Title. I-V curve? e-e interactions? Conductance? Electrical Transport Through Single Molecules. Vibrations? Devices?

Size: px
Start display at page:

Download "Title. I-V curve? e-e interactions? Conductance? Electrical Transport Through Single Molecules. Vibrations? Devices?"

Transcription

1 Electrical Transport Through Single Molecules Harold U. Baranger, Duke University Title with Rui Liu, San-Huang Ke, and Weitao Yang Thanks to S. Getty, M. Fuhrer and L. Sita, U. Maryland Conductance? I-V curve? e-e interactions? Vibrations? Devices? role of contact atomic structure agreement between experiment and theory metal atoms are good for conduction!

2 How to contact a molecule?? How to contact?? self-assembled alkanethiol monolayers-prb 48, 1711 (1993) mechanically controllable break junction Science 278,252 (1997) electromigration junction APL 75, 301 (1999)

3 Examples: Experiments on Conjugated Molecules Expt. Examples Reed & Tour groups, Science 278, 252 (97) Reichert, et al. (Karlsruhe) APL 82, 4137 (03) Rawlett, et al. APL 81, 3043 (02) Organic molecules: gap of order 1 V

4 Theoretical Approach: Two Main Ingredients 1. Transmission of incident flux: Single-particle electron states Energy of relevant states are in window determined by ev about Fermi energy Consider flux impinging on molecule from lead 1 How much gets transmitted? Method (1) µ 1 µ 2 I lead 1 molecule lead 2 V 2. Electronic structure from Density Functional Theory in local approx. Use Kohn-Sham theory to get self-consistent equilibrium density & structure Reliable! lots of experience in quantum chemistry Use Kohn-Sham single-particle states for transmission NOT JUSTIFIED! For non-equilibrium, get self-consistent density matrix by filling states coming from lead 1 to µ 1 and states coming from lead 2 to µ 2

5 Computational Methods molecule lead 1 lead 2 Method (2) extended molecule Semi-infinite leads at constant µ (no voltagle drop); no spin polarization Extended molecule: include large amount of leads in the molecule First-principles DFT theory using SIESTA program (Double-zeta plus polarization Comp. basis set, Tech. optimized Troullier-Martins pseudopotentials, PBE version of GGA functional for exchange-correlation) Transmission from Green function built from Kohn-Sham orbitals San-Huang Ke, H.U.Baranger, and W. Yang, PRB (2004) Datta group, PRB (2001); Ratner group, Chem. Phys. (2002); Guo group, PRB (2003)

6 Vary surface [(111) or (100)], adsorption site, linking atom (S, Se, or Te), type of lead (thin, infinite surface, surface+protrusion) Benzene: structures [San-Huang Ke] Simple case: 1 Carbon ring + S to bond to Au

7 Transmission for benzenedithiol+au: Surface+protrusion Benzene: T [San-Huang Ke]

8 Additional Au makes a difference: T(E) resonance and NDR! Benzene: I-V transmission resonance at Fermi energy negative differential resistance [San-Huang Ke]

9 Image resonant state Benzene: ldos Surface of constant local density of states: (ie. one contour of a 3d contour plot) ρ ( r, ) = E F constant [San-Huang Ke]

10 Carbon nanotube Metal electrode contact How good NT-met can the electrical struc contact be? Does it depend on the metal? Try to make an ideal contact, to set a bound: assume metal wets tube, many strong bonds are formed! 3 terminal transmission [San-Huang Ke]

11 Au Pd (5,5) Tube 7 layers of Au or Pd 5x5, 3Term, 7L excellent contact!! [San-Huang Ke]

12 (5,5) Tube: Evolution with width of metal electrode 5x4, 3Term, 3/5L [San-Huang Ke]

13 (10,0) Tube Doped and undoped 2 Terminal 10x0, 2Term [San-Huang Ke]

14 (10,0) Tube: 3 Terminal Transmission 10x0, 3Term Again, Pd make a better contact than Au [San-Huang Ke]

15 Metallocenes: Organometallic Sandwich Complexes Metallocenes M=Fe: ferrocene 6 electrons in levels in box S=0 M=Co: cobaltocene 7 electrons in levels in box S=1/2 [Rob Toreki, Organometallic HyperTextBook]

16 Experiment: I-V of a phenyl-ethynyl-ferrocene complex Fcene: data 1!!! [Getty, Engtrakul, Wang, Fuhrer, and Sita; U. Maryland; PRB `05]

