam policy: This exam allows two one-page, two-sided cheat sheets (i.e. 4 sides); No other materials. Time: 2 hours. Be sure to write

More information

Degrees of Freedom in Regression Ensembles

Degrees of Freedom in Regression Ensembles Degrees of Freedom in Regression Ensembles Henry WJ Reeve Gavin Brown University of Manchester - School of Computer Science Kilburn Building, University of Manchester, Oxford Rd, Manchester M13 9PL Abstract.

More information

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013

UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 UNIVERSITY of PENNSYLVANIA CIS 520: Machine Learning Final, Fall 2013 Exam policy: This exam allows two one-page, two-sided cheat sheets; No other materials. Time: 2 hours. Be sure to write your name and

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Rirdge Regression. Szymon Bobek. Institute of Applied Computer science AGH University of Science and Technology

Rirdge Regression. Szymon Bobek. Institute of Applied Computer science AGH University of Science and Technology Rirdge Regression Szymon Bobek Institute of Applied Computer science AGH University of Science and Technology Based on Carlos Guestrin adn Emily Fox slides from Coursera Specialization on Machine Learnign

More information

Introduction to Gaussian Process

Introduction to Gaussian Process Introduction to Gaussian Process CS 778 Chris Tensmeyer CS 478 INTRODUCTION 1 What Topic? Machine Learning Regression Bayesian ML Bayesian Regression Bayesian Non-parametric Gaussian Process (GP) GP Regression

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Midterm: CS 6375 Spring 2015 Solutions

Midterm: CS 6375 Spring 2015 Solutions Midterm: CS 6375 Spring 2015 Solutions The exam is closed book. You are allowed a one-page cheat sheet. Answer the questions in the spaces provided on the question sheets. If you run out of room for an

More information

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001)

Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Paper Review: Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties by Jianqing Fan and Runze Li (2001) Presented by Yang Zhao March 5, 2010 1 / 36 Outlines 2 / 36 Motivation

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

How to use economic theory to improve estimators: shrinking toward theoretical restrictions

How to use economic theory to improve estimators: shrinking toward theoretical restrictions How to use economic theory to improve estimators: shrinking toward theoretical restrictions Fessler, Pirmin Kasy, Maximilian February 23, 2018 Abstract We propose to use economic theories to construct

More information

Overfitting, Bias / Variance Analysis

Overfitting, Bias / Variance Analysis Overfitting, Bias / Variance Analysis Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 8, 207 / 40 Outline Administration 2 Review of last lecture 3 Basic

More information

Introduction to Machine Learning and Cross-Validation

Introduction to Machine Learning and Cross-Validation Introduction to Machine Learning and Cross-Validation Jonathan Hersh 1 February 27, 2019 J.Hersh (Chapman ) Intro & CV February 27, 2019 1 / 29 Plan 1 Introduction 2 Preliminary Terminology 3 Bias-Variance

More information

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff

IEOR 165 Lecture 7 1 Bias-Variance Tradeoff IEOR 165 Lecture 7 Bias-Variance Tradeoff 1 Bias-Variance Tradeoff Consider the case of parametric regression with β R, and suppose we would like to analyze the error of the estimate ˆβ in comparison to

More information

Nonparametric forecasting of the French load curve

Nonparametric forecasting of the French load curve An overview RTE & UPMC-ISUP ISNPS 214, Cadix June 15, 214 Table of contents 1 Introduction 2 MAVE modeling 3 IBR modeling 4 Sparse modeling Electrical context Generation must be strictly equal to consumption

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes

COMP 551 Applied Machine Learning Lecture 20: Gaussian processes COMP 55 Applied Machine Learning Lecture 2: Gaussian processes Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: (herke.vanhoof@mcgill.ca) Class web page: www.cs.mcgill.ca/~hvanho2/comp55

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance.

Heteroskedasticity. y i = β 0 + β 1 x 1i + β 2 x 2i β k x ki + e i. where E(e i. ) σ 2, non-constant variance. Heteroskedasticity y i = β + β x i + β x i +... + β k x ki + e i where E(e i ) σ, non-constant variance. Common problem with samples over individuals. ê i e ˆi x k x k AREC-ECON 535 Lec F Suppose y i =

More information

Linear Models for Regression. Sargur Srihari

Linear Models for Regression. Sargur Srihari Linear Models for Regression Sargur srihari@cedar.buffalo.edu 1 Topics in Linear Regression What is regression? Polynomial Curve Fitting with Scalar input Linear Basis Function Models Maximum Likelihood

More information

Is the test error unbiased for these programs? 2017 Kevin Jamieson

Is the test error unbiased for these programs? 2017 Kevin Jamieson Is the test error unbiased for these programs? 2017 Kevin Jamieson 1 Is the test error unbiased for this program? 2017 Kevin Jamieson 2 Simple Variable Selection LASSO: Sparse Regression Machine Learning

More information

Bias-Variance Tradeoff

Bias-Variance Tradeoff What s learning, revisited Overfitting Generative versus Discriminative Logistic Regression Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University September 19 th, 2007 Bias-Variance Tradeoff

More information

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008

Gaussian processes. Chuong B. Do (updated by Honglak Lee) November 22, 2008 Gaussian processes Chuong B Do (updated by Honglak Lee) November 22, 2008 Many of the classical machine learning algorithms that we talked about during the first half of this course fit the following pattern:

More information

Using data to inform policy

Using data to inform policy Using data to inform policy Maximilian Kasy Department of Economics, Harvard University Maximilian Kasy (Harvard) data and policy 1 / 41 Introduction The roles of econometrics Forecasting: What will be?

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER MLE Going the Way of the Buggy Whip Used to be gold standard of statistical estimation Minimum variance

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW2 due now! Project proposal due on tomorrow Midterm next lecture! HW3 posted Last time Linear Regression Parametric vs Nonparametric

More information

Midterm exam CS 189/289, Fall 2015

Midterm exam CS 189/289, Fall 2015 Midterm exam CS 189/289, Fall 2015 You have 80 minutes for the exam. Total 100 points: 1. True/False: 36 points (18 questions, 2 points each). 2. Multiple-choice questions: 24 points (8 questions, 3 points

More information