CS 182 Sections Leon Barrett

Size: px
Start display at page:

Download "CS 182 Sections Leon Barrett"

Transcription

1 CS 182 Sections Leon Barrett bad puns alert! (

2

3 Announcements a3 part 1 is due tomorrow night (submit as a3-1) The second tester file is up, so please start part 2. If you don't like your solution to Part 1, you can get our solution on Sunday morning. The quiz is graded (get it after class).

4 Where we stand Last Week Learning backprop color This Week cognitive linguistics

5 Back-Propagation Algorithm yj wij xi f yi ti:target xi = j wij yj yi = f(xi) Sigmoid: y i = f ( xi ) = e xi We define the error term for a single node to be ti - yi

6 Gradient Descent i2 i1 global mimimum: this is your goal it should be 4-D (3 weights) but you get the idea

7 Equations of Backprop Weight update shown on following slides; important equations highlighted in green Note momentum equation: dw(t) = change in weight at time t dw(t-1) = change in weight at time t-1 so using momentum: dw(t) = -learning_rate * -input * delta(i) + momentum * dw(t-1) the first part of that comes from last slides below the second part is the momentum term

8 The output layer learning rate wjk wij yi ti: target Wij Wij α Wij = α k j i E Wij E E yi xi = = ( ti yi ) f ' ( xi ) y j Wij yi xi Wij E = Error = ½ i (ti yi)2 The derivative of the sigmoid is just y i (1 y i ) Wij = α ( ti yi ) yi (1 yi ) y j Wij = α y j δ i E Wij δ i = ( t i yi ) y i (1 yi )

9 The hidden layer wjk wij yi ti: target W jk = α E W jk E E y j x j = W jk y j x j W jk k j i E = Error = ½ i (ti yi)2 E E yi xi = = (ti yi ) f ' ( xi ) Wij y j i yi xi y j i E = (ti yi ) f ' ( xi ) Wij f ' ( x j ) yk W jk i W jk = α (ti yi ) yi (1 yi ) Wij y j (1 y j ) yk i W jk = α yk δ j δ j = (ti yi ) yi (1 yi ) Wij y j (1 y j ) i δ j = Wij δ i y j (1 y j ) i

10 Let s just do an example 0 i1 0 i2 b=1 w w w0b x00.5 1/(1+e^-0.5) f y i1 i2 y E = Error = ½ i (ti yi)2 E = ½ (t0 y0) E = ½ ( )2 = δ i = ( t i yi ) y i (1 yi ) Wij = α y j δ i W01 = α y1 δ 0 0 δ 0 = ( t 0 y 0 ) y 0 (1 y 0 ) 0 δ 0 = ( ) ( ) = α i1 δ 0 W02 = α y2 δ 0 = α i2 δ 0 W0b = α yb δ 0 = α b δ 0 = α learning rate δ 0 = suppose α = 0.5 W0b = =

11 Biological learning 1. What is Hebbian learning? 2. Where has it been observed? 3. What is wrong with Hebbian learning as a story of how animals learn? hint it's the opposite of what's wrong with backprop

12 LTP and Hebb s Rule Hebb s Rule: neurons that fire together wire together strengthen weaken Long Term Potentiation (LTP) is the biological basis of Hebb s Rule Calcium channels are the key mechanism

13 Why is Hebb s rule incomplete? here s a contrived example: tastebud tastes rotten eats food drinks water should you punish all the connections? gets sick

14 During normal low-frequency trans-mission, glutamate interacts with NMDA and nonnmda (AMPA) and metabotropic receptors. With highfrequency stimulation, Calcium comes in

15 Recruitment learning What is recruitment learning? Why do we need it in our story? How does it relate to triangle nodes?

16 Models of Learning Hebbian ~ coincidence Recruitment ~ one trial Supervised ~ correction (backprop) Reinforcement ~ delayed reward Unsupervised ~ similarity

17 Questions! 1. How do humans detect color biologically? 2. Are color names arbitrary? What are the findings surrounding this?

18 Questions! How do humans detect color biologically? Are color names arbitrary? What are the findings surrounding this?

