Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms

Size: px
Start display at page:

Download "Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms"

Transcription

1 Lecture 12. Electron Transport in Molecular Wires Possible Mechanisms In Lecture 11, we have discussed energy diagrams of one-dimensional molecular wires. Here we will focus on electron transport mechanisms in a molecular wire connected between two electrodes. One step coherent tunneling We note that even without the molecular wire, electron may still tunnel through the vacuum between the two electrodes and lead to a finite conductance. However, the efficiency of such through-space process is rather poor and the tunneling probability decreases sharply over distance (separation between the two electrodes). For example, if the vacuum gap is greater than ~2 nm, the tunneling current is too small to be measured experimentally. When a molecular wire bridges across the two electrodes, the tunneling barrier lowers and the tunneling probability can be orders of magnitude greater than the through-space situation. At low bias voltages, the conductance, G, of the molecular wire (together with the two electrode contacts) is given by the well-known expression (Ref. 1) G( E F ) β ( EF ) L = GCe, (1) where G c is the contact conductance, β is the tunneling decay constant, and L is the length of the molecular wire. In most cases, the Fermi level of the electrodes falls in the HOMO LUMO gap of the molecular wire, and the tunneling barrier is determined by the LUMO level (HOMO in 2 m * φ the case of hole tunneling) relative to the Fermi level and β = 0, where φ is the h tunneling barrier.

2 If the molecular wire has an energy level perfectly aligned to the Fermi level of the electrodes, the tunneling barrier becomes zero and one might expect that the electron transport is ballistic or resonant tunneling and β=0, and the corresponding transmission probability is 100%. This situation rarely occurs in reality, and one important reason is the polarization of the molecule upon charging (internal structure or surrounding environment of the molecule). In other words, when an electron traverses through the molecular wire, it may polarize the molecule or its surrounding environment which will shift the energy level of the molecular wire away from the Fermi level and destroy the ballistic or resonance condition. Whether the polarization will take place or not depends on the relative time scales of the electron traversal and polarization processes. Obviously we need to take a look at the timescales for tunneling and structural relaxation in the molecule (or environment). Tunneling traversal times The question of how long an electron tunnel through an energy barrier has attracted much attention. One way to define the tunneling time was proposed by Büttiker and Landauer, which is based on imposing an internal clock, e.g., a sinusoidal modulation of the barrier height, on the tunneling system (Ref. 2). If the modulation frequency is very low, the tunneling electron sees a slowly varying barrier that goes up and down according to the modulation. On the other hand, if the modulation frequency is very high, the electron sees only an average perturbation to the tunneling barrier. The inverse of the crossover frequency separating the two regimes is defined as the tunneling time. For tunneling through a one-dimensional rectangular barrier,

3 (2) tunneling time is (3) if assuming that d = x 2 = x 1 is not too small, the tunneling energy E is sufficiently below U B, and energy, defined by Equation 3, is the imaginary velocity for the under-barrier motion. Using the same internal clock for electron transfer via a superexchange mechanism (Fig. 1) in which the donor and acceptor energy levels, E A = E D, coupled to opposite ends of a molecular bridge described by an N-state tight-binding model with nearest-neighbor coupling V B, with an energy gap ) yields (Ref. 3) (4). Fig. 1. Parameters used in the expressions for tunneling traversal times. Left: Tunneling through a rectangular barrier. Right: Bridge-mediated transfer, where the gray area denotes the band associated with the tight-binding level structure of the bridge.

4 Nitzan et al. (Ref. 3) have shown that the results given by Equations 3 and 4 are two limiting cases (wide-and narrow-band limits), and a more general expression for the tunneling time is (5). where U B E B - 2V B - E D is the difference between the initial energy E D and the bottom of the conduction band, E B - 2V B (see Fig. 1). When V B 0, U B E B, Equation 5 becomes Equation 4. In the opposite limit, V B with U B kept constant, Equation 5 becomes (6). Expressing V B in terms of the effective mass for the band motion,, using a = d/n, Equation 6 yields the Büttiker-Landauer result. For tunneling through a molecular spacer modeled as a barrier of width 10 Å (N = 2 3) and height U B - E E 1 ev, Equations 3 and 4 yield 0.2 fs and 2 fs, respectively, both considerably shorter than the vibrational period of molecular vibrations. When the barrier is lower or when tunneling is affected or dominated by barrier resonances, the traversal time becomes longer and the competing relaxation and dephasing processes in the barrier may become effective. This is expected to be the rule for resonance transmission through molecular bridges, because the bandwidth associated with the bridge states (i.e. the electronic coupling between them; see Fig. 1) is considerably smaller than that in metals. As a consequence, thermal relaxation and dephasing are expected to dominate electron transport at and near resonance.