17 Experiment: I-V of Ferrocene-OPE compared to OPE Fcene: data 2!!!!!! [Getty, Engtrakul, Wang, Fuhrer, and Sita; U. Maryland]

18 Conductance of Ferrocene-OPE: Calculation Fcene: calc resonance at the Fermi energy [Rui Liu]

19 But what about the OPE control? It ALSO conducts Fcene: control This embarassing result is an example of a long-standing problem in the theory of transport through molecules: theory says fully conjugated molecules should conduct, while experiment shows that they do not. Not clear why: because of using the Kohn- Sham wave-functions to find the transmission? local exchange-correlation? (ie. self-interaction?) failure to include interactions in transport calculation? The fact that the Fc molecule avoids this embarassment is an important clue

20 Cobaltocene: One more electron in a nice place lowest energy bonding state: Cobaltocene increasing energy e 2g e 2g a 1g e 1u

21 Cobaltocene Rectifier Rectifier: Conducts Rectifier: under forward bias, I-V but not under reverse bias [Rui Liu]

22 Transmission Resonances in Cobaltocene Rectifier Density of states projected Rectifier: on molecule T, ldos Transmission (E,V) Resonance A (HOMO at V=0): Resonance B (LUMO at V=0): [Rui Liu]

23 Potential Drop in Rectifier Rectifier: potential [Rui Liu]

24 Spin active molecule Use Cobaltocene s Spin: Molecular Spintronics Goal: Move spin active parts from leads into molecules Spin active molecule Cobaltocene spin filter: Apply B field to align spin of cobaltocene; Current is spin polarized

25 Spintronic Switch using Ferromagnetic Metals Spintronic switch Density of states at E F for Majority (minority) spin state Also works if N is an insulator: Tunneling Magneto-Resistance (TMR)

26 Spintronic Switch in a Molecule with 2 Cobaltocenes dico: energetics dico dico-2c Energetics of the singlet-triplet splitting Molecule E(S=1) E(S=0) Inverting B field (g=2) DiCo 12 mev 120 T DiCo-2C 2 mev 20 T DiCo-4C ~0.1 mev ~1 T Ground state => S=0 (super-exchange*). The more insulating the spacer, the smaller the energy difference. B field needed to excite molecule from S=0 to S=1 depends on spacer *The term used for the indirect exchange coupling of unpaired spins via orbitals having paired spins.

27 Transmission of di-cobaltocene Molecules: A Good Switch and Spin-Valve! dico: T dico dico-2c [Rui Liu]

28 Conclusions Though the methods Conclusion used are, in general, not quantitative, we have learned some general lessons: Contact atomic structure does matter! additional Au caused a dramatic increase of conductance Excellent Pd/Nanotube contact; even ideal Au is good Ferrocene containing molecule has good conductance! Cobaltocene has a very nice additional electron: * resonance near the Comp. Fermi energy Tech. of Au * unpaired spin to use for spintronics Credits: Rui Liu, San-Huang Ke, Weitao Yang, and HUB Expt: Stephanie Getty, Michael Fuhrer, Larry Sita, and team

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun

Computational Modeling of Molecular Electronics. Chao-Cheng Kaun Computational Modeling of Molecular Electronics Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University May 9, 2007 Outline: 1. Introduction

More information

Molecular electronics. Lecture 2

Molecular electronics. Lecture 2 Molecular electronics Lecture 2 Molecular electronics approach Electrodes and contacts Basic requirement for molecular electronics: connection of the molecule of interest to the outside world, i.e. electrode

More information

Speed-up of ATK compared to

Speed-up of ATK compared to What s new @ Speed-up of ATK 2008.10 compared to 2008.02 System Speed-up Memory reduction Azafulleroid (molecule, 97 atoms) 1.1 15% 6x6x6 MgO (bulk, 432 atoms, Gamma point) 3.5 38% 6x6x6 MgO (k-point sampling

More information

Canadian Journal of Chemistry. Spin-dependent electron transport through a Mnphthalocyanine. Draft

Canadian Journal of Chemistry. Spin-dependent electron transport through a Mnphthalocyanine. Draft Spin-dependent electron transport through a Mnphthalocyanine molecule: an SS-DFT study Journal: Manuscript ID cjc-216-28 Manuscript Type: Article Date Submitted by the Author: 6-Jun-216 Complete List of

