Bayesian Grouped Horseshoe Regression with Application to Additive Models

Size: px
Start display at page:

Download "Bayesian Grouped Horseshoe Regression with Application to Additive Models"

Transcription

1 Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu 1,2, Daniel F. Schmidt 1, Enes Makalic 1, Guoqi Qian 2, John L. Hopper 1 1 Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health 2 School of Mathematics and Statistics, The University of Melbourne

2 Introduction Model estimation and selection The object is to find important explanatory factors in predicting the response variable There are potentially a large number of predictors and only a few of them are associated with the response variable Select the best subset of predictors for fitting or predicting the response variable Estimate a sparse vector 2 of 22

3 Introduction Consider the linear regression model: where y = Xβ + ɛ, (1) y is an n by 1 observation vector of the response variable X is an n by p observation or design matrix of the regressors or predictors β = (β 1,, β p ) T is a p by 1 vector of regression coefficients to be estimated ɛ is an n by 1 vector of i.i.d. N (0, σ 2 ) random errors with σ 2 unknown Here, β is assumed to be sparse. 3 of 22

4 Introduction Penalised likelihood methods The approach select a model by minimising a loss function that is usually proportional to the negative log likelihood plus a penalty term: ˆβ = arg min { (y Xβ) T (y Xβ) + λ q(β) }, (2) β R p where λ > 0 is the tuning parameter and q( ) is a penalty function. Well-known example: the least absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996) p ˆβ = arg min β R p (y Xβ)T (y Xβ) + λ β j. (3) 4 of 22 j=1

5 Introduction Bayesian approaches The motivation is that a good solution for β in linear model y = Xβ + ɛ, (4) can be interpreted as the posterior mode of β in the Bayesian model when β follows a certain prior distribution Two main sparse-estimation alternatives Discrete mixtures - a point mass at 0 and an absolute continuous alternatives Shrinkage priors - absolutely continuous shrinkage priors centered at 0 (example: the Bayesian Lasso with double-exponential prior (Park & Casella, 2008)) 5 of 22

6 The horseshoe prior Bayesian horseshoe model (Carvalho, Polson, & Scott, 2009) Shrinkage approach A one-component prior The horseshoe prior: β i δ i, τ N (0, δ 2 i τ 2 ), δ i C + (0, 1), (5) where δ i s are the local shrinkage parameters, τ is the global shrinkage parameter, and C + (0, 1) is a standard half-cauchy distribution with the probability density function: 6 of 22 f(x) = 2 π(1 + x 2, x > 0. (6) )

7 The horseshoe prior Flat, Cauchy-like tails Infinitely tall spike at the origin Figure: The horseshoe prior and two close cousins: Laplacian and Student-t. 7 of 22

8 Bayesian horseshoe model Without loss of generality, we assume the response y is centered and the covariates X are column centered and standardised The Bayesian hierarchical representation of the full model: y X, β, σ 2 N (Xβ, σ 2 I n ) β σ 2, τ 2, δ 2 1,, δ 2 p N (0, σ 2 τ 2 D δ ), where D δ = diag(δ 2 1,, δ 2 p) δ j C + (0, 1), j = 1,, p τ C + (0, 1) σ 2 1 σ 2 dσ2, where the scale parameters δ j are local shrinkage parameters, and τ is the global shrinkage parameter. 8 of 22

9 Group structures Group structures naturally exist in predictor variables A multi-level categorical predictor - a group of dummy variables A continuous predictor - a composition of basis functions The prior knowledge such as genes in the same biological pathway - a natural group 9 of 22

10 Bayesian grouped horseshoe model Suppose there are G {1,, p} groups of predictors in the data and the gth group has size s g, where g = 1,, G (i.e. there are s g variables in group g). The horseshoe hierarchical representation of the full model for grouped variables can be constructed as: y X, β, σ 2 N (Xβ, σ 2 I n ), β σ 2, τ 2, λ 2 1,, λ 2 G N (0, σ 2 τ 2 D λ ), where D λ = diag(λ 2 1I s1,, λ 2 GI sg ), λ g C + (0, 1), g = 1,, G, τ C + (0, 1), σ 2 1 σ 2 dσ2, where λ g are the shrinkage parameters at group level. 10 of 22