5 Thermal relaxation during electron tunneling It has long been recognized that tunneling electrons interact and may exchange energy with the nuclear degrees of freedom of the molecule (or local environment such as solvent molecules). One realization of such processes is inelastic electron-tunneling spectroscopy (Ref. 4), where the opening of inelastic channels upon increasing the electrostatic potential difference between the source and sink metals is manifested as a peak in the second derivative of the tunneling current with respect to this potential drop. Recent applications of this phenomenon within scanningtunneling spectroscopy hold great promise for making the STM a molecular analytical tool (Ref. 5). Inelastic electron tunneling may also cause chemical bond breaking and chemical rearrangement in the tunneling medium, either by electron-induced consecutive excitation or via transient formation of a negative ion (Ref. 6). The Hamiltonian describing the inelastic tunneling is (Ref. 3) H = H + H + H (7) el ph el ph where H el is the electronic Hamiltonian (8). In Equation 8 the states (k) are taken to be different manifolds of continuous-scattering states, denoted by a continuous index k. The electronic Hamiltonian can describe a scattering process in which the electron starts in one electrode and ends in another, and the states {n} belong to the molecular wire that causes the scattering process. These states may be the eigenstates of the

6 target Hamiltonian, in which case V n,m in Equation 8 vanishes, or some zero-order representation in which the basis states are mutually coupled by the exact-target Hamiltonian. H ph is the Hamiltonian of the phonon bath (9). which represents the thermal environment as a harmonic-phonon bath. H is the electron-phonon interaction, usually written in the form of el ph (10). Here c j and c j (j = n, n', k) create and annihilate an electron in electronic state j, while b and b similarly create and annihilate a phonon of mode, of frequency.. The coupling between the electronic system described by Eq. 8 and the phonon bath by Eq. 9 is assumed in Equation 10 to originate from a molecular state ( n>) dependent shift in the equilibrium position of each phonon mode. An exact solution to this scattering problem can be obtained for the particular case where the target is represented by a single state n = 1 and the phonon bath contains one oscillator of frequency,. In this case, it is convenient to consider the oscillator as part of the target that is therefore represented by a set of states m with energies (the zero-point energy can be set to 0). If the oscillator is initially in the ground state (m = 0), the cross-section for electron tunneling (or scattering) from left to right is given by (Refs. 7-8) (11).

7 where are states of the shifted harmonic oscillator that corresponds to the temporary negative ion (electron residing on the target) and. and are the shifts and widths of the dressed-target states associated with their coupling to the continuous manifolds and (12). The exact solution shown in Equation 11 can be obtained because of the simplicity of the system, which was characterized by a single-intermediate electronic state and a single-phonon mode. In more realistic situations characterized by many-bridge electronic states and many-phonon modes, one needs to resort to approximations or to numerical simulations. References 1. Minimal attenuation for tunneling through a molecular wire, M. Magoga and C. Joachim, Phys. Rev. B, 57, (1998). 2. Büttiker M, Landauer R Phys. Rev. Lett. 49: Nitzan A, Jortner J, Wilkie J, Burin AL, Ratner MA J. Phys. Chem. B 104: Wolf EL Principles of Electron Tunneling Spectroscopy. New York: Oxford Univ. Press. 5. Stipe BC, Rezaei MA, Ho W Science 280: Foley ET, Kam AF, Lyding JW, Avouris P Phys. Rev. Lett. 80: Domcke W, Cederbaum LS J. Phys. B 13: Wingreen NS, Jacobsen KW, Wilkins JW Phys. Rev. Lett. 61:1396 HOMEWORK: 12-1 Read Refs. 3 and For tunneling through a molecular spacer modeled as a barrier of width 10 Å (N = 2 3) and height U B - E E 1 ev, Calculate the tunneling time using Equations 3 and 4.