More information

Electronic communication through molecular bridges Supporting Information

Electronic communication through molecular bridges Supporting Information Electronic communication through molecular bridges Supporting Information Carmen Herrmann and Jan Elmisz Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6,

More information

Density Functional Theory (DFT) modelling of C60 and

Density Functional Theory (DFT) modelling of C60 and ISPUB.COM The Internet Journal of Nanotechnology Volume 3 Number 1 Density Functional Theory (DFT) modelling of C60 and N@C60 N Kuganathan Citation N Kuganathan. Density Functional Theory (DFT) modelling

More information

Session Chair: Prof. Haiping Cheng (University of Florida) Dr. Lei Shen. National University of Singapore

Session Chair: Prof. Haiping Cheng (University of Florida) Dr. Lei Shen. National University of Singapore B1. Modeling Quantum Transport at Nanoscale Chair(s): Chun ZHANG, National University of Singapore, Singapore Session s Title (if available) Tue - 17 Jan 2017 13:00 ~ 14:30 Room 2 Session Chair: Prof.

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 21 Feb 2007

arxiv:cond-mat/ v2 [cond-mat.mtrl-sci] 21 Feb 2007 Orbital interaction mechanisms of conductance enhancement and rectification by dithiocarboxylate anchoring group arxiv:cond-mat/0603001v2 [cond-mat.mtrl-sci] 21 Feb 2007 Zhenyu Li and D. S. Kosov Department

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework

Supporting Information: Local Electronic Structure of a Single-Layer. Porphyrin-Containing Covalent Organic Framework Supporting Information: Local Electronic Structure of a Single-Layer Porphyrin-Containing Covalent Organic Framework Chen Chen 1, Trinity Joshi 2, Huifang Li 3, Anton D. Chavez 4,5, Zahra Pedramrazi 2,

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

First-Principles Modeling of Charge Transport in Molecular Junctions

First-Principles Modeling of Charge Transport in Molecular Junctions First-Principles Modeling of Charge Transport in Molecular Junctions Chao-Cheng Kaun Research Center for Applied Sciences, Academia Sinica Department of Physics, National Tsing Hua University September

More information

single-electron electron tunneling (SET)

single-electron electron tunneling (SET) single-electron electron tunneling (SET) classical dots (SET islands): level spacing is NOT important; only the charging energy (=classical effect, many electrons on the island) quantum dots: : level spacing

More information

Impact of collective effects on charge transport through molecular monolayers

Impact of collective effects on charge transport through molecular monolayers Impact of collective effects on charge transport through molecular monolayers Obersteiner Veronika Institute of Solid State Physics 11.12.2013 Outline Introduction Motivation Investigated Systems Methodology

More information

Pseudopotentials for hybrid density functionals and SCAN

Pseudopotentials for hybrid density functionals and SCAN Pseudopotentials for hybrid density functionals and SCAN Jing Yang, Liang Z. Tan, Julian Gebhardt, and Andrew M. Rappe Department of Chemistry University of Pennsylvania Why do we need pseudopotentials?

More information

Electronic level alignment at metal-organic contacts with a GW approach

Electronic level alignment at metal-organic contacts with a GW approach Electronic level alignment at metal-organic contacts with a GW approach Jeffrey B. Neaton Molecular Foundry, Lawrence Berkeley National Laboratory Collaborators Mark S. Hybertsen, Center for Functional

More information

Electrical conductivity of metal carbon nanotube structures: Effect of length and doping

Electrical conductivity of metal carbon nanotube structures: Effect of length and doping Bull. Mater. Sci., Vol. 37, No. 5, August 2014, pp. 1047 1051. Indian Academy of Sciences. Electrical conductivity of metal carbon nanotube structures: Effect of length and doping R NIGAM 1, *, S HABEEB

More information

Kinetic equation approach to the problem of rectification in asymmetric molecular structures

Kinetic equation approach to the problem of rectification in asymmetric molecular structures Kinetic equation approach to the problem of rectification in asymmetric molecular structures Kamil Walczak Institute of Physics, Adam Mickiewicz University Umultowska 85, 6-64 Poznań, Poland Transport

More information

Electronic structure mechanism of spin-polarized electron transport in a Ni C 60 Ni system

Electronic structure mechanism of spin-polarized electron transport in a Ni C 60 Ni system Chemical Physics Letters 439 (27) 11 114 www.elsevier.com/locate/cplett Electronic structure mechanism of spin-polarized electron transport in a Ni C 6 Ni system Haiying He a, Ravindra Pandey a, *, Shashi