11 Hierarchical Bayesian grouped horseshoe model Suppose the total number of groups is G(> 1), the full hierarchical Bayesian grouped horseshoe model is: y X, β, σ 2 N (Xβ, σ 2 I n ) β σ 2, τ 2, λ 2 1,, λ 2 G, δ 2 1,, δ 2 p N (0, σ 2 τ 2 D λ D δ ) where D λ = diag(λ 2 1I s1,, λ 2 GI sg ), D δ = diag(δ 2 1,, δ 2 p) λ g C + (0, 1), g = 1,, G δ j C + (0, 1), j = 1,, p τ C + (0, 1) σ 2 1 σ 2 dσ2, where δ 1,, δ p are the shrinkage parameters for each predictor variable and λ 1,, λ G are the shrinkage parameters for group variables. 11 of 22

12 Sampling Bayesian horseshoe model Gibbs sampling A simple sampler proposed for the Bayesian horseshoe hierarchy (Makalic & Schmidt, 2016b) enables straightforward sampling of the full conditional posterior distributions. If x 2 a IG(1/2, 1/a) and a IG(1/2, 1/A 2 ), then x C + (0, A). 12 of 22

13 Application to additive models The additive models allow for nonlinear effects and grouped structures Given a data set {y i, x i1,, x ip } n i=1, the additive model has the form: p y = µ 0 + f j (X j ) + ɛ, (7) j=1 where µ 0 is an intercept term and f j ( ) are unknown smooth functions. Estimation of the selected smooth functions is expected to be as close to the corresponding true underlying functions or target functions as possible. 13 of 22

14 Application to additive models Various classes of basis functions: polynomials, spline functions Let g j (x), j = 1,, p, be a set of basis functions. Each smooth function component in the additive model can be represented as: f(x) = a 0 + a 1 g 1 (x) + a 2 g 2 (x) + + a p g p (x). (8) A special case of orthogonal polynomials: the Legendre polynomials The Legendre polynomials are defined on the interval [ 1, 1] 14 of 22

15 Simulation Function 1 (simple linear function): Function 2 (nonlinear function): y = X 1 + X 2 X 3 X 4 (9) y = cos(8x 1 ) + X sign(x 3 ) + X 4 + X 5 + X 2 5 X 3 5 (10) Function 3: y = f 1 (X 1 ) + f 2 (X 2 ) + f 3 (X 3 ), (11) where f j = β j1 P 1 (X j ) + β j2 P 2 (X j ) + β j3 P 3 (X j ), j = 1, 2, 3 that consists of the Legendre polynomials of order up to three and the unscaled true coefficients are: β = (2, 1, 1/2, 1, 1, 1, 1, 4, 1) of 22

16 Simulation For each of the three tests functions 100 data sets p = 10 predictors The maximum degree of Legendre polynomial expansions K = {3, 6, 9, 12} The number of samples n = {100, 200} The signal-to-noise ratio SNR= {1, 5, 10} Methods: BHS, HBGHS, lasso-bic and BHS-NE Comparison metric: the mean squared prediction error (MSPE) 1 n n [E(y i x i ) ŷ i ] 2, (12) i=1 16 of 22

17 Simulation results Test function 1 (simple linear function) BHS-NE produces smallest MSPE consistentely BHS and HBGHS are competitive when n = 100 HBGHS improves significantly compared to BHS when n = 200 Test function 2 (nonlinear function) HBGHS wins in most scenarios BHS slightly outperforms HBGHS when SNR= 1 BHS-NE performs poorly Test function 3 (polynomial functions) HBGHS gives smallest MSPE for all scenarios BHS is better than lasso-bic BHS-NE is the worst in almost all scenarios 17 of 22

18 Simulation 0.04 BHS 0.04 HBHSG Component wise squared prediction error Component wise squared prediction error X X Figure: Boxplots of component-wise prediction error for BHS and HBGHS when there are p = 10 predictors, n = 100 samples, SNR = 5, K = 3 degree of Legendre polynomial expansions. 18 of 22

19 Discussion The Bayesian grouped horseshoe method and the hierarchical Bayesian grouped horseshoe method Perform both group-wise and within group selection Show good performance in terms of the mean squared prediction error on simulated data Outperform the regular BHS when it is applied to nonlinear functions and additive models Competitive with the regular BHS even when there is no underlying group structure Demonstrate promising performance with real data analysis 19 of 22

20 Package The package for implementing the Bayesian regularised regression (Makalic & Schmidt, 2016a) can be downloaded from bayesian-regularized-linear-and-logistic-regression 20 of 22