12.2 MARCUS THEORY 1 (12.22)

12.2 MARCUS THEORY 1 (12.22) Andrei Tokmakoff, MIT Department of Chemistry, 3/5/8 1-6 1. MARCUS THEORY 1 The displaced harmonic oscillator (DHO) formalism and the Energy Gap Hamiltonian have been used extensively in describing charge

More information

Landauer Theory, Inelastic Scattering and Electron Transport in. Molecular Wires arxiv:cond-mat/ v2 [cond-mat.mes-hall] 2 Dec 1999.

Landauer Theory, Inelastic Scattering and Electron Transport in. Molecular Wires arxiv:cond-mat/ v2 [cond-mat.mes-hall] 2 Dec 1999. Landauer Theory, Inelastic Scattering and Electron Transport in Molecular Wires arxiv:cond-mat/9911490v2 [cond-mat.mes-hall] 2 Dec 1999 Eldon G. Emberly and George Kirczenow Department of Physics, Simon

More information

From exhaustive simulations to key principles in DNA nanoelectronics

From exhaustive simulations to key principles in DNA nanoelectronics From exhaustive simulations to key principles in DNA nanoelectronics Dvira Segal Department of Chemistry University of Toronto Roman Korol (undergrad) Hyehwang Kim (undergrad) Michael Kilgour (grad) Challenge:

More information

Branislav K. Nikolić

Branislav K. Nikolić First-principles quantum transport modeling of thermoelectricity in nanowires and single-molecule nanojunctions Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark,

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT

SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT 66 Rev.Adv.Mater.Sci. 14(2007) 66-70 W. Rudziński SPIN-POLARIZED CURRENT IN A MAGNETIC TUNNEL JUNCTION: MESOSCOPIC DIODE BASED ON A QUANTUM DOT W. Rudziński Department of Physics, Adam Mickiewicz University,

More information

Building blocks for nanodevices

Building blocks for nanodevices Building blocks for nanodevices Two-dimensional electron gas (2DEG) Quantum wires and quantum point contacts Electron phase coherence Single-Electron tunneling devices - Coulomb blockage Quantum dots (introduction)

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Charge and Energy Transfer Dynamits in Molecular Systems

Charge and Energy Transfer Dynamits in Molecular Systems Volkhard May, Oliver Kühn Charge and Energy Transfer Dynamits in Molecular Systems Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents 1 Introduction 19 2 Electronic

More information

12. Spectral diffusion

12. Spectral diffusion 1. Spectral diffusion 1.1. Spectral diffusion, Two-Level Systems Until now, we have supposed that the optical transition frequency of each single molecule is a constant (except when we considered its variation

More information

3.23 Electrical, Optical, and Magnetic Properties of Materials

3.23 Electrical, Optical, and Magnetic Properties of Materials MIT OpenCourseWare http://ocw.mit.edu 3.23 Electrical, Optical, and Magnetic Properties of Materials Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

Marcus Theory for Electron Transfer a short introduction

Marcus Theory for Electron Transfer a short introduction Marcus Theory for Electron Transfer a short introduction Minoia Andrea MPIP - Journal Club -Mainz - January 29, 2008 1 Contents 1 Intro 1 2 History and Concepts 2 2.1 Frank-Condon principle applied to

More information

Conductance Calculations for Small Molecules

Conductance Calculations for Small Molecules Conductance Calculations for Small Molecules Karsten W. Jacobsen CAMP, Dept. of Physics Technical University of Denmark Outline Framework Density Functional Theory Conductance calculations methodology

More information

Steady State Formalism for Electron Transfer through DNA System: Ladder Model

Steady State Formalism for Electron Transfer through DNA System: Ladder Model Steady State Formalism for Electron Transfer through DNA System: Ladder Model S. A. Al-Seadi 1, J. M. Al-Mukh 2, S. I. Easa 2 1 Department of Physics, College of Science, ThiQar University, Nassiriya,

More information

Heat conduction in molecular transport junctions

Heat conduction in molecular transport junctions Heat conduction in molecular transport junctions Michael Galperin and Mark A. atner Department of Chemistry, Northwestern University, Evanston, 6008 and Abraham Nitzan School of Chemistry, Tel Aviv University,

More information

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027

Eran Rabani, S. A. Egorov, a) and B. J. Berne Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027 JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 15 15 OCTOBER 1998 A comparison of exact quantum mechanical and various semiclassical treatments for the vibronic absorption spectrum: The case of fast vibrational

More information

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.! How can one give a rigorous mathematical meaning to chemical