More information

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density 1. SIESTA DFT In a Nutshell Introduction to SIESTA Atomic Orbitals Capabilities Resources 2. TranSIESTA Transport in the Nanoscale - motivation Boundary Conditions: Open systems Greens functions and charge

More information

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach

Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach Designing interfaces for Spin Injection into Organic Molecular Solids: A Surface Science Approach SESAPS November 11, 2016 Jingying Wang, Drew Deloach, Dan Dougherty Department of Physics and Organic and

More information

Molecular Electronics 11/17/05

Molecular Electronics 11/17/05 Molecular Electronics 11/17/05 Molecular electronics: definition - Molecules are used in bulk form in a number of prototype devices: Thin film transistors, Prof. Kaniki group Covered by EECS 513: Flat

More information

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques

Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Single-Molecule Junctions: Vibrational and Magnetic Degrees of Freedom, and Novel Experimental Techniques Heiko B. Weber Lehrstuhl für Angewandte Physik Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Dec 2006

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 19 Dec 2006 arxiv:cond-mat/678v [cond-mat.mes-hall] 9 Dec 6 Abstract Electronic structure of the Au/benzene-,-dithiol/Au transport interface: Effects of chemical bonding U. Schwingenschlögl, C. Schuster Institut für

More information

An ab initio approach to electrical transport in molecular devices

An ab initio approach to electrical transport in molecular devices INSTITUTE OF PHYSICSPUBLISHING Nanotechnology 13 (00) 1 4 An ab initio approach to electrical transport in molecular devices NANOTECHNOLOGY PII: S0957-4484(0)31500-9 JJPalacios 1,ELouis 1,AJPérez-Jiménez,ESanFabián

More information

Momentum filtering effect in molecular wires

Momentum filtering effect in molecular wires PHYSICAL REVIEW B 70, 195309 (2004) Momentum filtering effect in molecular wires Chao-Cheng Kaun, 1, * Hong Guo, 1 Peter Grütter, 1 and R. Bruce Lennox 1,2 1 Center for the Physics of Materials and Department

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 27 Feb 2007

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 27 Feb 2007 Dithiocarbamate Anchoring in Molecular Wire Junctions: A First Principles Study arxiv:cond-mat/0702623v1 [cond-mat.mtrl-sci] 27 Feb 2007 Zhenyu Li and Daniel S. Kosov Department of Chemistry and Biochemistry,

More information

First-principles study of spin-dependent transport through graphene/bnc/graphene structure

First-principles study of spin-dependent transport through graphene/bnc/graphene structure Ota and Ono Nanoscale Research Letters 2013, 8:199 NANO EXPRESS Open Access First-principles study of spin-dependent transport through graphene/bnc/graphene structure Tadashi Ota and Tomoya Ono * Abstract

More information

PHYSICAL REVIEW B 70, (2004) (Received 23 November 2003; revised manuscript received 16 March 2004; published 24 August 2004)

PHYSICAL REVIEW B 70, (2004) (Received 23 November 2003; revised manuscript received 16 March 2004; published 24 August 2004) PHYSICAL REVIEW B 70, 085410 (2004) Electron transport through molecules: Self-consistent and non-self-consistent approaches San-Huang Ke, 1,2 Harold U. Baranger, 2 and Weitao Yang 1 1 Department of Chemistry,

More information

Interaction between a single-molecule

Interaction between a single-molecule Interaction between a single-molecule magnet Mn 12 monolayer and a gold surface 12 Kyungwha Park Department of Physics, Virginia Tech Salvador Barraza-Lopez (postdoc) Michael C. Avery (undergraduate) Supported

More information

Heterostructures and sub-bands

Heterostructures and sub-bands Heterostructures and sub-bands (Read Datta 6.1, 6.2; Davies 4.1-4.5) Quantum Wells In a quantum well, electrons are confined in one of three dimensions to exist within a region of length L z. If the barriers

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties.

Key word: DensityFunctional Theory, Endohedral Energy gap, Electonic properties. First Principle Studies of Electronic Properties of Nitrogen-doped Endohedral Fullerene 1 M. R. Benam, 2 N. Shahtahmasbi, 1 H. Arabshahi and 1 Z.Zarei 1 Department of Physics, Payame Noor University, P.