21 References Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2010). Keel data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17(2-3), Carvalho, C. M., Polson, N. G., & Scott, J. G. (2009). Handling sparsity via the horseshoe. In Jmlr (Vol. 5, p ). Makalic, E., & Schmidt, D. F. (2016a). High-dlimensional Bayesian regularised regression with the Bayesreg package. arxiv: Makalic, E., & Schmidt, D. F. (2016b). A simple sampler for the horseshoe estimator. IEEE Signal Processing Letters, 23(1), Park, T., & Casella, G. (2008, June). The Bayesian lasso. Journal of the American Statistical Associationt, 103(482), Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Soiety, 58(1), of 22

22 Thank you! 22 of 22

Bayesian Grouped Horseshoe Regression with Application to Additive Models

Bayesian Grouped Horseshoe Regression with Application to Additive Models Bayesian Grouped Horseshoe Regression with Application to Additive Models Zemei Xu, Daniel F. Schmidt, Enes Makalic, Guoqi Qian, and John L. Hopper Centre for Epidemiology and Biostatistics, Melbourne

More information

Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage

Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage Estimating Sparse High Dimensional Linear Models using Global-Local Shrinkage Daniel F. Schmidt Centre for Biostatistics and Epidemiology The University of Melbourne Monash University May 11, 2017 Outline

More information

Or How to select variables Using Bayesian LASSO

Or How to select variables Using Bayesian LASSO Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO x 1 x 2 x 3 x 4 Or How to select variables Using Bayesian LASSO On Bayesian Variable Selection

More information

A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables

A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables A New Bayesian Variable Selection Method: The Bayesian Lasso with Pseudo Variables Qi Tang (Joint work with Kam-Wah Tsui and Sijian Wang) Department of Statistics University of Wisconsin-Madison Feb. 8,

More information

ESL Chap3. Some extensions of lasso

ESL Chap3. Some extensions of lasso ESL Chap3 Some extensions of lasso 1 Outline Consistency of lasso for model selection Adaptive lasso Elastic net Group lasso 2 Consistency of lasso for model selection A number of authors have studied

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

Machine Learning for OR & FE

Machine Learning for OR & FE Machine Learning for OR & FE Regression II: Regularization and Shrinkage Methods Martin Haugh Department of Industrial Engineering and Operations Research Columbia University Email: martin.b.haugh@gmail.com

More information

Proteomics and Variable Selection

Proteomics and Variable Selection Proteomics and Variable Selection p. 1/55 Proteomics and Variable Selection Alex Lewin With thanks to Paul Kirk for some graphs Department of Epidemiology and Biostatistics, School of Public Health, Imperial

More information

Partial factor modeling: predictor-dependent shrinkage for linear regression

Partial factor modeling: predictor-dependent shrinkage for linear regression modeling: predictor-dependent shrinkage for linear Richard Hahn, Carlos Carvalho and Sayan Mukherjee JASA 2013 Review by Esther Salazar Duke University December, 2013 Factor framework The factor framework

More information

Logistic Regression with the Nonnegative Garrote

Logistic Regression with the Nonnegative Garrote Logistic Regression with the Nonnegative Garrote Enes Makalic Daniel F. Schmidt Centre for MEGA Epidemiology The University of Melbourne 24th Australasian Joint Conference on Artificial Intelligence 2011

More information

Bi-level feature selection with applications to genetic association

Bi-level feature selection with applications to genetic association Bi-level feature selection with applications to genetic association studies October 15, 2008 Motivation In many applications, biological features possess a grouping structure Categorical variables may

More information

Data Mining Stat 588

Data Mining Stat 588 Data Mining Stat 588 Lecture 02: Linear Methods for Regression Department of Statistics & Biostatistics Rutgers University September 13 2011 Regression Problem Quantitative generic output variable Y. Generic

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University

Spatial Lasso with Application to GIS Model Selection. F. Jay Breidt Colorado State University Spatial Lasso with Application to GIS Model Selection F. Jay Breidt Colorado State University with Hsin-Cheng Huang, Nan-Jung Hsu, and Dave Theobald September 25 The work reported here was developed under

More information

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010

Chris Fraley and Daniel Percival. August 22, 2008, revised May 14, 2010 Model-Averaged l 1 Regularization using Markov Chain Monte Carlo Model Composition Technical Report No. 541 Department of Statistics, University of Washington Chris Fraley and Daniel Percival August 22,

More information

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model

Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Model Selection Tutorial 2: Problems With Using AIC to Select a Subset of Exposures in a Regression Model Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population

More information

Horseshoe, Lasso and Related Shrinkage Methods

Horseshoe, Lasso and Related Shrinkage Methods Readings Chapter 15 Christensen Merlise Clyde October 15, 2015 Bayesian Lasso Park & Casella (JASA 2008) and Hans (Biometrika 2010) propose Bayesian versions of the Lasso Bayesian Lasso Park & Casella