19 A Tour of the Visual System two regions of interest: retina LGN

20 Rods and Cones in the Retina

21 The Microscopic View

22 What Rods and Cones Detect Notice how they aren t distributed evenly, and the rod is more sensitive to shorter wavelengths

23 Center / Surround Strong activation in center, inhibition on surround The effect you get using these center / surround cells is enhanced edges top: the stimuli itself middle: brightness of the stimuli bottom: response of the retina You ll see this idea get used in Regier s model

24 How They Fire No stimuli: both fire at base rate Stimuli in center: ON-center-OFF-surround fires rapidly OFF-center-ON-surround doesn t fire Stimuli in surround: OFF-center-ON-surround fires rapidly ON-center-OFF-surround doesn t fire Stimuli in both regions: both fire slowly

25 Color Opponent Cells Mean Spikes / Sec +R-G +Y-B These cells are found in the LGN Four color channels: Red, Green, Blue, Yellow R/G, B/Y pairs 50 much like center/surround cells +G-R B-Y 400 (Monkey brain) Wavelength (mμ) 700 We can use these to determine the visual system s fundamental hue responses

26 The WCS Color Chips Basic color terms: Single word (not blue-green) Frequently used (not mauve) Refers primarily to colors (not lime) Applies to any object (not blonde) FYI: English has 11 basic color terms

27 Results of Kay s Color Study Stage I II IIIa / IIIb IV V VI VII W or R or Y W W W W W W Bk or G or Bu R or Y R or Y R R R R Bk or G or Bu G or Bu Y Y Y Y Bk G or Bu G G G Bk Bu Bu Bu Bk Bk Bk Y+Bk (Brown) Y+Bk (Brown) W R Y R+W (Pink) Bk or G or Bu R + Bu (Purple) R+Y (Orange) B+W (Grey) If you group languages into the number of basic color terms they have, as the number of color terms increases, additional terms specify focal colors

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives

Basic elements of neuroelectronics -- membranes -- ion channels -- wiring. Elementary neuron models -- conductance based -- modelers alternatives Computing in carbon Basic elements of neuroelectronics -- membranes -- ion channels -- wiring Elementary neuron models -- conductance based -- modelers alternatives Wiring neurons together -- synapses

More information

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture

CSE/NB 528 Final Lecture: All Good Things Must. CSE/NB 528: Final Lecture CSE/NB 528 Final Lecture: All Good Things Must 1 Course Summary Where have we been? Course Highlights Where do we go from here? Challenges and Open Problems Further Reading 2 What is the neural code? What

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Machine Learning. Neural Networks

Machine Learning. Neural Networks Machine Learning Neural Networks Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 Biological Analogy Bryan Pardo, Northwestern University, Machine Learning EECS 349 Fall 2007 THE

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Oliver Schulte - CMPT 310 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Philipp Koehn 4 April 205 Linear Models We used before weighted linear combination of feature values h j and weights λ j score(λ, d i ) = j λ j h j (d i ) Such models can

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016

CPSC 340: Machine Learning and Data Mining. More PCA Fall 2016 CPSC 340: Machine Learning and Data Mining More PCA Fall 2016 A2/Midterm: Admin Grades/solutions posted. Midterms can be viewed during office hours. Assignment 4: Due Monday. Extra office hours: Thursdays

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

Fundamentals of Neural Networks

Fundamentals of Neural Networks Fundamentals of Neural Networks : Soft Computing Course Lecture 7 14, notes, slides www.myreaders.info/, RC Chakraborty, e-mail rcchak@gmail.com, Aug. 10, 2010 http://www.myreaders.info/html/soft_computing.html

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5

Artificial Neural Networks. Q550: Models in Cognitive Science Lecture 5 Artificial Neural Networks Q550: Models in Cognitive Science Lecture 5 "Intelligence is 10 million rules." --Doug Lenat The human brain has about 100 billion neurons. With an estimated average of one thousand

More information

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity:

Synaptic Plasticity. Introduction. Biophysics of Synaptic Plasticity. Functional Modes of Synaptic Plasticity. Activity-dependent synaptic plasticity: Synaptic Plasticity Introduction Dayan and Abbott (2001) Chapter 8 Instructor: Yoonsuck Choe; CPSC 644 Cortical Networks Activity-dependent synaptic plasticity: underlies learning and memory, and plays