More information

Electron spin transport in Magnetic Multilayers and Carbon Materials. Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark)

Electron spin transport in Magnetic Multilayers and Carbon Materials. Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark) Electron spin transport in Magnetic Multilayers and Carbon Materials Kurt Stokbro CEO, Founder QuantumWise A/S (Copenhagen, Denmark) www.quantumwise.com (kurt.stokbro@quantumwise.com) Outline Methodology

More information

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT

METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT METAL/CARBON-NANOTUBE INTERFACE EFFECT ON ELECTRONIC TRANSPORT S. Krompiewski Institute of Molecular Physics, Polish Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland OUTLINE 1. Introductory

More information

Supporting Information. Charge Transport Across Insulating. Self-Assembled Monolayers: Non-Equilibrium. Approaches and Modeling to Relate Current and

Supporting Information. Charge Transport Across Insulating. Self-Assembled Monolayers: Non-Equilibrium. Approaches and Modeling to Relate Current and Supporting Information Charge Transport Across Insulating Self-Assembled Monolayers: Non-Equilibrium Approaches and Modeling to Relate Current and Molecular Structure Fatemeh Mirjani,, Joseph M. Thijssen,

More information

New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60

New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60 New Volleyballenes: Y 20 C 60, La 20 C 60, and Lu 20 C 60 Jing Wang a and Ying Liu*,a,b a Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050016, Hebei,

More information

Electron transport through molecular junctions and FHI-aims

Electron transport through molecular junctions and FHI-aims STM m metallic surface Electron transport through molecular junctions and FHI-aims Alexei Bagrets Inst. of Nanotechnology (INT) & Steinbuch Centre for Computing (SCC) @ Karlsruhe Institute of Technology

More information

Perfect spin-fillter and spin-valve in carbon atomic chains

Perfect spin-fillter and spin-valve in carbon atomic chains Perfect spin-fillter and spin-valve in carbon atomic chains M. G. Zeng,1, 2 L. Shen,1 Y. Q. Cai,1 Z. D. Sha,1 and Y. P. Feng1, * 1Department of Physics, National University of Singapore, 2 Science Drive

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Modeling Transport in Heusler-based Spin Devices

Modeling Transport in Heusler-based Spin Devices Modeling Transport in Heusler-based Spin Devices Gautam Shine (Stanford) S. Manipatruni, A. Chaudhry, D. E. Nikonov, I. A. Young (Intel) Electronic Structure Extended Hückel theory Application to Heusler

More information

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary Outline Introduction: graphene Adsorption on graphene: - Chemisorption - Physisorption Summary 1 Electronic band structure: Electronic properties K Γ M v F = 10 6 ms -1 = c/300 massless Dirac particles!

More information

Do molecular rectifiers exist?

Do molecular rectifiers exist? Do molecular rectifiers exist? Fatemeh Gholamrezaie June 2006 University of Groningen Faculty of Mathematics and Natural Sciences Materials Science Center plus / Department of Physics 1 Content 1. Introduction

More information

Lecture 4: Band theory

Lecture 4: Band theory Lecture 4: Band theory Very short introduction to modern computational solid state chemistry Band theory of solids Molecules vs. solids Band structures Analysis of chemical bonding in Reciprocal space

More information

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor

Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Electron transport through Shiba states induced by magnetic adsorbates on a superconductor Michael Ruby, Nino Hatter, Benjamin Heinrich Falko Pientka, Yang Peng, Felix von Oppen, Nacho Pascual, Katharina

More information

Spin and Charge transport in Ferromagnetic Graphene

Spin and Charge transport in Ferromagnetic Graphene Spin and Charge transport in Ferromagnetic Graphene Hosein Cheraghchi School of Physics, Damghan University Recent Progress in D Systems, Oct, 4, IPM Outline: Graphene Spintronics Background on graphene

More information

arxiv: v1 [cond-mat.mes-hall] 2 Mar 2018

arxiv: v1 [cond-mat.mes-hall] 2 Mar 2018 Charge transport in doped zigzag phosphorene nanoribbons Zahra Nourbakhsh 1 and Reza Asgari 1, 2 1 School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran

More information

A Single-Level Tunnel Model to Account for Electrical Transport through. Single Molecule- and Self-Assembled Monolayer-based Junctions

A Single-Level Tunnel Model to Account for Electrical Transport through. Single Molecule- and Self-Assembled Monolayer-based Junctions A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions Alvar R. Garrigues 1, Li Yuan 2, Lejia Wang 2, Eduardo R. Mucciolo