More information

Spectroscopy at nanometer scale

Spectroscopy at nanometer scale Spectroscopy at nanometer scale 1. Physics of the spectroscopies 2. Spectroscopies for the bulk materials 3. Experimental setups for the spectroscopies 4. Physics and Chemistry of nanomaterials Various

More information

Molecular Electronics

Molecular Electronics Molecular Electronics An Introduction to Theory and Experiment Juan Carlos Cuevas Universidad Autönoma de Madrid, Spain Elke Scheer Universität Konstanz, Germany 1>World Scientific NEW JERSEY LONDON SINGAPORE

More information

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives

Module 4 : Third order nonlinear optical processes. Lecture 28 : Inelastic Scattering Processes. Objectives Module 4 : Third order nonlinear optical processes Lecture 28 : Inelastic Scattering Processes Objectives In this lecture you will learn the following Light scattering- elastic and inelastic-processes,

More information

STM spectra of graphene

STM spectra of graphene STM spectra of graphene K. Sengupta Theoretical Physics Division, IACS, Kolkata. Collaborators G. Baskaran, I.M.Sc Chennai, K. Saha, IACS Kolkata I. Paul, Grenoble France H. Manoharan, Stanford USA Refs:

More information

Electrical conductance of molecular wires

Electrical conductance of molecular wires Nanotechnology 10 (1999) 285 289. Printed in the UK PII: S0957-4484(99)01580-9 Electrical conductance of molecular wires Eldon Emberly and George Kirczenow Department of Physics, Simon Fraser University,

More information

Designing Principles of Molecular Quantum. Interference Effect Transistors

Designing Principles of Molecular Quantum. Interference Effect Transistors Suorting Information for: Designing Princiles of Molecular Quantum Interference Effect Transistors Shuguang Chen, GuanHua Chen *, and Mark A. Ratner * Deartment of Chemistry, The University of Hong Kong,

More information

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

2) Atom manipulation. Xe / Ni(110) Model: Experiment: 2) Atom manipulation D. Eigler & E. Schweizer, Nature 344, 524 (1990) Xe / Ni(110) Model: Experiment: G.Meyer, et al. Applied Physics A 68, 125 (1999) First the tip is approached close to the adsorbate

More information

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures.

This is the 15th lecture of this course in which we begin a new topic, Excess Carriers. This topic will be covered in two lectures. Solid State Devices Dr. S. Karmalkar Department of Electronics and Communication Engineering Indian Institute of Technology, Madras Lecture - 15 Excess Carriers This is the 15th lecture of this course

More information

Electron exchange between two electrodes mediated by two electroactive adsorbates

Electron exchange between two electrodes mediated by two electroactive adsorbates Electron exchange between two electrodes mediated by two electroactive adsorbates W. Schmickler,* a Maria Anita Rampi, b E. Tran c and G. M. Whitesides c a Abteilung Elektrochemie, University of Ulm, D-89069

More information

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby

Quantum Transport: electron-electron and electron-phonon effects. Rex Godby Quantum Transport: electron-electron and electron-phonon effects Rex Godby Outline Introduction to the quantum transport problem Ab initio quantum conductance in the presence of e-e interaction (TDDFT

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Electrical Conductance of Molecular Wires

Electrical Conductance of Molecular Wires arxiv:cond-mat/9908392v1 [cond-mat.mes-hall] 26 Aug 1999 Electrical Conductance of Molecular Wires Eldon Emberly and George Kirczenow, Department of Physics, Simon Fraser University, Burnaby, B.C., Canada

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London

Susana F. Huelga. Dephasing Assisted Transport: Quantum Networks and Biomolecules. University of Hertfordshire. Collaboration: Imperial College London IQIS2008, Camerino (Italy), October 26th 2008 Dephasing Assisted Transport: Quantum Networks and Biomolecules Susana F. Huelga University of Hertfordshire Collaboration: Imperial College London Work supported

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015

CHARGE CARRIERS PHOTOGENERATION. Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 CHARGE CARRIERS PHOTOGENERATION Maddalena Binda Organic Electronics: principles, devices and applications Milano, November 23-27th, 2015 Charge carriers photogeneration: what does it mean? Light stimulus

More information

Effective masses in semiconductors

Effective masses in semiconductors Effective masses in semiconductors The effective mass is defined as: In a solid, the electron (hole) effective mass represents how electrons move in an applied field. The effective mass reflects the inverse