More information

Computational Explorations in Cognitive Neuroscience Chapter 5: Error-Driven Task Learning

Computational Explorations in Cognitive Neuroscience Chapter 5: Error-Driven Task Learning Computational Explorations in Cognitive Neuroscience Chapter 5: Error-Driven Task Learning 1 5.1 Overview In the previous chapter, the goal of learning was to represent the statistical structure of the

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

Sean Escola. Center for Theoretical Neuroscience

Sean Escola. Center for Theoretical Neuroscience Employing hidden Markov models of neural spike-trains toward the improved estimation of linear receptive fields and the decoding of multiple firing regimes Sean Escola Center for Theoretical Neuroscience

More information

Biological Modeling of Neural Networks:

Biological Modeling of Neural Networks: Week 14 Dynamics and Plasticity 14.1 Reservoir computing - Review:Random Networks - Computing with rich dynamics Biological Modeling of Neural Networks: 14.2 Random Networks - stationary state - chaos

More information

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau

Last update: October 26, Neural networks. CMSC 421: Section Dana Nau Last update: October 26, 207 Neural networks CMSC 42: Section 8.7 Dana Nau Outline Applications of neural networks Brains Neural network units Perceptrons Multilayer perceptrons 2 Example Applications

More information

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1

Vision & Perception. Simple model: simple reflectance/illumination model. image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) 0 < r(n 1,n 2 ) < 1 Simple model: simple reflectance/illumination model Eye illumination source i(n 1,n 2 ) image: x(n 1,n 2 )=i(n 1,n 2 )r(n 1,n 2 ) reflectance term r(n 1,n 2 ) where 0 < i(n 1,n 2 ) < 0 < r(n 1,n 2 )

More information

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6

Administration. Registration Hw3 is out. Lecture Captioning (Extra-Credit) Scribing lectures. Questions. Due on Thursday 10/6 Administration Registration Hw3 is out Due on Thursday 10/6 Questions Lecture Captioning (Extra-Credit) Look at Piazza for details Scribing lectures With pay; come talk to me/send email. 1 Projects Projects

More information

Adaptation in the Neural Code of the Retina

Adaptation in the Neural Code of the Retina Adaptation in the Neural Code of the Retina Lens Retina Fovea Optic Nerve Optic Nerve Bottleneck Neurons Information Receptors: 108 95% Optic Nerve 106 5% After Polyak 1941 Visual Cortex ~1010 Mean Intensity

More information

3 Detector vs. Computer

3 Detector vs. Computer 1 Neurons 1. The detector model. Also keep in mind this material gets elaborated w/the simulations, and the earliest material is often hardest for those w/primarily psych background. 2. Biological properties

More information

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!!

CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! CSE 190 Fall 2015 Midterm DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO START!!!! November 18, 2015 THE EXAM IS CLOSED BOOK. Once the exam has started, SORRY, NO TALKING!!! No, you can t even say see ya

More information

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011

Limulus. The Neural Code. Response of Visual Neurons 9/21/2011 Crab cam (Barlow et al., 2001) self inhibition recurrent inhibition lateral inhibition - L16. Neural processing in Linear Systems: Temporal and Spatial Filtering C. D. Hopkins Sept. 21, 2011 The Neural

More information

Neural Networks. Nicholas Ruozzi University of Texas at Dallas

Neural Networks. Nicholas Ruozzi University of Texas at Dallas Neural Networks Nicholas Ruozzi University of Texas at Dallas Handwritten Digit Recognition Given a collection of handwritten digits and their corresponding labels, we d like to be able to correctly classify

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Neural Networks Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Outline Part 1 Introduction Feedforward Neural Networks Stochastic Gradient Descent Computational Graph

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller

2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks. Todd W. Neller 2015 Todd Neller. A.I.M.A. text figures 1995 Prentice Hall. Used by permission. Neural Networks Todd W. Neller Machine Learning Learning is such an important part of what we consider "intelligence" that