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Sparse Recovery using L1 minimization - algorithms Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Lasso & Bayesian Lasso

Lasso & Bayesian Lasso Readings Chapter 15 Christensen Merlise Clyde October 6, 2015 Lasso Tibshirani (JRSS B 1996) proposed estimating coefficients through L 1 constrained least squares Least Absolute Shrinkage and Selection

More information

Linear model selection and regularization

Linear model selection and regularization Linear model selection and regularization Problems with linear regression with least square 1. Prediction Accuracy: linear regression has low bias but suffer from high variance, especially when n p. It

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Department of Forestry & Department of Geography, Michigan State University, Lansing Michigan, U.S.A. 2 Biostatistics, School of Public

More information

Regression, Ridge Regression, Lasso

Regression, Ridge Regression, Lasso Regression, Ridge Regression, Lasso Fabio G. Cozman - fgcozman@usp.br October 2, 2018 A general definition Regression studies the relationship between a response variable Y and covariates X 1,..., X n.

More information

Bayesian shrinkage approach in variable selection for mixed

Bayesian shrinkage approach in variable selection for mixed Bayesian shrinkage approach in variable selection for mixed effects s GGI Statistics Conference, Florence, 2015 Bayesian Variable Selection June 22-26, 2015 Outline 1 Introduction 2 3 4 Outline Introduction

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

The linear model is the most fundamental of all serious statistical models encompassing:

The linear model is the most fundamental of all serious statistical models encompassing: Linear Regression Models: A Bayesian perspective Ingredients of a linear model include an n 1 response vector y = (y 1,..., y n ) T and an n p design matrix (e.g. including regressors) X = [x 1,..., x

More information

The lasso, persistence, and cross-validation

The lasso, persistence, and cross-validation The lasso, persistence, and cross-validation Daniel J. McDonald Department of Statistics Indiana University http://www.stat.cmu.edu/ danielmc Joint work with: Darren Homrighausen Colorado State University

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Scalable MCMC for the horseshoe prior

Scalable MCMC for the horseshoe prior Scalable MCMC for the horseshoe prior Anirban Bhattacharya Department of Statistics, Texas A&M University Joint work with James Johndrow and Paolo Orenstein September 7, 2018 Cornell Day of Statistics

More information

Modeling Real Estate Data using Quantile Regression

Modeling Real Estate Data using Quantile Regression Modeling Real Estate Data using Semiparametric Quantile Regression Department of Statistics University of Innsbruck September 9th, 2011 Overview 1 Application: 2 3 4 Hedonic regression data for house prices

More information

Geometric ergodicity of the Bayesian lasso

Geometric ergodicity of the Bayesian lasso Geometric ergodicity of the Bayesian lasso Kshiti Khare and James P. Hobert Department of Statistics University of Florida June 3 Abstract Consider the standard linear model y = X +, where the components

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Lecture 14: Shrinkage

Lecture 14: Shrinkage Lecture 14: Shrinkage Reading: Section 6.2 STATS 202: Data mining and analysis October 27, 2017 1 / 19 Shrinkage methods The idea is to perform a linear regression, while regularizing or shrinking the

More information

Machine Learning for Economists: Part 4 Shrinkage and Sparsity

Machine Learning for Economists: Part 4 Shrinkage and Sparsity Machine Learning for Economists: Part 4 Shrinkage and Sparsity Michal Andrle International Monetary Fund Washington, D.C., October, 2018 Disclaimer #1: The views expressed herein are those of the authors

More information

Analysis Methods for Supersaturated Design: Some Comparisons

Analysis Methods for Supersaturated Design: Some Comparisons Journal of Data Science 1(2003), 249-260 Analysis Methods for Supersaturated Design: Some Comparisons Runze Li 1 and Dennis K. J. Lin 2 The Pennsylvania State University Abstract: Supersaturated designs

More information

Regression Shrinkage and Selection via the Lasso

Regression Shrinkage and Selection via the Lasso Regression Shrinkage and Selection via the Lasso ROBERT TIBSHIRANI, 1996 Presenter: Guiyun Feng April 27 () 1 / 20 Motivation Estimation in Linear Models: y = β T x + ɛ. data (x i, y i ), i = 1, 2,...,

More information

Package horseshoe. November 8, 2016

Package horseshoe. November 8, 2016 Title Implementation of the Horseshoe Prior Version 0.1.0 Package horseshoe November 8, 2016 Description Contains functions for applying the horseshoe prior to highdimensional linear regression, yielding