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique

Dynamics of fluctuations in high temperature superconductors far from equilibrium. L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Dynamics of fluctuations in high temperature superconductors far from equilibrium L. Perfetti, Laboratoire des Solides Irradiés, Ecole Polytechnique Superconductors display amazing properties: Dissipation-less

More information

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007

Microscopy and Spectroscopy with Tunneling Electrons STM. Sfb Kolloquium 23rd October 2007 Microscopy and Spectroscopy with Tunneling Electrons STM Sfb Kolloquium 23rd October 2007 The Tunnel effect T ( E) exp( S Φ E ) Barrier width s Barrier heigth Development: The Inventors 1981 Development:

More information

Photo-Conductance from Exciton Binding in Molecular Junctions Supplementary Information

Photo-Conductance from Exciton Binding in Molecular Junctions Supplementary Information Photo-Conductance from Exciton Binding in Molecular Junctions Supplementary Information Jianfeng Zhou, Kun Wang, Bingqian Xu and Yonatan Dubi Single Molecule Study Laboratory, College of Engineering, University

More information

In order to determine the energy level alignment of the interface between cobalt and

In order to determine the energy level alignment of the interface between cobalt and SUPPLEMENTARY INFORMATION Energy level alignment of the CuPc/Co interface In order to determine the energy level alignment of the interface between cobalt and CuPc, we have performed one-photon photoemission

More information

Protection of excited spin states by a superconducting energy gap

Protection of excited spin states by a superconducting energy gap Protection of excited spin states by a superconducting energy gap B. W. Heinrich, 1 L. Braun, 1, J. I. Pascual, 1, 2, 3 and K. J. Franke 1 1 Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee

More information

Landauer theory, inelastic scattering, and electron transport in molecular wires

Landauer theory, inelastic scattering, and electron transport in molecular wires PHYSICAL EVIEW B VOLUME 61, UMBE 8 15 FEBUAY 2000-II Landauer theory, inelastic scattering, and electron transport in molecular wires Eldon G. Emberly and George Kirczenow Department of Physics, Simon

More information

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment

Analysis of the ultrafast dynamics of the silver trimer upon photodetachment J. Phys. B: At. Mol. Opt. Phys. 29 (1996) L545 L549. Printed in the UK LETTER TO THE EDITOR Analysis of the ultrafast dynamics of the silver trimer upon photodetachment H O Jeschke, M E Garcia and K H

More information

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy

Quantum Chemistry. NC State University. Lecture 5. The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy Quantum Chemistry Lecture 5 The electronic structure of molecules Absorption spectroscopy Fluorescence spectroscopy NC State University 3.5 Selective absorption and emission by atmospheric gases (source:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Simultaneous and coordinated rotational switching of all molecular rotors in a network Y. Zhang, H. Kersell, R. Stefak, J. Echeverria, V. Iancu, U. G. E. Perera, Y. Li, A. Deshpande, K.-F. Braun, C. Joachim,

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Sep 2002

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Sep 2002 Nonlinear current-induced forces in Si atomic wires arxiv:cond-mat/963v [cond-mat.mes-hall] 6 Sep Zhongqin Yang and Massimiliano Di Ventra[*] Department of Physics, Virginia Polytechnic Institute and State

More information

Lecture 8, April 12, 2017

Lecture 8, April 12, 2017 Lecture 8, April 12, 2017 This week (part 2): Semiconductor quantum dots for QIP Introduction to QDs Single spins for qubits Initialization Read-Out Single qubit gates Book on basics: Thomas Ihn, Semiconductor

More information

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf

Sfb 658 Colloquium 11 May Part II. Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy. Martin Wolf Sfb 658 Colloquium 11 May 2006 Part II Introduction to Two-Photon-Photoemission (2PPE) Spectroscopy Martin Wolf Motivation: Electron transfer across interfaces key step for interfacial and surface dynamics

More information

Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts

Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts PHYSICAL REVIEW B VOLUME 58, NUMBER 16 15 OCTOBER 1998-II Theoretical study of electrical conduction through a molecule connected to metallic nanocontacts Eldon G. Emberly * and George Kirczenow Department

More information

Anti-coherence based molecular electronics: XORgate

Anti-coherence based molecular electronics: XORgate Anti-coherence based molecular electronics: XORgate response Roi Baer 1 and Daniel Neuhauser 2 1 Institute of Chemistry and the Lise Meitner Minerva-Center for Quantum Chemistry, the Hebrew University