More information

How do biological neurons learn? Insights from computational modelling of

How do biological neurons learn? Insights from computational modelling of How do biological neurons learn? Insights from computational modelling of neurobiological experiments Lubica Benuskova Department of Computer Science University of Otago, New Zealand Brain is comprised

More information

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann

(Feed-Forward) Neural Networks Dr. Hajira Jabeen, Prof. Jens Lehmann (Feed-Forward) Neural Networks 2016-12-06 Dr. Hajira Jabeen, Prof. Jens Lehmann Outline In the previous lectures we have learned about tensors and factorization methods. RESCAL is a bilinear model for

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Using a Hopfield Network: A Nuts and Bolts Approach

Using a Hopfield Network: A Nuts and Bolts Approach Using a Hopfield Network: A Nuts and Bolts Approach November 4, 2013 Gershon Wolfe, Ph.D. Hopfield Model as Applied to Classification Hopfield network Training the network Updating nodes Sequencing of

More information

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA

Review for Exam 1. Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA Review for Exam Erik G. Learned-Miller Department of Computer Science University of Massachusetts, Amherst Amherst, MA 0003 March 26, 204 Abstract Here are some things you need to know for the in-class

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

15 Grossberg Network 1

15 Grossberg Network 1 Grossberg Network Biological Motivation: Vision Bipolar Cell Amacrine Cell Ganglion Cell Optic Nerve Cone Light Lens Rod Horizontal Cell Retina Optic Nerve Fiber Eyeball and Retina Layers of Retina The

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Vincent Barra LIMOS, UMR CNRS 6158, Blaise Pascal University, Clermont-Ferrand, FRANCE January 4, 2011 1 / 46 1 INTRODUCTION Introduction History Brain vs. ANN Biological

More information

Artificial Neural Networks. MGS Lecture 2

Artificial Neural Networks. MGS Lecture 2 Artificial Neural Networks MGS 2018 - Lecture 2 OVERVIEW Biological Neural Networks Cell Topology: Input, Output, and Hidden Layers Functional description Cost functions Training ANNs Back-Propagation

More information

Lecture 35: Optimization and Neural Nets

Lecture 35: Optimization and Neural Nets Lecture 35: Optimization and Neural Nets CS 4670/5670 Sean Bell DeepDream [Google, Inceptionism: Going Deeper into Neural Networks, blog 2015] Aside: CNN vs ConvNet Note: There are many papers that use

More information

Lecture 17: Neural Networks and Deep Learning

Lecture 17: Neural Networks and Deep Learning UVA CS 6316 / CS 4501-004 Machine Learning Fall 2016 Lecture 17: Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions

More information

Introduction and Perceptron Learning

Introduction and Perceptron Learning Artificial Neural Networks Introduction and Perceptron Learning CPSC 565 Winter 2003 Christian Jacob Department of Computer Science University of Calgary Canada CPSC 565 - Winter 2003 - Emergent Computing

More information

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET

Neural Networks and Fuzzy Logic Rajendra Dept.of CSE ASCET Unit-. Definition Neural network is a massively parallel distributed processing system, made of highly inter-connected neural computing elements that have the ability to learn and thereby acquire knowledge

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

Computational Neuroscience. Structure Dynamics Implementation Algorithm Computation - Function

Computational Neuroscience. Structure Dynamics Implementation Algorithm Computation - Function Computational Neuroscience Structure Dynamics Implementation Algorithm Computation - Function Learning at psychological level Classical conditioning Hebb's rule When an axon of cell A is near enough to

More information

Introduction To Artificial Neural Networks

Introduction To Artificial Neural Networks Introduction To Artificial Neural Networks Machine Learning Supervised circle square circle square Unsupervised group these into two categories Supervised Machine Learning Supervised Machine Learning Supervised

More information

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey

Outline. NIP: Hebbian Learning. Overview. Types of Learning. Neural Information Processing. Amos Storkey Outline NIP: Hebbian Learning Neural Information Processing Amos Storkey 1/36 Overview 2/36 Types of Learning Types of learning, learning strategies Neurophysiology, LTP/LTD Basic Hebb rule, covariance

More information

Brains and Computation

Brains and Computation 15-883: Computational Models of Neural Systems Lecture 1.1: Brains and Computation David S. Touretzky Computer Science Department Carnegie Mellon University 1 Models of the Nervous System Hydraulic network