More information

Bayesian linear regression

Bayesian linear regression Bayesian linear regression Linear regression is the basis of most statistical modeling. The model is Y i = X T i β + ε i, where Y i is the continuous response X i = (X i1,..., X ip ) T is the corresponding

More information

Variable Selection in Structured High-dimensional Covariate Spaces

Variable Selection in Structured High-dimensional Covariate Spaces Variable Selection in Structured High-dimensional Covariate Spaces Fan Li 1 Nancy Zhang 2 1 Department of Health Care Policy Harvard University 2 Department of Statistics Stanford University May 14 2007

More information

Consistent high-dimensional Bayesian variable selection via penalized credible regions

Consistent high-dimensional Bayesian variable selection via penalized credible regions Consistent high-dimensional Bayesian variable selection via penalized credible regions Howard Bondell bondell@stat.ncsu.edu Joint work with Brian Reich Howard Bondell p. 1 Outline High-Dimensional Variable

More information

Statistical Inference

Statistical Inference Statistical Inference Liu Yang Florida State University October 27, 2016 Liu Yang, Libo Wang (Florida State University) Statistical Inference October 27, 2016 1 / 27 Outline The Bayesian Lasso Trevor Park

More information

Regularization and Variable Selection via the Elastic Net

Regularization and Variable Selection via the Elastic Net p. 1/1 Regularization and Variable Selection via the Elastic Net Hui Zou and Trevor Hastie Journal of Royal Statistical Society, B, 2005 Presenter: Minhua Chen, Nov. 07, 2008 p. 2/1 Agenda Introduction

More information

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape

LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape LASSO-Type Penalization in the Framework of Generalized Additive Models for Location, Scale and Shape Nikolaus Umlauf https://eeecon.uibk.ac.at/~umlauf/ Overview Joint work with Andreas Groll, Julien Hambuckers

More information

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017

COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 COMS 4721: Machine Learning for Data Science Lecture 10, 2/21/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University FEATURE EXPANSIONS FEATURE EXPANSIONS

More information

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage

BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage BAGUS: Bayesian Regularization for Graphical Models with Unequal Shrinkage Lingrui Gan, Naveen N. Narisetty, Feng Liang Department of Statistics University of Illinois at Urbana-Champaign Problem Statement

More information

Day 4: Shrinkage Estimators

Day 4: Shrinkage Estimators Day 4: Shrinkage Estimators Kenneth Benoit Data Mining and Statistical Learning March 9, 2015 n versus p (aka k) Classical regression framework: n > p. Without this inequality, the OLS coefficients have

More information

Bayesian Sparse Linear Regression with Unknown Symmetric Error

Bayesian Sparse Linear Regression with Unknown Symmetric Error Bayesian Sparse Linear Regression with Unknown Symmetric Error Minwoo Chae 1 Joint work with Lizhen Lin 2 David B. Dunson 3 1 Department of Mathematics, The University of Texas at Austin 2 Department of

More information

Bayesian methods in economics and finance

Bayesian methods in economics and finance 1/26 Bayesian methods in economics and finance Linear regression: Bayesian model selection and sparsity priors Linear Regression 2/26 Linear regression Model for relationship between (several) independent

More information

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation

Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Reduction of Model Complexity and the Treatment of Discrete Inputs in Computer Model Emulation Curtis B. Storlie a a Los Alamos National Laboratory E-mail:storlie@lanl.gov Outline Reduction of Emulator

More information

Bayesian variable selection and classification with control of predictive values

Bayesian variable selection and classification with control of predictive values Bayesian variable selection and classification with control of predictive values Eleni Vradi 1, Thomas Jaki 2, Richardus Vonk 1, Werner Brannath 3 1 Bayer AG, Germany, 2 Lancaster University, UK, 3 University

More information

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods.

Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods. TheThalesians Itiseasyforphilosopherstoberichiftheychoose Data Analysis and Machine Learning Lecture 12: Multicollinearity, Bias-Variance Trade-off, Cross-validation and Shrinkage Methods Ivan Zhdankin

More information

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models

An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Proceedings 59th ISI World Statistics Congress, 25-30 August 2013, Hong Kong (Session CPS023) p.3938 An Algorithm for Bayesian Variable Selection in High-dimensional Generalized Linear Models Vitara Pungpapong

More information

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences

Biostatistics-Lecture 16 Model Selection. Ruibin Xi Peking University School of Mathematical Sciences Biostatistics-Lecture 16 Model Selection Ruibin Xi Peking University School of Mathematical Sciences Motivating example1 Interested in factors related to the life expectancy (50 US states,1969-71 ) Per