More information

Apparent reversal of molecular orbitals reveals entanglement

Apparent reversal of molecular orbitals reveals entanglement Apparent reversal of molecular orbitals reveals entanglement Andrea Donarini P.Yu, N. Kocic, B.Siegert, J.Repp University of Regensburg and Shanghai Tech University Entangled ground state Spectroscopy

More information

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System Nadya Mason Travis Dirk, Yung-Fu Chen, Cesar Chialvo Taylor Hughes, Siddhartha Lal, Bruno Uchoa Paul Goldbart University

More information

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based

Supporting information. Realizing Two-Dimensional Magnetic Semiconductors with. Enhanced Curie Temperature by Antiaromatic Ring Based Supporting information Realizing Two-Dimensional Magnetic Semiconductors with Enhanced Curie Temperature by Antiaromatic Ring Based Organometallic Frameworks Xingxing Li and Jinlong Yang* Department of

More information

arxiv: v1 [cond-mat.mes-hall] 3 Apr 2014

arxiv: v1 [cond-mat.mes-hall] 3 Apr 2014 Gate Controlled Molecular Switch Based on picene-f4 TCNQ Charge-Transfer Material Torsten Hahn, Simon Liebing, and Jens Kortus We show that the recently synthesized charge-transfer material picene-f4 TCNQ

More information

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY

DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY DENSITY FUNCTIONAL THEORY FOR NON-THEORISTS JOHN P. PERDEW DEPARTMENTS OF PHYSICS AND CHEMISTRY TEMPLE UNIVERSITY A TUTORIAL FOR PHYSICAL SCIENTISTS WHO MAY OR MAY NOT HATE EQUATIONS AND PROOFS REFERENCES

More information

Strong Correlation Effects in Fullerene Molecules and Solids

Strong Correlation Effects in Fullerene Molecules and Solids Strong Correlation Effects in Fullerene Molecules and Solids Fei Lin Physics Department, Virginia Tech, Blacksburg, VA 2461 Fei Lin (Virginia Tech) Correlations in Fullerene SESAPS 211, Roanoke, VA 1 /

More information

Australian Journal of Basic and Applied Sciences

Australian Journal of Basic and Applied Sciences AENSI Journals Australian Journal of Basic and Applied Sciences ISSN:1991-8178 Journal home page: www.ajbasweb.com Theoretical Study for the Effect of Hydroxyl Radical on the Electronic Properties of Cyclobutadiene

More information

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2 Silicon Spintronics Saroj P. Dash Chalmers University of Technology Microtechnology and Nanoscience-MC2 Göteborg, Sweden Acknowledgement Nth Netherlands University of Technology Sweden Mr. A. Dankert Dr.

More information

Classification of Solids

Classification of Solids Classification of Solids Classification by conductivity, which is related to the band structure: (Filled bands are shown dark; D(E) = Density of states) Class Electron Density Density of States D(E) Examples

More information

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot

Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot Temperature dependence of Andreev spectra in a superconducting carbon nanotube quantum dot A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martín-Rodero, A. K. Hüttel, and C. Strunk Phys. Rev. B 89,

More information

Conductance Calculations for Small Molecules

Conductance Calculations for Small Molecules Conductance Calculations for Small Molecules Karsten W. Jacobsen CAMP, Dept. of Physics Technical University of Denmark Outline Framework Density Functional Theory Conductance calculations methodology

More information

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg SPINTRONICS Waltraud Buchenberg Faculty of Physics Albert-Ludwigs-University Freiburg July 14, 2010 TABLE OF CONTENTS 1 WHAT IS SPINTRONICS? 2 MAGNETO-RESISTANCE STONER MODEL ANISOTROPIC MAGNETO-RESISTANCE

More information

Electron tunneling through alkanedithiol molecules

Electron tunneling through alkanedithiol molecules Electron tunneling through alkanedithiol molecules R. C. Hoft, J. Liu, M. B. Cortie, and M. J. Ford, Institute for Nanoscale Technology, University of Technology Sydney, P. O. Box 123, Broadway, NSW 2007,

More information

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms

Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms In Lecture 11, we have discussed energy diagrams of one-dimensional molecular wires. Here we will focus on electron transport mechanisms

More information

Theory of doping graphene

Theory of doping graphene H. Pinto, R. Jones School of Physics, University of Exeter, EX4 4QL, Exeter United Kingdom May 25, 2010 Graphene Graphene is made by a single atomic layer of carbon atoms arranged in a honeycomb lattice.