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks CPSC 533 Winter 2 Christian Jacob Neural Networks in the Context of AI Systems Neural Networks as Mediators between Symbolic AI and Statistical Methods 2 5.-NeuralNets-2.nb Neural

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico

Ângelo Cardoso 27 May, Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico BIOLOGICALLY INSPIRED COMPUTER MODELS FOR VISUAL RECOGNITION Ângelo Cardoso 27 May, 2010 Symbolic and Sub-Symbolic Learning Course Instituto Superior Técnico Index Human Vision Retinal Ganglion Cells Simple

More information

Lecture 4: Feed Forward Neural Networks

Lecture 4: Feed Forward Neural Networks Lecture 4: Feed Forward Neural Networks Dr. Roman V Belavkin Middlesex University BIS4435 Biological neurons and the brain A Model of A Single Neuron Neurons as data-driven models Neural Networks Training

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks Philipp Koehn 3 October 207 Linear Models We used before weighted linear combination of feature values h j and weights λ j score(λ, d i ) = j λ j h j (d i ) Such models

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Neural Networks. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison. slide 1

Neural Networks. Xiaojin Zhu Computer Sciences Department University of Wisconsin, Madison. slide 1 Neural Networks Xiaoin Zhu erryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison slide 1 Terminator 2 (1991) JOHN: Can you learn? So you can be... you know. More human. Not

More information

Multi-layer Neural Networks

Multi-layer Neural Networks Multi-layer Neural Networks Steve Renals Informatics 2B Learning and Data Lecture 13 8 March 2011 Informatics 2B: Learning and Data Lecture 13 Multi-layer Neural Networks 1 Overview Multi-layer neural

More information

The Perceptron. Volker Tresp Summer 2014

The Perceptron. Volker Tresp Summer 2014 The Perceptron Volker Tresp Summer 2014 1 Introduction One of the first serious learning machines Most important elements in learning tasks Collection and preprocessing of training data Definition of a

More information

Lecture 4: Perceptrons and Multilayer Perceptrons

Lecture 4: Perceptrons and Multilayer Perceptrons Lecture 4: Perceptrons and Multilayer Perceptrons Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning Perceptrons, Artificial Neuronal Networks Lecture 4: Perceptrons

More information

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch.

Feed-forward Networks Network Training Error Backpropagation Applications. Neural Networks. Oliver Schulte - CMPT 726. Bishop PRML Ch. Neural Networks Oliver Schulte - CMPT 726 Bishop PRML Ch. 5 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will

More information

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon

Neuron. Detector Model. Understanding Neural Components in Detector Model. Detector vs. Computer. Detector. Neuron. output. axon Neuron Detector Model 1 The detector model. 2 Biological properties of the neuron. 3 The computational unit. Each neuron is detecting some set of conditions (e.g., smoke detector). Representation is what

More information

Neural networks (not in book)

Neural networks (not in book) (not in book) Another approach to classification is neural networks. were developed in the 1980s as a way to model how learning occurs in the brain. There was therefore wide interest in neural networks

More information

Linear Regression, Neural Networks, etc.

Linear Regression, Neural Networks, etc. Linear Regression, Neural Networks, etc. Gradient Descent Many machine learning problems can be cast as optimization problems Define a function that corresponds to learning error. (More on this later)

More information

Statistical NLP for the Web

Statistical NLP for the Web Statistical NLP for the Web Neural Networks, Deep Belief Networks Sameer Maskey Week 8, October 24, 2012 *some slides from Andrew Rosenberg Announcements Please ask HW2 related questions in courseworks

More information

Chapter 2 Single Layer Feedforward Networks

Chapter 2 Single Layer Feedforward Networks Chapter 2 Single Layer Feedforward Networks By Rosenblatt (1962) Perceptrons For modeling visual perception (retina) A feedforward network of three layers of units: Sensory, Association, and Response Learning