More information

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models

A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models A Bootstrap Lasso + Partial Ridge Method to Construct Confidence Intervals for Parameters in High-dimensional Sparse Linear Models Jingyi Jessica Li Department of Statistics University of California, Los

More information

Regularization Path Algorithms for Detecting Gene Interactions

Regularization Path Algorithms for Detecting Gene Interactions Regularization Path Algorithms for Detecting Gene Interactions Mee Young Park Trevor Hastie July 16, 2006 Abstract In this study, we consider several regularization path algorithms with grouped variable

More information

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson

Bayesian variable selection via. Penalized credible regions. Brian Reich, NCSU. Joint work with. Howard Bondell and Ander Wilson Bayesian variable selection via penalized credible regions Brian Reich, NC State Joint work with Howard Bondell and Ander Wilson Brian Reich, NCSU Penalized credible regions 1 Motivation big p, small n

More information

Ratemaking application of Bayesian LASSO with conjugate hyperprior

Ratemaking application of Bayesian LASSO with conjugate hyperprior Ratemaking application of Bayesian LASSO with conjugate hyperprior Himchan Jeong and Emiliano A. Valdez University of Connecticut Actuarial Science Seminar Department of Mathematics University of Illinois

More information

High-Dimensional Statistical Learning: Introduction

High-Dimensional Statistical Learning: Introduction Classical Statistics Biological Big Data Supervised and Unsupervised Learning High-Dimensional Statistical Learning: Introduction Ali Shojaie University of Washington http://faculty.washington.edu/ashojaie/

More information

Recursive Sparse Estimation using a Gaussian Sum Filter

Recursive Sparse Estimation using a Gaussian Sum Filter Proceedings of the 17th World Congress The International Federation of Automatic Control Recursive Sparse Estimation using a Gaussian Sum Filter Lachlan Blackhall Michael Rotkowitz Research School of Information

More information

Module 11: Linear Regression. Rebecca C. Steorts

Module 11: Linear Regression. Rebecca C. Steorts Module 11: Linear Regression Rebecca C. Steorts Announcements Today is the last class Homework 7 has been extended to Thursday, April 20, 11 PM. There will be no lab tomorrow. There will be office hours

More information

Penalized Regression

Penalized Regression Penalized Regression Deepayan Sarkar Penalized regression Another potential remedy for collinearity Decreases variability of estimated coefficients at the cost of introducing bias Also known as regularization

More information

Lecture 14: Variable Selection - Beyond LASSO

Lecture 14: Variable Selection - Beyond LASSO Fall, 2017 Extension of LASSO To achieve oracle properties, L q penalty with 0 < q < 1, SCAD penalty (Fan and Li 2001; Zhang et al. 2007). Adaptive LASSO (Zou 2006; Zhang and Lu 2007; Wang et al. 2007)

More information

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference

Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Sparse Bayesian Logistic Regression with Hierarchical Prior and Variational Inference Shunsuke Horii Waseda University s.horii@aoni.waseda.jp Abstract In this paper, we present a hierarchical model which

More information

Probabilistic machine learning group, Aalto University Bayesian theory and methods, approximative integration, model

Probabilistic machine learning group, Aalto University  Bayesian theory and methods, approximative integration, model Aki Vehtari, Aalto University, Finland Probabilistic machine learning group, Aalto University http://research.cs.aalto.fi/pml/ Bayesian theory and methods, approximative integration, model assessment and

More information

Statistical Methods for Data Mining

Statistical Methods for Data Mining Statistical Methods for Data Mining Kuangnan Fang Xiamen University Email: xmufkn@xmu.edu.cn Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find

More information

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010

The MNet Estimator. Patrick Breheny. Department of Biostatistics Department of Statistics University of Kentucky. August 2, 2010 Department of Biostatistics Department of Statistics University of Kentucky August 2, 2010 Joint work with Jian Huang, Shuangge Ma, and Cun-Hui Zhang Penalized regression methods Penalized methods have

More information

Standardization and the Group Lasso Penalty

Standardization and the Group Lasso Penalty Standardization and the Group Lasso Penalty Noah Simon and Rob Tibshirani Corresponding author, email: nsimon@stanfordedu Sequoia Hall, Stanford University, CA 9435 March, Abstract We re-examine the original

More information

Handling Sparsity via the Horseshoe

Handling Sparsity via the Horseshoe Handling Sparsity via the Carlos M. Carvalho Booth School of Business The University of Chicago Chicago, IL 60637 Nicholas G. Polson Booth School of Business The University of Chicago Chicago, IL 60637