More information

Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines

Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines Site- and orbital-dependent charge donation and spin manipulation in electron-doped metal phthalocyanines Cornelius Krull 1, Roberto Robles 2, Aitor Mugarza 1, Pietro Gambardella 1,3 1 Catalan Institute

More information

TRANSVERSE SPIN TRANSPORT IN GRAPHENE

TRANSVERSE SPIN TRANSPORT IN GRAPHENE International Journal of Modern Physics B Vol. 23, Nos. 12 & 13 (2009) 2641 2646 World Scientific Publishing Company TRANSVERSE SPIN TRANSPORT IN GRAPHENE TARIQ M. G. MOHIUDDIN, A. A. ZHUKOV, D. C. ELIAS,

More information

Spin injection. concept and technology

Spin injection. concept and technology Spin injection concept and technology Ron Jansen ャンセンロン Spintronics Research Center National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan Spin injection Transfer of spin

More information

Surface Transfer Doping of Diamond by Organic Molecules

Surface Transfer Doping of Diamond by Organic Molecules Surface Transfer Doping of Diamond by Organic Molecules Qi Dongchen Department of Physics National University of Singapore Supervisor: Prof. Andrew T. S. Wee Dr. Gao Xingyu Scope of presentation Overview

More information

Single- molecule conductance of pyridine- terminated dithienylethene switch molecules

Single- molecule conductance of pyridine- terminated dithienylethene switch molecules Supporting Information Single- molecule conductance of pyridine- terminated dithienylethene switch molecules E. S. Tam, J. J. Parks, W. W. Shum, Y.- W. Zhong, M. B. Santiago- Berrios, X. Zheng, W. Yang,

More information

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states:

CME 300 Properties of Materials. ANSWERS: Homework 9 November 26, As atoms approach each other in the solid state the quantized energy states: CME 300 Properties of Materials ANSWERS: Homework 9 November 26, 2011 As atoms approach each other in the solid state the quantized energy states: are split. This splitting is associated with the wave

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Electrical Conductance of Molecular Wires

Electrical Conductance of Molecular Wires arxiv:cond-mat/9908392v1 [cond-mat.mes-hall] 26 Aug 1999 Electrical Conductance of Molecular Wires Eldon Emberly and George Kirczenow, Department of Physics, Simon Fraser University, Burnaby, B.C., Canada

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD

1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD 1+2 on GHD (20 µl) 1+2 on GHD (15 µl) 1+2 on GHD (10 µl) 1+2 on GHD (5 µl) Volume 1+2 (µl) 1 on GHD 1+2 on GHD Supplementary Figure 1 UV-Vis measurements a. UV-Vis spectroscopy of drop-casted volume of

More information

3/23/2010 More basics of DFT Kieron Burke and friends UC Irvine Physics and Chemistry References for ground-state DFT ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu A Primer in Density Functional

More information

Many-body correlations in a Cu-phthalocyanine STM single molecule junction

Many-body correlations in a Cu-phthalocyanine STM single molecule junction Many-body correlations in a Cu-phthalocyanine STM single molecule junction Andrea Donarini Institute of Theoretical Physics, University of Regensburg (Germany) Organic ligand Metal center Non-equilibrium

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

DFT EXERCISES. FELIPE CERVANTES SODI January 2006

DFT EXERCISES. FELIPE CERVANTES SODI January 2006 DFT EXERCISES FELIPE CERVANTES SODI January 2006 http://www.csanyi.net/wiki/space/dftexercises Dr. Gábor Csányi 1 Hydrogen atom Place a single H atom in the middle of a largish unit cell (start with a

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G Q1: Display all the MOs for N2 in your report and classify each one of them as bonding, antibonding or non-bonding, and say whether the symmetry of the orbital is σ or π. Sketch a molecular orbital diagram

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

Measuring charge transport through molecules

Measuring charge transport through molecules Measuring charge transport through molecules utline Indirect methods 1. ptical techniques 2. Electrochemical techniques Direct methods 1. Scanning probe techniques 2. In-plane electrodes 3. Break junctions

More information

Many-body transitions in a single molecule visualized by scanning tunnelling microscopy

Many-body transitions in a single molecule visualized by scanning tunnelling microscopy DOI:.8/NPHYS Many-body transitions in a single molecule visualized by scanning tunnelling microscopy Fabian Schulz, Mari Ijäs, Robert Drost, Sampsa K. Hämäläinen, Ari Harju,, Ari P. Seitsonen,, 4 and Peter

More information

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube

Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube Journal of Physics: Conference Series PAPER OPEN ACCESS Electronic properties of aluminium and silicon doped (2, 2) graphyne nanotube To cite this article: Jyotirmoy Deb et al 2016 J. Phys.: Conf. Ser.