More information

Neural Networks Task Sheet 2. Due date: May

Neural Networks Task Sheet 2. Due date: May Neural Networks 2007 Task Sheet 2 1/6 University of Zurich Prof. Dr. Rolf Pfeifer, pfeifer@ifi.unizh.ch Department of Informatics, AI Lab Matej Hoffmann, hoffmann@ifi.unizh.ch Andreasstrasse 15 Marc Ziegler,

More information

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight)

Deep Learning. What Is Deep Learning? The Rise of Deep Learning. Long History (in Hind Sight) CSCE 636 Neural Networks Instructor: Yoonsuck Choe Deep Learning What Is Deep Learning? Learning higher level abstractions/representations from data. Motivation: how the brain represents sensory information

More information

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY

DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY DEEP LEARNING AND NEURAL NETWORKS: BACKGROUND AND HISTORY 1 On-line Resources http://neuralnetworksanddeeplearning.com/index.html Online book by Michael Nielsen http://matlabtricks.com/post-5/3x3-convolution-kernelswith-online-demo

More information

In this section, we review some basics of modeling via linear algebra: finding a line of best fit, Hebbian learning, pattern classification.

In this section, we review some basics of modeling via linear algebra: finding a line of best fit, Hebbian learning, pattern classification. Linear Models In this section, we review some basics of modeling via linear algebra: finding a line of best fit, Hebbian learning, pattern classification. Best Fitting Line In this section, we examine

More information

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory

Deep Reinforcement Learning SISL. Jeremy Morton (jmorton2) November 7, Stanford Intelligent Systems Laboratory Deep Reinforcement Learning Jeremy Morton (jmorton2) November 7, 2016 SISL Stanford Intelligent Systems Laboratory Overview 2 1 Motivation 2 Neural Networks 3 Deep Reinforcement Learning 4 Deep Learning

More information

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science

Neural Networks. Prof. Dr. Rudolf Kruse. Computational Intelligence Group Faculty for Computer Science Neural Networks Prof. Dr. Rudolf Kruse Computational Intelligence Group Faculty for Computer Science kruse@iws.cs.uni-magdeburg.de Rudolf Kruse Neural Networks 1 Hopfield Networks Rudolf Kruse Neural Networks

More information

Animal learning theory

Animal learning theory Animal learning theory Based on [Sutton and Barto, 1990, Dayan and Abbott, 2001] Bert Kappen [Sutton and Barto, 1990] Classical conditioning: - A conditioned stimulus (CS) and unconditioned stimulus (US)

More information

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017

CPSC 340: Machine Learning and Data Mining. Sparse Matrix Factorization Fall 2017 CPSC 340: Machine Learning and Data Mining Sparse Matrix Factorization Fall 2017 Admin Assignment 4: Due Friday. Assignment 5: Posted, due Monday of last week of classes Last Time: PCA with Orthogonal/Sequential

More information

Activity 2: Physics and the Visual Arts

Activity 2: Physics and the Visual Arts Why? An appreciation for and understanding of the physical processes that underpin the visual arts can be satisfying for an artist and lead to production of some unique pieces such as ferrosculptures:

More information

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications

Neural Networks. Bishop PRML Ch. 5. Alireza Ghane. Feed-forward Networks Network Training Error Backpropagation Applications Neural Networks Bishop PRML Ch. 5 Alireza Ghane Neural Networks Alireza Ghane / Greg Mori 1 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Back-propagation as reinforcement in prediction tasks

Back-propagation as reinforcement in prediction tasks Back-propagation as reinforcement in prediction tasks André Grüning Cognitive Neuroscience Sector S.I.S.S.A. via Beirut 4 34014 Trieste Italy gruening@sissa.it Abstract. The back-propagation (BP) training

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

Computational Models of Human Cognition

Computational Models of Human Cognition Computational Models of Human Cognition Models A model is a means of representing the structure or workings of a system or object. e.g., model car e.g., economic model e.g., psychophysics model 2500 loudness

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6

Machine Learning for Large-Scale Data Analysis and Decision Making A. Neural Networks Week #6 Machine Learning for Large-Scale Data Analysis and Decision Making 80-629-17A Neural Networks Week #6 Today Neural Networks A. Modeling B. Fitting C. Deep neural networks Today s material is (adapted)

More information

Plasticity and Learning

Plasticity and Learning Chapter 8 Plasticity and Learning 8.1 Introduction Activity-dependent synaptic plasticity is widely believed to be the basic phenomenon underlying learning and memory, and it is also thought to play a

More information

Do Neurons Process Information Efficiently?