More information

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression

A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression A Blockwise Descent Algorithm for Group-penalized Multiresponse and Multinomial Regression Noah Simon Jerome Friedman Trevor Hastie November 5, 013 Abstract In this paper we purpose a blockwise descent

More information

Nonconcave Penalized Likelihood with A Diverging Number of Parameters

Nonconcave Penalized Likelihood with A Diverging Number of Parameters Nonconcave Penalized Likelihood with A Diverging Number of Parameters Jianqing Fan and Heng Peng Presenter: Jiale Xu March 12, 2010 Jianqing Fan and Heng Peng Presenter: JialeNonconcave Xu () Penalized

More information

Generalized Elastic Net Regression

Generalized Elastic Net Regression Abstract Generalized Elastic Net Regression Geoffroy MOURET Jean-Jules BRAULT Vahid PARTOVINIA This work presents a variation of the elastic net penalization method. We propose applying a combined l 1

More information

Prediction & Feature Selection in GLM

Prediction & Feature Selection in GLM Tarigan Statistical Consulting & Coaching statistical-coaching.ch Doctoral Program in Computer Science of the Universities of Fribourg, Geneva, Lausanne, Neuchâtel, Bern and the EPFL Hands-on Data Analysis

More information

The Minimum Message Length Principle for Inductive Inference

The Minimum Message Length Principle for Inductive Inference The Principle for Inductive Inference Centre for Molecular, Environmental, Genetic & Analytic (MEGA) Epidemiology School of Population Health University of Melbourne University of Helsinki, August 25,

More information

Bayesian Linear Models

Bayesian Linear Models Bayesian Linear Models Sudipto Banerjee September 03 05, 2017 Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles Linear Regression Linear regression is,

More information

Statistics for high-dimensional data: Group Lasso and additive models

Statistics for high-dimensional data: Group Lasso and additive models Statistics for high-dimensional data: Group Lasso and additive models Peter Bühlmann and Sara van de Geer Seminar für Statistik, ETH Zürich May 2012 The Group Lasso (Yuan & Lin, 2006) high-dimensional

More information

Iterative Selection Using Orthogonal Regression Techniques

Iterative Selection Using Orthogonal Regression Techniques Iterative Selection Using Orthogonal Regression Techniques Bradley Turnbull 1, Subhashis Ghosal 1 and Hao Helen Zhang 2 1 Department of Statistics, North Carolina State University, Raleigh, NC, USA 2 Department

More information

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models

Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Pre-Selection in Cluster Lasso Methods for Correlated Variable Selection in High-Dimensional Linear Models Niharika Gauraha and Swapan Parui Indian Statistical Institute Abstract. We consider variable

More information

A Confidence Region Approach to Tuning for Variable Selection

A Confidence Region Approach to Tuning for Variable Selection A Confidence Region Approach to Tuning for Variable Selection Funda Gunes and Howard D. Bondell Department of Statistics North Carolina State University Abstract We develop an approach to tuning of penalized

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Linear Regression Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB CSE 474/574 1

More information

Sparse statistical modelling

Sparse statistical modelling Sparse statistical modelling Tom Bartlett Sparse statistical modelling Tom Bartlett 1 / 28 Introduction A sparse statistical model is one having only a small number of nonzero parameters or weights. [1]

More information

High-dimensional regression

High-dimensional regression High-dimensional regression Advanced Methods for Data Analysis 36-402/36-608) Spring 2014 1 Back to linear regression 1.1 Shortcomings Suppose that we are given outcome measurements y 1,... y n R, and

More information

Linear Model Selection and Regularization

Linear Model Selection and Regularization Linear Model Selection and Regularization Recall the linear model Y = β 0 + β 1 X 1 + + β p X p + ɛ. In the lectures that follow, we consider some approaches for extending the linear model framework. In

More information

Shrinkage Methods: Ridge and Lasso

Shrinkage Methods: Ridge and Lasso Shrinkage Methods: Ridge and Lasso Jonathan Hersh 1 Chapman University, Argyros School of Business hersh@chapman.edu February 27, 2019 J.Hersh (Chapman) Ridge & Lasso February 27, 2019 1 / 43 1 Intro and

More information

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty

Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Journal of Data Science 9(2011), 549-564 Selection of Smoothing Parameter for One-Step Sparse Estimates with L q Penalty Masaru Kanba and Kanta Naito Shimane University Abstract: This paper discusses the

More information

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata'