More information

Optical Properties of Lattice Vibrations

Optical Properties of Lattice Vibrations Optical Properties of Lattice Vibrations For a collection of classical charged Simple Harmonic Oscillators, the dielectric function is given by: Where N i is the number of oscillators with frequency ω

More information

STM spectroscopy (STS)

STM spectroscopy (STS) STM spectroscopy (STS) di dv 4 e ( E ev, r) ( E ) M S F T F Basic concepts of STS. With the feedback circuit open the variation of the tunneling current due to the application of a small oscillating voltage

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supporting online material SUPPLEMENTARY INFORMATION doi: 0.038/nPHYS8 A: Derivation of the measured initial degree of circular polarization. Under steady state conditions, prior to the emission of the

More information

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm

6.5 mm. ε = 1%, r = 9.4 mm. ε = 3%, r = 3.1 mm Supplementary Information Supplementary Figures Gold wires Substrate Compression holder 6.5 mm Supplementary Figure 1 Picture of the compression holder. 6.5 mm ε = 0% ε = 1%, r = 9.4 mm ε = 2%, r = 4.7

More information

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e) (a) (b) Supplementary Figure 1. (a) An AFM image of the device after the formation of the contact electrodes and the top gate dielectric Al 2 O 3. (b) A line scan performed along the white dashed line

More information

A theoretical study of the single-molecule transistor

A theoretical study of the single-molecule transistor A theoretical study of the single-molecule transistor B. C. Friesen Department of Physics, Oklahoma Baptist University, Shawnee, OK 74804 J. K. Ingersent Department of Physics, University of Florida, Gainesville,

More information

File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References

File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References File name: Supplementary Information Description: Supplementary Notes, Supplementary Figures and Supplementary References File name: Peer Review File Description: Supplementary Note 1. CALCULATION OF THE

More information

Spectroscopies for Unoccupied States = Electrons

Spectroscopies for Unoccupied States = Electrons Spectroscopies for Unoccupied States = Electrons Photoemission 1 Hole Inverse Photoemission 1 Electron Tunneling Spectroscopy 1 Electron/Hole Emission 1 Hole Absorption Will be discussed with core levels

More information

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger

2m 2 Ze2. , where δ. ) 2 l,n is the quantum defect (of order one but larger PHYS 402, Atomic and Molecular Physics Spring 2017, final exam, solutions 1. Hydrogenic atom energies: Consider a hydrogenic atom or ion with nuclear charge Z and the usual quantum states φ nlm. (a) (2

More information

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets

Chapter 2. Theoretical background. 2.1 Itinerant ferromagnets and antiferromagnets Chapter 2 Theoretical background The first part of this chapter gives an overview of the main static magnetic behavior of itinerant ferromagnetic and antiferromagnetic materials. The formation of the magnetic

More information

Kinetic equation approach to the problem of rectification in asymmetric molecular structures

Kinetic equation approach to the problem of rectification in asymmetric molecular structures Kinetic equation approach to the problem of rectification in asymmetric molecular structures Kamil Walczak Institute of Physics, Adam Mickiewicz University Umultowska 85, 6-64 Poznań, Poland Transport

More information

Lecture 10. Transition probabilities and photoelectric cross sections

Lecture 10. Transition probabilities and photoelectric cross sections Lecture 10 Transition probabilities and photoelectric cross sections TRANSITION PROBABILITIES AND PHOTOELECTRIC CROSS SECTIONS Cross section = = Transition probability per unit time of exciting a single

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Molecular electronics. Lecture 2

Molecular electronics. Lecture 2 Molecular electronics Lecture 2 Molecular electronics approach Electrodes and contacts Basic requirement for molecular electronics: connection of the molecule of interest to the outside world, i.e. electrode

More information

Three Most Important Topics (MIT) Today

Three Most Important Topics (MIT) Today Three Most Important Topics (MIT) Today Electrons in periodic potential Energy gap nearly free electron Bloch Theorem Energy gap tight binding Chapter 1 1 Electrons in Periodic Potential We now know the

More information

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene

Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene Vibronic Coupling in Quantum Wires: Applications to Polydiacetylene An Exhaustively Researched Report by Will Bassett and Cole Johnson Overall Goal In order to elucidate the absorbance spectra of different