Do Neurons Process Information Efficiently? Do Neurons Process Information Efficiently? James V Stone, University of Sheffield Claude Shannon, 1916-2001 Nothing in biology makes sense except in the light of evolution. Theodosius Dobzhansky, 1973.

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Decoding. How well can we learn what the stimulus is by looking at the neural responses?

Decoding. How well can we learn what the stimulus is by looking at the neural responses? Decoding How well can we learn what the stimulus is by looking at the neural responses? Two approaches: devise explicit algorithms for extracting a stimulus estimate directly quantify the relationship

More information

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation

Neural Networks. Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Fundamentals Framework for distributed processing Network topologies Training of ANN s Notation Perceptron Back Propagation Neural Networks Historical Perspective A first wave of interest

More information

Neural Network to Control Output of Hidden Node According to Input Patterns

Neural Network to Control Output of Hidden Node According to Input Patterns American Journal of Intelligent Systems 24, 4(5): 96-23 DOI:.5923/j.ajis.2445.2 Neural Network to Control Output of Hidden Node According to Input Patterns Takafumi Sasakawa, Jun Sawamoto 2,*, Hidekazu

More information

Welcome Back! Physics Coulomb s Law. Charles-Augustin de Coulomb Physics 1308: General Physics II - Professor Jodi Cooley

Welcome Back! Physics Coulomb s Law. Charles-Augustin de Coulomb Physics 1308: General Physics II - Professor Jodi Cooley Welcome Back! Physics 1308 Coulomb s Law Charles-Augustin de Coulomb 1736-1806 Announcements Assignments for Tuesday, August 28th: - Reading: Chapter 22.1-22.2 - Watch Video: https://youtu.be/tzq79csdttw

More information

Intro to Neural Networks and Deep Learning

Intro to Neural Networks and Deep Learning Intro to Neural Networks and Deep Learning Jack Lanchantin Dr. Yanjun Qi UVA CS 6316 1 Neurons 1-Layer Neural Network Multi-layer Neural Network Loss Functions Backpropagation Nonlinearity Functions NNs

More information

Memories Associated with Single Neurons and Proximity Matrices

Memories Associated with Single Neurons and Proximity Matrices Memories Associated with Single Neurons and Proximity Matrices Subhash Kak Oklahoma State University, Stillwater Abstract: This paper extends the treatment of single-neuron memories obtained by the use

More information

Input layer. Weight matrix [ ] Output layer

Input layer. Weight matrix [ ] Output layer MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.034 Artificial Intelligence, Fall 2003 Recitation 10, November 4 th & 5 th 2003 Learning by perceptrons

More information

Part 8: Neural Networks

Part 8: Neural Networks METU Informatics Institute Min720 Pattern Classification ith Bio-Medical Applications Part 8: Neural Netors - INTRODUCTION: BIOLOGICAL VS. ARTIFICIAL Biological Neural Netors A Neuron: - A nerve cell as

More information

Fundamentals of Computational Neuroscience 2e

Fundamentals of Computational Neuroscience 2e Fundamentals of Computational Neuroscience 2e January 1, 2010 Chapter 10: The cognitive brain Hierarchical maps and attentive vision A. Ventral visual pathway B. Layered cortical maps Receptive field size

More information

Multilayer Perceptrons and Backpropagation

Multilayer Perceptrons and Backpropagation Multilayer Perceptrons and Backpropagation Informatics 1 CG: Lecture 7 Chris Lucas School of Informatics University of Edinburgh January 31, 2017 (Slides adapted from Mirella Lapata s.) 1 / 33 Reading:

More information

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation

Plan. Perceptron Linear discriminant. Associative memories Hopfield networks Chaotic networks. Multilayer perceptron Backpropagation Neural Networks Plan Perceptron Linear discriminant Associative memories Hopfield networks Chaotic networks Multilayer perceptron Backpropagation Perceptron Historically, the first neural net Inspired

More information