More information

V + XOR AND. Architectures HS for molecular electronic computers: molecular electronic diodes MITRE. James C. Ellenbogen J.

V + XOR AND. Architectures HS for molecular electronic computers: molecular electronic diodes MITRE. James C. Ellenbogen J. SH XOR H C 2 CH 2 H 2 C V N C CH 2 Architectures HS for molecular electronic computers: 1. Logic structures H 3 C O and H 2 an C adder designed from A B HS H 3 C O CH 2 C N molecular electronic diodes

More information

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications

Chapter 6. Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications Chapter 6 Electronic spectra and HOMO-LUMO studies on Nickel, copper substituted Phthalocyanine for solar cell applications 6.1 Structures of Ni, Cu substituted Phthalocyanine Almost all of the metals

More information

Molecules and Condensed Matter

Molecules and Condensed Matter Chapter 42 Molecules and Condensed Matter PowerPoint Lectures for University Physics, Thirteenth Edition Hugh D. Young and Roger A. Freedman Lectures by Wayne Anderson Goals for Chapter 42 To understand

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR)

Ferromagnetism and Electronic Transport. Ordinary magnetoresistance (OMR) Ferromagnetism and Electronic Transport There are a number of effects that couple magnetization to electrical resistance. These include: Ordinary magnetoresistance (OMR) Anisotropic magnetoresistance (AMR)

More information

Formation and characterization of a. molecule-metal-molecule bridge in real space SUPPORTING INFORMATION

Formation and characterization of a. molecule-metal-molecule bridge in real space SUPPORTING INFORMATION Formation and characterization of a molecule-metal-molecule bridge in real space SUPPORTING INFORMATION Florian Albrecht,, Mathias Neu, Christina Quest, Ingmar Swart,, and Jascha Repp Institute of Experimental

More information

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes

Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes W. Orellana and P. Fuentealba Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653,

More information

Mn in GaAs: from a single impurity to ferromagnetic layers

Mn in GaAs: from a single impurity to ferromagnetic layers Mn in GaAs: from a single impurity to ferromagnetic layers Paul Koenraad Department of Applied Physics Eindhoven University of Technology Materials D e v i c e s S y s t e m s COBRA Inter-University Research

More information

Ab-initio Molecular Electronics: are we reaching the limit? Yamila.García Applied Physics Department, Alicante University, Spain

Ab-initio Molecular Electronics: are we reaching the limit? Yamila.García Applied Physics Department, Alicante University, Spain Ab-initio Molecular Electronics: are we reaching the limit? Yamila.García Applied Physics Department, Alicante University, Spain To be, or not to be: that is the question: Whether tis nobler in mind to

More information

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons

Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supporting Information for Ultra-narrow metallic armchair graphene nanoribbons Supplementary Figure 1 Ribbon length statistics. Distribution of the ribbon lengths and the fraction of kinked ribbons for

More information

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory

The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory The Electronic Structure of Dye- Sensitized TiO 2 Clusters from Many- Body Perturbation Theory Noa Marom Center for Computational Materials Institute for Computational Engineering and Sciences The University

More information

Molecular electronics and single electron transistors. Molecular electronics: definition

Molecular electronics and single electron transistors. Molecular electronics: definition Molecular electronics and single electron transistors Single electron devices that function at room temperature require: Island sizes ~ 1 nm to have capacitances sufficiently small that k B T ~ 0.01 e

More information

Single Electron Tunneling Examples

Single Electron Tunneling Examples Single Electron Tunneling Examples Danny Porath 2002 (Schönenberger et. al.) It has long been an axiom of mine that the little things are infinitely the most important Sir Arthur Conan Doyle Books and

More information

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli

Electron Emission from Diamondoids: a DMC Study. Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli Electron Emission from Diamondoids: a DMC Study Neil D. Drummond Andrew J. Williamson Richard J. Needs and Giulia Galli October 18, 2005 1 Semiconductor Nanoparticles for Optoelectronic Devices (I) The

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information