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 9, February 8, 2006 The Harmonic Oscillator Consider a diatomic molecule. Such a molecule

More information

Photon Interaction. Spectroscopy

Photon Interaction. Spectroscopy Photon Interaction Incident photon interacts with electrons Core and Valence Cross Sections Photon is Adsorbed Elastic Scattered Inelastic Scattered Electron is Emitted Excitated Dexcitated Stöhr, NEXAPS

More information

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires

CITY UNIVERSITY OF HONG KONG. Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires CITY UNIVERSITY OF HONG KONG Ë Theoretical Study of Electronic and Electrical Properties of Silicon Nanowires u Ä öä ªqk u{ Submitted to Department of Physics and Materials Science gkö y in Partial Fulfillment

More information

Microscopic Properties of BCS Superconductors (cont.)

Microscopic Properties of BCS Superconductors (cont.) PHYS598 A.J.Leggett Lecture 8 Microscopic Properties of BCS Superconductors (cont.) 1 Microscopic Properties of BCS Superconductors (cont.) References: Tinkham, ch. 3, sections 7 9 In last lecture, examined

More information

Scanning Tunneling Microscopy

Scanning Tunneling Microscopy Scanning Tunneling Microscopy References: 1. G. Binnig, H. Rohrer, C. Gerber, and Weibel, Phys. Rev. Lett. 49, 57 (1982); and ibid 50, 120 (1983). 2. J. Chen, Introduction to Scanning Tunneling Microscopy,

More information

arxiv: v1 [cond-mat.mes-hall] 9 Nov 2009

arxiv: v1 [cond-mat.mes-hall] 9 Nov 2009 A mesoscopic ring as a XNOR gate: An exact result Santanu K. Maiti,, arxiv:9.66v [cond-mat.mes-hall] 9 Nov 9 Theoretical Condensed Matter Physics Division, Saha nstitute of Nuclear Physics, /AF, Bidhannagar,

More information

Electronic structure of correlated electron systems. Lecture 2

Electronic structure of correlated electron systems. Lecture 2 Electronic structure of correlated electron systems Lecture 2 Band Structure approach vs atomic Band structure Delocalized Bloch states Fill up states with electrons starting from the lowest energy No

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY

PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY PRINCIPLES OF NONLINEAR OPTICAL SPECTROSCOPY Shaul Mukamel University of Rochester Rochester, New York New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1. Introduction 3 Linear versus Nonlinear Spectroscopy

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

An ab initio approach to electrical transport in molecular devices

An ab initio approach to electrical transport in molecular devices INSTITUTE OF PHYSICSPUBLISHING Nanotechnology 13 (00) 1 4 An ab initio approach to electrical transport in molecular devices NANOTECHNOLOGY PII: S0957-4484(0)31500-9 JJPalacios 1,ELouis 1,AJPérez-Jiménez,ESanFabián

More information

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY

INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY INTRODUCTION TO SCA\ \I\G TUNNELING MICROSCOPY SECOND EDITION C. JULIAN CHEN Department of Applied Physics and Applied Mathematics, Columbia University, New York OXFORD UNIVERSITY PRESS Contents Preface

More information

Composite Model for LENR in linear defects of a lattice

Composite Model for LENR in linear defects of a lattice Composite Model for LENR in linear defects of a lattice A. Meulenberg a) and K. P. Sinha b) a) Science for Humanity Trust, Inc. Tucker, GA, USA mules333@gmail.com b) Department of Physics, Indian Institute

More information

Atomic and molecular interaction forces in biology

Atomic and molecular interaction forces in biology Atomic and molecular interaction forces in biology 1 Outline Types of interactions relevant to biology Van der Waals interactions H-bond interactions Some properties of water Hydrophobic effect 2 Types

More information

Momentum filtering effect in molecular wires

Momentum filtering effect in molecular wires PHYSICAL REVIEW B 70, 195309 (2004) Momentum filtering effect in molecular wires Chao-Cheng Kaun, 1, * Hong Guo, 1 Peter Grütter, 1 and R. Bruce Lennox 1,2 1 Center for the Physics of Materials and Department

More information

Electronic structure mechanism of spin-polarized electron transport in a Ni C 60 Ni system