Business Statistics. Tommaso Proietti. Model Evaluation and Selection. DEF - Università di Roma 'Tor Vergata' Business Statistics Tommaso Proietti DEF - Università di Roma 'Tor Vergata' Model Evaluation and Selection Predictive Ability of a Model: Denition and Estimation We aim at achieving a balance between parsimony

More information

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu

SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING. Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu SOLVING NON-CONVEX LASSO TYPE PROBLEMS WITH DC PROGRAMMING Gilles Gasso, Alain Rakotomamonjy and Stéphane Canu LITIS - EA 48 - INSA/Universite de Rouen Avenue de l Université - 768 Saint-Etienne du Rouvray

More information

Hierarchical Modelling for Univariate Spatial Data

Hierarchical Modelling for Univariate Spatial Data Hierarchical Modelling for Univariate Spatial Data Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department

More information

Stability and the elastic net

Stability and the elastic net Stability and the elastic net Patrick Breheny March 28 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/32 Introduction Elastic Net Our last several lectures have concentrated on methods for

More information

arxiv: v1 [stat.me] 3 Aug 2014

arxiv: v1 [stat.me] 3 Aug 2014 DECOUPLING SHRINKAGE AND SELECTION IN BAYESIAN LINEAR MODELS: A POSTERIOR SUMMARY PERSPECTIVE By P. Richard Hahn and Carlos M. Carvalho Booth School of Business and McCombs School of Business arxiv:1408.0464v1

More information

MS-C1620 Statistical inference

MS-C1620 Statistical inference MS-C1620 Statistical inference 10 Linear regression III Joni Virta Department of Mathematics and Systems Analysis School of Science Aalto University Academic year 2018 2019 Period III - IV 1 / 32 Contents

More information

Regularization Paths

Regularization Paths December 2005 Trevor Hastie, Stanford Statistics 1 Regularization Paths Trevor Hastie Stanford University drawing on collaborations with Brad Efron, Saharon Rosset, Ji Zhu, Hui Zhou, Rob Tibshirani and

More information

Bayesian Variable Selection Regression Of Multivariate Responses For Group Data

Bayesian Variable Selection Regression Of Multivariate Responses For Group Data Bayesian Variable Selection Regression Of Multivariate Responses For Group Data B. Liquet 1,2 and K. Mengersen 2 and A. N. Pettitt 2 and M. Sutton 2 1 LMAP, Université de Pau et des Pays de L Adour 2 ACEMS,

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

An algorithm for the multivariate group lasso with covariance estimation

An algorithm for the multivariate group lasso with covariance estimation An algorithm for the multivariate group lasso with covariance estimation arxiv:1512.05153v1 [stat.co] 16 Dec 2015 Ines Wilms and Christophe Croux Leuven Statistics Research Centre, KU Leuven, Belgium Abstract

More information

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation

Machine Learning - MT & 5. Basis Expansion, Regularization, Validation Machine Learning - MT 2016 4 & 5. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford October 19 & 24, 2016 Outline Basis function expansion to capture non-linear relationships

More information

A Short Introduction to the Lasso Methodology

A Short Introduction to the Lasso Methodology A Short Introduction to the Lasso Methodology Michael Gutmann sites.google.com/site/michaelgutmann University of Helsinki Aalto University Helsinki Institute for Information Technology March 9, 2016 Michael

More information

The lasso. Patrick Breheny. February 15. The lasso Convex optimization Soft thresholding

The lasso. Patrick Breheny. February 15. The lasso Convex optimization Soft thresholding Patrick Breheny February 15 Patrick Breheny High-Dimensional Data Analysis (BIOS 7600) 1/24 Introduction Last week, we introduced penalized regression and discussed ridge regression, in which the penalty

More information

Conjugate direction boosting

Conjugate direction boosting Conjugate direction boosting June 21, 2005 Revised Version Abstract Boosting in the context of linear regression become more attractive with the invention of least angle regression (LARS), where the connection

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Here we approach the two-class classification problem in a direct way: We try and find a plane that separates the classes in feature space. If we cannot, we get creative in two

More information

TREE ENSEMBLES WITH RULE STRUCTURED HORSESHOE REGULARIZATION

TREE ENSEMBLES WITH RULE STRUCTURED HORSESHOE REGULARIZATION Submitted to the Annals of Applied Statistics arxiv: arxiv:1702.05008 TREE ENSEMBLES WITH RULE STRUCTURED HORSESHOE REGULARIZATION BY MALTE NALENZ AND MATTIAS VILLANI German Research Center for Environmental

More information