Electronic structure mechanism of spin-polarized electron transport in a Ni C 60 Ni system Chemical Physics Letters 439 (27) 11 114 www.elsevier.com/locate/cplett Electronic structure mechanism of spin-polarized electron transport in a Ni C 6 Ni system Haiying He a, Ravindra Pandey a, *, Shashi

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Supplementary Materials

Supplementary Materials Supplementary Materials Sample characterization The presence of Si-QDs is established by Transmission Electron Microscopy (TEM), by which the average QD diameter of d QD 2.2 ± 0.5 nm has been determined

More information

Electronic transport in low dimensional systems

Electronic transport in low dimensional systems Electronic transport in low dimensional systems For example: 2D system l

More information

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots Introduction Resonant Cooling of Nuclear Spins in Quantum Dots Mark Rudner Massachusetts Institute of Technology For related details see: M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 99, 036602 (2007);

More information

Quantum Master Equations for the Electron Transfer Problem

Quantum Master Equations for the Electron Transfer Problem 20/01/2010 Quantum Master Equations for the Electron Transfer Problem Seminarvortrag Dekohaerenz und Dissipation in Quantensystemen Antonio A. Gentile The general transport problem in micro/mesoscopic

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60. With: Eli Wilner Dante Kennes Andrew Millis

Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60. With: Eli Wilner Dante Kennes Andrew Millis Electronic Squeezing by Optically Pumped Phonons: Transient Superconductivity in K 3 C 60 With: Eli Wilner Dante Kennes Andrew Millis Background: Mean-Field Theory of Simple Superconductivity If the effective

More information

Charge transport in nanoscale three-terminal devices. 1. Introduction: Three-terminal devices and quantization

Charge transport in nanoscale three-terminal devices. 1. Introduction: Three-terminal devices and quantization 0 0 0 0 harge transport in nanoscale three-terminal devices J.M. Thijssen and H..J. van der Zant Kavli Institute of Nanoscience, elft University of Technology, Lorentzweg, J elft (The Netherlands). Abstract

More information

A Single-Level Tunnel Model to Account for Electrical Transport through. Single Molecule- and Self-Assembled Monolayer-based Junctions

A Single-Level Tunnel Model to Account for Electrical Transport through. Single Molecule- and Self-Assembled Monolayer-based Junctions A Single-Level Tunnel Model to Account for Electrical Transport through Single Molecule- and Self-Assembled Monolayer-based Junctions Alvar R. Garrigues 1, Li Yuan 2, Lejia Wang 2, Eduardo R. Mucciolo

More information

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction.

are microscopically large but macroscopically small contacts which may be connected to a battery to provide the bias voltage across the junction. At present, we observe a long-lasting process of miniaturization of electronic devices. The ultimate limit for the miniaturization of electronic components is set by the atomic scale. However, in the case

More information

Charge Carriers in Semiconductor

Charge Carriers in Semiconductor Charge Carriers in Semiconductor To understand PN junction s IV characteristics, it is important to understand charge carriers behavior in solids, how to modify carrier densities, and different mechanisms

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Jul 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 6 Jul 1999 Electron Standing Wave Formation in Atomic Wires arxiv:cond-mat/9907092v1 [cond-mat.mes-hall] 6 Jul 1999 Eldon G. Emberly and George Kirczenow Department of Physics, Simon Fraser University, Burnaby, B.C.,

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Theoretical Concepts of Spin-Orbit Splitting

Theoretical Concepts of Spin-Orbit Splitting Chapter 9 Theoretical Concepts of Spin-Orbit Splitting 9.1 Free-electron model In order to understand the basic origin of spin-orbit coupling at the surface of a crystal, it is a natural starting point

More information

Quantum Transport and Dissipation

Quantum Transport and Dissipation Thomas Dittrich, Peter Hänggi, Gert-Ludwig Ingold, Bernhard Kramer, Gerd Schön and Wilhelm Zwerger Quantum Transport and Dissipation WILEY-VCH Weinheim Berlin New York Chichester Brisbane Singapore Toronto

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. p. 10-0 10..

More information

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms

2 B B D (E) Paramagnetic Susceptibility. m s probability. A) Bound Electrons in Atoms Paramagnetic Susceptibility A) Bound Electrons in Atoms m s probability B +½ p ½e x Curie Law: 1/T s=½ + B ½ p + ½e +x With increasing temperature T the alignment of the magnetic moments in a B field is

More information